
APPENDIX
DETAILS OF BAYESIAN ANALYSIS

This Appendix describes the details of the Bayesian analysis using a Stochastic
Search Variable Selection (SSVS) to select gene sets. The SSVS is based on George
& McCulloch (1993) who proposed the use of a mixture of Normal densities as a
prior distribution in a hierarchical Bayesian model as an approach for a model
selection algorithm. We extended and modified the George & McCulloch (1993)
implementation by adding a model intercept, by taking the ”large” variance in
the mixture as a model parameter to be learnt from the data, and by choosing
for uniform prior distributions on variance parameters. This section describes the
Bayesian posterior density for this model and the conditional distributions needed
to implement a Markov chain Monte Carlo (MCMC) algorithm to obtain samples
from the posterior distribution of the parameters in this model.

The complete Bayesian model specification is as follows:

z =1µ+Xβ + e(1)

µ ∼ U(−∞,∞)

βi ∼ (1− γi)N(0, τ 20 ) + γiN(0, τ 21 )

γi ∼ Bern(π)

e ∼ N(0, Iσ2)

τ 21 , σ
2 ∼ U(0,∞)

where z are the gene statistics used as responses (length n), as explained in the
main text, µ is an intercept, X is a covariate/classification matrix with rows for
genes and columns for gene sets and containing 0’s and 1’s to indicate membership
of genes to sets (genes can belong to multiple sets causing overlapping gene sets),
β are regression coefficients, and e residual model errors. In the distributional
assumption, U() indicates a Uniform distribution with left bound and right bound,
N() a Normal with mean and variance, and Bern() a Bernoulli with probability
for being 1. The Bayesian model specifies that µ has a uniform prior distribution,
causing the intercept to be fitted as ”fixed” (unshrunken), β is modeled using a
mixture, and residuals are assumed Normal. The fitting of the mixture is using
the auxiliary Bernoulli variables γi, indicating whether βi is in the first (γi =
0) or second mixture (γi = 1). The posterior mean of γi is also used as the
posterior probability that the ith covariate is selected in the model. In the mixture
distribution, τ 21 (slab variance) is taken as a model parameter and is learned from
the data, using a Uniform prior. The parameters τ 20 and π are taken as known
values. The τ 20 was set to 0.027, which is a value such that all ’out of model’
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covariates collectively do not explain more than 1% of variance in the responses.
The proportion of expected important gene sets π was set to 0.05. A sensitivity
analysis was performed on the selection of the gene sets by increasing π to 0.40.
Also the variance of residuals σ2 is taken as a model parameter and is learned from
the data using a Uniform prior.

The joint posterior distribution (apart from constants) for the above model is:

f(µ, β, γ, τ 21 , σ
2|z) ∝(2)

(σ2)−n/2 exp(−(z − 1µ−Xβ)′(z − 1µ−Xβ)/2σ2)∏
i

(τ 2γi)
−1/2 exp(−β2

i /2τ
2
γi

)
∏
i

(1− π)(1−γi)πγi

where the first expression is the likelihood, the second is the mixture prior for
the βi’s, and the third is the Bernoulli prior for the γi’s. The Uniform priors used
for µ, τ 21 , σ

2 are not explicitly shown because they add a constant which disappears
in the proportional expression of the posterior used here.

The MCMC algorithm to obtain samples from the posterior distribution of the
model parameters cycles through sampling each parameter from its conditional
posterior distribution given the other parameters and the data. These conditional
distributions can be identified by removing all parts from the posterior that do not
depend on the parameter of interest (are multiplying constants), and performing
algebra until a distributional form can be recognized.

The conditional posterior distribution for the model intercept µ is:

f(µ|β, γ, τ 21 , σ2, z) ∝(3)

(σ2)−n/2 exp(−(z − 1µ−Xβ)′(z − 1µ−Xβ)/2σ2)

where using some algebra and expressing z̃ = z −Xβ gives:

f(µ|β, γ, τ 21 , σ2, z) ∝(4)

(σ2)−n/2 exp(−(µ− (1′1)−11′z̃)′(1′1)(µ− (1′1)−11′z̃)/2σ2)

which shows that the conditional distribution of the model intercept is Normal
with mean (1′1)−11′z̃ and variance (1′1)−1σ2. Note that (1′1) is simply the length
n of z.

For the regressions coefficients β we use single-variate Gibbs updates, i.e., update
every βi given all other βj and other relevant parameters and data. For an SSVS
approach this scheme is more efficient than a joint updating scheme, because in
the SSVS all regression coefficient are non-zero and this is often a (very) large set
of regression coefficients. The conditional posterior distribution for one regression
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coefficient βi is:

f(βi|µ, βj, γ, τ 21 , σ2, z) ∝(5)

(σ2)−n/2 exp(−(z − 1µ− xiβi −Xjβj)
′(z − 1µ− xiβi −Xjβj)/2σ

2)

(τ 2γi)
−1/2 exp(−β2

i /2τ
2
γi

)

Here we use z̃ = z − 1µ−Xjβj, and with some algebra obtain:

f(βi|µ, βj, γ, τ 21 , σ2, z) ∝(6)

(σ2)−n/2 exp(−(βi − (x′ixi)
−1x′iz̃)′(x′ixi)(βi − (x′ixi)

−1x′iz̃)/2σ2)

(τ 2γi)
−1/2 exp(−β2

i /2τ
2
γi

)

These are two kernels of Normal densities for βi that can be combined using
standard text book results to give the conditional distribution of βi to have mean
(x′ixi+σ

2/τ 2γi)
−1x′iz̃ and variance (x′ixi+σ

2/τ 2γi)
−1σ2. This is a common expression

for a ”random” effect fit of βi with shrinkage selected by the γi indicator variable
to be either strong (γi = 0, τ 20 small) or mild (γi = 1, τ 21 larger).

The indicator variable γi is a binary parameter for which it is convenient to
directly compute the ratio between the probabilities Pr(γi = 1)/Pr(γi = 0) in the
posterior distribution. In this ratio, everything cancels which does not depend on
γi, leaving:

(7)
Pr(γi = 1|µ, β, γj, τ 21 , σ2, z)

Pr(γi = 0|µ, β, γj, τ 21 , σ2, z)
=

(τ 21 )−1/2 exp(−β2
i /τ

2
1 )π

(τ 20 )−1/2 exp(−β2
i /τ

2
0 )(1− π)

A new γi can be sampled by drawing a uniform random deviate u ∼ U(0, 1), and
set the indicator variable to 1 if the ratio u/(1−u) is smaller than the above ratio,
or to 0 otherwise.

The conditional posterior distribution of the slab variance τ 21 depends only on
those βi that, for a particular MCMC cycle, are selected to be ”large” by having
γi = 1. Let the set of ”large” β’s be denoted by SL, with nL members, then the
relevant part from the posterior for the conditional distribution of τ 21 is:

f(τ 21 |µ, β, γ, σ2, z) ∝
∏
i∈SL

(τ 21 )−1/2 exp
(
−β2

i /2τ
2
1

)
(8)

∝ (τ 21 )−nL/2 exp

(
−
∑
i∈SL

β2
i /2τ

2
1

)

This is a scaled inverse chi-square with nL − 2 degrees of freedom and shape
parameter (

∑
i∈SL

β2
i )/(nL − 2).

For the conditional posterior distribution of the model residual variance σ2, we
use z̃ = z − 1µ−Xβ (the model residuals), so that the conditional posterior can
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be expressed as:

f(σ2|µ, β, γ, τ 21 , z) ∝ (σ2)(−n/2) exp(−z̃′z̃/2σ2)(9)

This is a scaled inverse chi-square with n − 2 degrees of freedom and shape
parameter z̃′z̃/(n− 2).


