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A Statistical analysis of the rank distributions

As presented in the main text, the probability distributions of the rank vari-
ables Kf and Ks are very similar. In order to assess whether the two rank vari-
ables come from the same distribution, we performed the two-sided Kolmogorov-
Smirnov (KS) test. To test our hypothesis (i.e., both variables come from the
same distribution), we compare the Kolmogorov-Smirnov distance DKf ,Ks with
the critical value Dα for a desired α level where

Dα = c(α)

√
n1 + n2
n1n2

,

with sample size n1 = n2 = n and c(α) = 1.95 for α = 0.001 [4, 5]. As one can
see from the Table A1, the distance DKf ,Ks

> Dα for both datasets, rejecting
the hypothesis that Kf and Ks were drawn from the same distribution.

Table A1: Two-sided Kolmogorov-Smirnov test and p-values for the rank vari-
ables.

Dataset n DKf ,Ks Dα p-value

D1 564,228 0.07999 0.00367 0.0
D2 2,267,116 0.09708 0.00183 0.0
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Additionally, in order to determine the probability function that better char-
acterizes the rank variables, we compared the goodness of fit offered by different
heavy-tailed distributions. For this test, we measured the fit provided by two
other distributions, namely log-normal and double-Pareto log-normal (dPlN).
In some scenarios, the log-normal and the truncated power law distributions
can both yield very similar results.

More recently, the dPlN distribution has been reported to offer a very sound
model for many empirical data such as income distribution, oil-field sizes [3] and
the degree distribution of social networks [2]. The double-Pareto log-normal
corresponds to a mixture of two power laws joined by a log-normal segment [3].
The PDF of the dPlN can be defined as

f(x) =
αβ

α+ β
[f1(x) + f2(x)] , (1)

f1(x) = x−α−1eαν+α
2τ2/2Φ

(
lnx− ν − ατ2

τ

)
,

f2(x) = xβ−1e−βν+β
2τ2/2Φc

(
lnx− ν + βτ2

τ

)
,

where Φ is the CDF (Cumulative Distribution Function) of the standard normal
N(0, 1) and Φc is the CCDF of N(0, 1).

The log-likelihood ratio test compares two competing candidate distribu-
tions where the one with the higher likelihood is the one that provides the
better fit. The sign of the log-likelihood ratio indicates the prevalence of the
target distribution (here, the truncated power law) over an alternative compet-
ing hypotheses whereas the p-value indicates the significance level of the test [1].
As shown on the Table A2, both rank variables are indeed better approximated
by truncated power laws (see also Figure A1).

B Parameters estimation

The probability distribution of the rank-based variables described in the main
text were better approximated by truncated power-law distributions p(x) =
Cx−αe−x/τ . Parameters were estimated using the methods in Ref. [1]. Table
B3 shows the best parameters of the truncated power laws estimated by MLE.

C Randomized datasets

In order to verify whether the power law observed in the recency rank distribu-
tion is rooted on the temporal semantics of individuals’ trajectories, we applied
our rank-based approach to randomized versions of both empirical datasets (D1
and D2). The first randomized dataset we analyzed (R1) was obtained from
uniformly shuffling each individual trajectory. This way, we artificially remove
any temporal information possibly encoded within the individual trajectories,
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Figure A1: Curve fits of different heavy-tailed distributions for both Kf (top
charts) and Ks (bottom charts). In addition to the well-known log-normal (dot-
dashed line) and truncated power law (solid line) distributions, we also measured
the goodness of fit for the double-Pareto log-normal.

while maintaining the visitation frequencies intact. On the second randomiza-
tion method (R2), we also remove the visitation frequencies by generating for
each user a new random trajectory with the same number of displacements, and
the same number of distinct visited locations. To serve as the baseline for the
analyses, the data of the third randomization approach (R3) produces a new
dataset with the same size as the original one, but keeping only the total number
of users and locations. More precisely, for each of the datasets, we generated a
randomized version of them with M random points

vm = [um, lm,m],m ∈ [1, . . . ,M ],

where each um, lm is uniformly sampled from U users and N locations respec-
tively, with M , U and L the same as in D1 and D2.
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Table A2: Comparison between the goodness of fit provided by the truncated
power law and other distributions via log-likelihood ratio test.

Dataset Rank Alternative distribution Log-likelihood ratio p-value

D1

frequency

Log-normal 50.195 0.0
Double-Pareto Log-normal 157.185 0.0
Exponential 227.77 0.0
Stretched Exponential 29.40 0.0

recency

Log-normal 46.147 0.0
Double-Pareto log-normal 68.077 0.0
Exponential 189.95 0.0
Stretched Exponential 29.30 0.0

D2

frequency

Log-normal 114.455 0.0
Double-Pareto log-normal 90.703 0.0
Exponential 223.56 0.0
Stretched Exponential 98.77 0.0

recency

Log-normal 45.58 0.0
Double-Pareto log-normal 128.884 0.0
Exponential 218.98 0.0
Stretched Exponential 30.029 0.0

Table B3: Estimated parameters of the truncated power-law distributions with
the best fit for the rank variables.

Dataset Rank α τ

D1
recency 1.644 41.66
frequency 1.859 37.0

D2
recency 1.699 250.0
frequency 1.625 125.0

4



References

[1] Aaron Clauset, Cosma Rohilla Shalizi, and Mark E. J. Newman. Power-Law
Distributions in Empirical Data. SIAM Review, 51(4):661–703, November
2009.

[2] Seshadri Mukund, Sridhar Machiraju, Ashwin Sridharan, Jean Bolot, Chris-
tos Faloutsos, and Jure Leskovec. Mobile Call Graphs: Beyond Power-Law
and Lognormal Distributions. 2008.

[3] William J. Reed and Murray Jorgensen. The Double Pareto-Lognormal Dis-
tributionA New Parametric Model for Size Distributions. Communications
in Statistics - Theory and Methods, 33(8):1733–1753, 2004.

[4] N. Smirnov. Table for estimating the goodness of fit of empirical distribu-
tions. Ann. Math. Statist., 19(2):279–281, 06 1948.

[5] Nikolai V Smirnov. On the estimation of the discrepancy between empiri-
cal curves of distribution for two independent samples. Bull. Math. Univ.
Moscou, 2(2), 1939.

5


