Supplementary information

Tyrosine Hydroxylase is crucial for maintaining the pupae tanning and immune in *Anopheles* sinensis

Liang Qiao^{1+*}, Minghui Du¹⁺, Xin Liang¹, Youjin Hao¹, Xiu He¹, Fengling Si¹, Ting Mei¹, Bin Chen^{1*}

¹Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 400716, China.

^{*}To whom correspondence should be addressed: Liang Qiao, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China, Tel: +86-23-65910315, Fax: +86-23-65910315, E-mail address: qiaoliangswu@163.com, or Bin Chen, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China, e-mail address: bin.chen@cqnu.edu.cn.

⁺Liang Qiao and Minghui Du contributed equally to this work.

Running title: AsTH for Anopheles sinensis pupae development

6 Supplemental Figures 3 Supplemental Tables

Supplementary Figure legends

Figure S1. Alignment analysis of TH amino acid sequences among different insect species. Horizontal line indicates the Biopterin-H domain.

Figure S2. Detection of RNAi off-target effects. a. The pupa cuticle pigmentation pattern at 38^{th} hour of pupation between ds*TH2* and ds*Red* group. Scale bar=500 μ m. b. The expression level of *AsTH* between ds*TH2* and ds*Red* individuals at 38^{th} hour of pupation. *RPL49* was used as the internal control.

Figure S3. Precise region of cuticle frozen section. The red box region represents the observed sliced section region. Scale bar=100µm.

Figure S4. The expression pattern of *AsTH* gene expression in the egg (eggs were gathered from 1 hour to 1 day after born) stage, larval stage and adult stage, respectively. *RPL49* was used as the internal control.

Figure S5. Spatial expression pattern of *AsTH* in different tissues at 38th hour of pupation. IN represents the integument, FB represents the fat body, (HE+G) represents the mixture of the hemolymph and the gut. The "*" symbol represents treatment with bacteria. *RPL49* was used as the internal control.

Figure S6. The expression levels of 4 representative *Anopheles sinensis* pro-phenoloxidase (PPO) genes (The orthologous genes in *Anopheles gambiae* were expressed in the immune tissues) between ds*TH* and ds*Red* group at 38th hour of pupation. *RPL49* was used as the internal control.

Figure S1

An. gambiae An. coluzzii An. arabiensis An. stephensi An. dirus An. funestus An. sinesis Cx. quinquefasciatus Ae. aegypti Dr. melanogaster Ma. sext. Bm. mori Da. plexippus Tr. castaneum	MAVAAAQKNREMFAIKKSYSIENGY ESRRSLVDDARFETIVVKQTKQTVLDEARAKANEDKI PQEVQQTVEDQNDDEEEIRMVAVDELPQKPQEHVPSA MAVAAAQKNREMFAIKKSYSIENGY ESRRSLVDDARFETIVVKQTKQTVLDEARAKANEDKI PQEVQQTVEDQNDDEEEIRMVAVDELPQKPQEHVPSA MAVAAAQKNREMFAIKKSYSIENGY ESRRSLVDDARFETIVVKQTKQTVLDEARAKANEDKI PQEVQQTVEDQNDDEEIRMVAVDELPQKPQEHVPSA MAVAAAQKNREMFAIKKSYSIENGY ESRRSLVDDARFETIVVKQTKQTVLDEARAKANEDKI PQEVQQTVEDQNDDEEIRMVAVDELPQKPQEHVPSA MAVAAAQKNREMFAIKKSYSIENGY ESRRSLVDDARFETIVVKQTKQTVLDEARAKANEDKI PQEVQQTVEDQNDDEEIRMVAVDELPQKPQEHVPSA MAVAAAQKNREMFAIKKSYSIENGY ESRRSLVDDARFETIVVKQTKQTVLDEARAKANEDKI PQEVQQTVEDQDNDEEIRMVAVDELPQKPQEHVPSA MAVAAAQKNREMFAIKKSYSIENGY ESRRSLVDDARFETIVVKQTKQTVLDEARAKANEDKI PQEVQQTVEDQDNDEEIRMVAVDELPQKPQEHVPSA MAVAAAQKNREMFAIKKSYSIENGY ESRRSLVDDARFETIVVKQTKQTVLDEARAKANEDKI PQEVQQTVEDQDNDEEEIRMVAVDELPQKPEEHVPSA MAVAAAQKNREMFAIKKSYSIENGY ESRRSLVDDARFETIVVKQTKQTVLDEARAKANEDKI PQEVQQTVEDQDNDEEEIRMVAVDELPQKPEEHVPSA
An. gambiae An. coluzzii An. arabiensis An. stepiensi An. dirus An. funestus An. sinesis Cx. quinquefasciatus Ae. aegypti Dr. melanogaster Ma. sexta Bm. mori Da. plexippus Tr. castaneum	DDEDKET AGLTEE EVVIONAAS ESPEAEKEV FAAVVVRIR DGVSLGTIKAVEAYHCT VHLESE OSRSEGVOF VLVKVDVARANLLOLIRS LROT DDEDKET AGLTEE EVVIONAAS ESPEAEKEV FAAVVVRIR DGVGSLGTIKAVEAYHCT VHLESE OSRSEGVOF DVLVKVDVARANLLOLIRS LROT DDEDKET AGLTEE EVVIONAAS ESPEAEKEV FAAVVVRIR DGVGSLGTIKAVEAYHCT VHLESE OSRSEGVOF DVLVKVDVARANLLOLIRS LROT DDEEKET AGLTEE EVVIONAAS ESPEAEKEV FAAVVVRIR DGVGSLGTIKAVEAYHCT VHLESE OSRSEGVOF DVLVKVDVARANLLOLIRS LROT DDEEKET AGLTEE EVVIONAAS ESPEAEKEV FAAVVVRIR DGVGSLGTIKAVEAYHCT VHLESE OSRSEGVOF DVLVKVDVARANLLOLIRS LROT DDEEKET AGLTEE EVVIONAAS ESPEAEKEV FAAVVVRIR DGVGSLGTIKAVEAYHCT VHLESE OSRSEGVOF DVLVKVDVARANLLOLIRS LROT DDEDKKT AGLTEE EVVIONAAS ESPEAEKEV FAAVVVRIR DGVGSLGTIKAVEAYHCT VHLESE OSRSEGVOF DVLVKVDVARATOLLOLIRS LROT NDEDKET AGLTEE EVVIONAAS ESPEAEKEV FAAVVVRIR DGVGSLGTIKAVEAYHCT VHLESE OSRSEGVOF DVLVKVDVARATOLLOLIRS LROT NDEDKET AGLTEE EVVIONAAS ESPEAEKEV FAAVVVRIR DGVGSLGTIKAVEAYHCT VHLESE OSRSEGVOF DVLVKVDVARATOLLOLIRS LROT AQDD-ETT AGLTEE EVVIONAAS ESPEAEKEV FAAVVVRIR DGVGSLGTIKAVEAYHCT VHLESE OSRSEGVOF DVLIKVDVARATOLLOLIRS LROT DDEDKT DE DEVVIONAAS ESPEAEKEV FAAVVVRIR DGVGSLGTIKAVET FROTVHLESE OSRSEGVOF DVLIKVDVARAS NLLOLIRS LROT ODDALE TIT AGLTEE EVVIONAS ESPEAEKEV FAAVVVRIR DGVGSLGTIKAVET FROTVHLESE OSRSEGVOF DVLIKVDVARS NLLOLIRS LROT DDDALE TIT DE EVVIONAAS ESPEAEKEV FAAVVVRIR DGVGSLGTIKAVET FROTVHLESE OSRSEGVOF DVLIKVDVARS NLLOLIRS LROT ODDALE TIT DE EVVIONAAS ESPEAEKEV FAAVVVRIK EN EN SIG SLIKAVET FROTVHLESE OSRSEGVOF DVLIKVDVARS NLLOLIRS LROT DDDALE TIT DE EVVIONAAS ESPEAE ON OCALLIE KROT SLIGHT HAN TH HET VHLESS OSRSEGVOF DVLIKVDVARS NLLOLIRS LROT ODDALE TIT DE EVVIONAAS ESPEAE ON OCALILING DGVSLAS LIKAVET FROTVHLESE OSRSEGVOF DVLIKVDVARS NLLOLIRS LROT DDDALE TIT DE EVVIONAAS ESPEAE ON OCALLIE KROKSSI HET NON KSCOCHLET PSOVIGVOF ALVKVSTRT NLLOLIRS LROS DDDALE TY TIT DE EVVIONAS ESPEAE ON OCALLIE KROKSSI ARTIKT DNNKSCOCHLET PSOVIGVOF ALVKVSTRT NLLOLIRS LROS DDDALE TY TIT DE EVVIONAS ESPEAE ON OCALLIE KROKSSI ARTIKT DNNKSCOCHLET PSOLGVOF ALVKVSTRT NLLOLIRS LROS DDDALE TY TIT DE EVVIONAS
An. gambiae An. coluzzii An. arabiensis An. stephensi An. dirus An. funestus An. sinesis Cx. quinquefasciatus Ae. aegypti Dr. melanogaster Ma. sext. Bm. mori Da. plexippus Tr. castaneum	CSEGSUS LI SEN NUNUKA EWEFKHASE LDNCNHLMTKYEE DLDMNHPGFAD OVYRARRKE I AB I AFAYRYGDEI BHI DYT ETE NKTWAAVE GRÜKE DUVO OSEGSUS LI SEN NUNUKA EWEFKHASE LDNCNHLMTKYEE DLDMNHPGFAD OVYRARRKE I AFAYRYGDEI BHI DYT ETE NKTWAAVE GRÜKE DUVO OSEGSUS LI SEN NUNUKA EWEFKHASE LDNCNHLMTKYEE DLDMNHPGFAD OVYRARRKE I AFAYRYGDEI BHI DYT ETE NKTWAAVE GRÜKE BUVO OSEGSUS LI SEN NUNUKA EWEFKHASE LDNCNHLMTKYEE DLDMNHPGFAD OVYRARRKE I AFAYRYGDEI BHI DYT ETE NKTWAAVE GRÜKE BUVO OSEGSUS LI SEN NUNUKA EWEFKHASE LDNCNHLMTKYEE DLDMNHPGFAD OVYRARRKE I AFAYRYGDEI BHI DYT ETE NKTWAAVE GRÜKE BUVO OSEGSUS LI SEN NUNUKA EWEFKHASE LDNCNHLMTKYEE DLDMNHPGFAD OVYRARRKE I AFAYRYGDEI BHI DYT ETE NKTWAAVE GRÜKE BUVO OSEGSUS LI SEN NUNUKA EWEFKHASE LDNCNHLMTKYEE DLDMNHPGFAD OVYRARRKE I AFAYRYGDEI BHI DYT ETE NKTWAAVE GRÜKE BUVO OSEGSUS LI SEN NUNUKA EWEFKHASE LDNCNHLMTKYEE DLDMNHPGFAD OVYRARRKE I AFAYRYGDEI BHI DYT ETE NKTWASAVE FRUKE BUVOK ASEGSUS LI SEN NUNUKA EWEFKHASE LDNCNHLMTKYEE DLDMNHPGFAD OVYRARRKE I AFAYRYGDEI BHI NYT ETE NKTWASAVE FRUKE BUVOK ASEGSUS LI SEN NUNUKA EWEFKHASE LDNCNHLMTKYEE DLDMNHPGFAD OVYRARRKE I AFAYRYGDEI BHI NYT ETE NKTWASAVE FRUKE BUVOK TAFAGVILLASENNI SSKT EWEFCHASE LDNCNHLMTKYEE DLDMNHPGFAD OVYRARRKE I AFAYRYGDEI BHI NYT ETE NKTWASAVE AFAVRKE BUVOK SESSINLMADNINNKA EWEFKHASE LDNCNHLMTKYEE DLDMNHPGFAD OVYRARRKE I AFAYRYGDEI BHI NYT ETE NKTWASAVE AFAVRKE DI TAFAGVILLISSEN I SSKT EWEFCHASE LDNCNHLMTKYEE DLDMNHPGFAD KYTOR SAVER TAFAYRYGDEI BHI NYT ETE NKTWASAVE AFAVRKU DWOK TAFAGVILLISSEN I SSKT EWEFCHASE LDNCNHLMTKYEE ELDMNHPGFAD KYTOR SAVER SUD DUNNHPGFAD KYTOR SAVER TAFAYRYGDEI BEN TYT ED NKTWASAVER TAFAYRYGDEI BEN TYT ED NKTWASAVER TAFAYRYGDEI TAFAGVILLISSEN I SSKT EWEFCHASE LDNCNHLMTKYEE ELDMNHPGFAD KYTOR SAVER TAFAYRYGDEI BEN ATT TE SNOTT OVR TON THE TAFAYRYGDEI SS TYTE TE SNOTT OVR TON THE TAFAYRYGDEI SS TE SNOTT OVR T
An. gambiae An. coluzzii An. arabiensis An. stephensi An. funestus An. funestus An. funestus An. sinesis Cx. quinquefasciatus A. aegypti Dr. melanogaster Ma. sexta Bm. mori Da. plexippus Tr. castaneum	HACSEYIAVERKLEDEKIFVKERLPQLQEMSDELRKNTGFTLRPAAGLLTARDFLASLAFRIFQSTQYVRHTNSPYHTPEPDCIHELLGHMPLLADPSFA HACSEYIAVERKLEDEKIFVKERLPQLQEMSDELRKNTGFTLRPAAGLLTARDFLASLAFRIFQSTQYVRHINSPYHTPEPDCIHELLGHMPLLADPSFA HACSEYIAVERKLEDEKIFVKERLPQLQEMSDELRKNTGFTLRPAAGLLTARDFLASLAFRIFQSTQYVRHINSPYHTPEPDCIHELLGHMPLLADPSFA HACSEYIAVERKLEDEKIFVKERLPQLQEMSDELRKNTGFTLRPAAGLLTARDFLASLAFRIFQSTQYVRHINSPYHTPEPDCIHELLGHMPLLADPSFA HACSEYIAVERKLEDEKIFVKERLPQLQEMSDELRKNTGFTLRPAAGLLTARDFLASLAFRIFQSTQYVRHINSPYHTPEPDCIHELLGHMPLLADPSFA HACSEYIAVERKLEDEKIFVKERLPQLQEMSDELRKNTGFTLRPAAGLLTARDFLASLAFRIFQSTQYVRHINSPYHTPEPDCIHELLGHMPLLADPSFA HACSEYIAVERKLEDEKIFVKERLPQLQEMSDELRKNTGFTLRPAAGLLTARDFLASLAFRIFQSTQYVRHINSPYHTPEPDCIHELLGHMPLLADPSFA HACSEYIAVERKLEDEKIFVKERLPQLQEMSDELRRNTGFTLRPAAGLLTARDFLASLAFRIFQSTQYVRHINSPYHTPEPDCIHELLGHMPLLADPSFA HACSEYIAVERKLEDEKIFVKERLPQLQEMSDELRRNTGFTLRPAAGLLTARDFLASLAFRIFQSTQYVRHINSPYHTPEPDCIHELLGHMPLLADPSFA HACSEYVAVERKLEDEKIFVKERLPQLQEMSDELRRNTGFTLRPAAGLLTARDFLASLAFRIFQSTQVVRHINSPYHTPEPDCIHELLGHMPLLADPSFA HACSEYVAVERKLEDEKIFVKERLPQLGENSDELRRNTGFTLRPAAGLLTARDFLASLAFRIFQSTQVVRHINSPYHTPEPDCIHELLGHMPLLADPSFA HACKEYKVERKLEDEKIFVKERLPQLGENSDELRRNTGFTLRPAAGLLTARDFLASLAFRIFQSTQVVRHINSPYHTPEPDCIHELLGHMPLLADPSFA HACKEYKVERKLEDEKIFVKERLPQLGENSDELRKNTGFTLRPAAGLLTARDFLASLAFRIFQSTQVVRHINSPYHTPEPDCIHELLGHMPLLADPSFA HACKEYKVERKLEDEKIFVKERLPDLGENSDELRKNTGFTLRPAAGLLTARDFLASLAFRIFQSTQVVRHNSPFHTPEPDCIHELLGHMPLLADPSFA HACKEYKVERKLEDELDENSDELRKNTGFTLRPAAGLLTARDFLASLAFRIFQSTQVVRHNSPFHTPEPDCIHELLGHPLLADPSFA HACKEYKVERKLEXELFERLEGENERLEGENERAGENERADFLASLAFRIFQSTQVVRHNSPFHTPEPDCIHELLGHPLLADPSFA HACKEYKRAFEKTGAADIFVPHRIPQLEDVSSERRHTGFTLRPAAGLLTARDFLASLAFRVFQSTQVVRHNSPFHTPEPDCIHELLGHPLLADPSFA HACKEYKRAFEKTGAADIFVPHRIPQLEDVSSERRHTGFTLRPAAGLLTARDFLASLAFRVFQSTQVVRHNSPFHTPEPDCIHELLGHPLLADPSFA HACKEYKKRAFEKTGAADIFVPHRIPQLEDVSSERRHTGFTLRPAAGLLTARDFLASLAFRVFQSTQVVRHNSPFHTPEPDCIHELLGHMPLLADPSFA
An. gambiae An. coluzzii An. arabiensis An. stephensi An. furus An. furus An. funestus An. sinesis Cx. quinquefasciatus Ae. aegypti Dr. melanogaster Ma. sexta Bm. mori Da. plexippus Tr. castaneum	OFSQEIGLASLGASDEDIEKLSTVYWFTVEFGLCKEKDEVKAYGAGLLSAYGELLHAISDK BHREFEBASTAVOPYODOEYOPIYYVAESFEDAKEKFR OFSQEIGLASLGASDEDIEKLSTVYWFTVEFGLCKEKDEVKAYGAGLLSAYGELLHAISDK BHREFEBASTAVOPYODOEYOPIYYVAESFEDAKEKFR OFSQEIGLASLGASDEDIEKLSTVYWFTVEFGLCKEKDEVKAYGAGLLSAYGELLHAISDK BHREFEBASTAVOPYODOEYOPIYYVAESFEDAKEKFR OFSQEIGLASLGASDEDIEKLSTVYWFTVEFGLCKEKDEVKAYGAGLLSAYGELLHAISDK BHREFEBASTAVOPYODOEYOPIYYVAESFEDAKEKFR OFSQEIGLASLGASDEDIEKLSTVYWFTVEFGLCKEKDEVKAYGAGLLSAYGELLHAISDK BHREFEBASTAVOPYODOEYOPIYYVAESFEDAKEKFR OFSQEIGLASLGASDEDIEKLSTVYWFTVEFGLCKEKDEVKAYGAGLLSAYGELLHAISDK BHREFEBASTAVOPYODOEYOPIYYVAESFEDAKEKFR OFSQEIGLASLGASDEDIEKLSTVYWFTVEFGLCKEKDEVKAYGAGLLSAYGELLHAISDK BHREFEBASTAVOPYODOEYOPIYYVAESFEDAKEKFR OFSQEIGLASLGASDEDIEKLSTVYWFTVEFGLCKEKDEVKAYGAGLLSAYGELLHAISDK BHREFEBASTAVOPYODOEYOPIYYVAESFEDAKEKFR OFSQEIGLASLGASDEDIEKLSTVYWFTVEFGLCKEKNEVKAYGAGLLSAYGELLHAISDK BHRAFEBASTAVOPYODOEYOPIYYVAESFEDAKEKFR OFSQEIGLASLGASDEDIEKLSTVYWFTVEFGLCKENNEVKAYGAGLLSAYGELLHAISDK BHRAFEBASTAVOPYODOEYOPIYVAESFEDAKEKFR OFSQEIGLASLGASDEDIEKLSTVYWFTVEFGLCKENNEVKAYGAGLLSAYGELLHAISDK BHRAFEBASTAVOPYODOEYOPIYVAESFEDAKEKFR OFSQEIGLASLGASDEDIEKLSTVYWFTVEFGLCKENNEVKAYGAGLLSAYGELLHAISDKFBHRAFEBASTAVOPYODOEYOPIYVAESFEDAKEKFR OFSQEIGLASLGASDEIEKLSTVYWFTVEFGLCKENNEVKAYGAGLLSAYGELLHAISDKFBHRAFEBASTAVOPYODOEYOPIYVAESFEDAKEKFR OFSQEIGLASLGASDEIEKLSTVYWFTVEFGLCKENNEVKAYGAGLLSAYGELHAISDKFBHRAFEBASTAVOPYODOEYOPIYVAESFEDAKEKFR OFSQEIGLASLGASDEIEKLSTVYWFTVEFGLCKENOOLKAYGAALLSYGELHALSDKFBHRAFEBASTAVOPYODOEYOPIYVAESFEDAKEKFR OFSQEIGLASLGASDEIEKLSTVYWFTVEFGLCKENOOLKAYGAALLSYGELHALSDKFBLREBEASTAVOPYODOEYOPIYVAESFEDAKEKFR OFSQEIGLASLGASDEIEKLSTVYWFTVEFGLCKENOOLKAYGAALLSYGELHALSDKFBLREBEBASTAVOPYODOEYOPIYVAESFEDAKEKFR OFSQEIGLASLGASDEIEKLSTVYWFTVEFGLCKENOOLKAYGAALLSYGELHALSDKFBLREBEBASTEVOPYODOEYOPIYVAESFEDAKEKFR OFSQEIGLASLGASDEIEKLSTVYWFTVEFGLCKENOOLKAYGAALLSYGELHALSDKFBLREBEBSSTSIOPYODOEYOPIYVAESFEDAKKEKFR OFSQEIGLASLGASDEIEKLSTVYWFTVEFGLCKENSOVKAYGAGLLSAYGELHALSDKFBLREBEBSSTSIOPYODOEYOPIYVAESFEDAKKEKFR OFSQEIGLASLGASDEIEKLSTVYWFTVEFGLCKENSOVKAYGAGLLSAYGELHAL
An. gambiae An. coluzzii An. arabiensis An. stephensi An. dirus An. funestus An. sinesis Cx. quinquefasciatus Ae. aegypti Dr. melanogaster Ba. sevi Bm. mori Da. plexippus Tr. castaneum	RWVSIMSRPFEVRENPHTBRVEVLDSVTKLETLUSOLNTEVLHLTNATAKLKOFFC RWVSIMSRPFEVRENPHTBRVEVLDSVTKLETLUSOLNTEVLHLTNATAKLKOFFC RWVSIMSRPFEVRENPHTBRVEVLDSVTKLETLUSOLNTEVLHLTNATAKLKOFFC RWVSIMSRPFEVRENPHTBRVEVLDSVTKLETLUSOLNTEVLHLTNATAKLKOFFC RWVSIMSRPFEVRENPHTBRVEVLDSVTKLETLUSOLNTEVLHLTNATAKLKOFFC RWVSIMSRPFEVRENPHTBRVEVLDSVTKLETLUSOLNTEVLHLTNATAKLKOFFC RWVSIMSRPFEVRENPHTBRVEVLDSVTKLETLUSOLNTEVLHLTNATAKLKOFFC RWVSIMSRPFEVRENPHTBRVEVLDSVTKLETLUSOLNTELLHLTNATAKLKOFFC RWVSIMSRPFEVRENPHTBRVEVLDSVTKLETLUSOLNTELLHLTNATAKLKOFFC RWVSIMSRPFEVRENPHTBRVEVLDSVTKLETLUSOLNTELLHLTNATAKLKOFFC RWVSIMSRPFEVRENPHTBRVEVLDSVTKLETLUSOLNTELLHLTNATAKLKOFFC RWVSIMSRPFEVRENPHTBRVEVLDSVTKLETLUSOLNTELLHLTNATAKLKOFFC RWVSIMSRPFEVRENPHTBRVEVLDSVTKLETLUSOLNTELLHLTNATKKKOFFC RWVSIMSRPFEVRENPHTBRVEVLDSVTKLETLUSOLNTELLHLTNATKKKOFFC RWVSIMSRPFEVRENPHTBRVEVLDSVTKLETLUSOLNTELLHLTNATKKKSFE RWVSIMSRPFEVRENPHTBRVEVLDSVTKLETLUSOLNTELLHLTNATKKKSFE RWVSIMSRPFEVRENPHTBRVEVLDSVTKLETLUSOLNTELLHLTNATKKKSFE RWVSIMSRPFEVRENPHTBRVEVLDSVTKLETLUSOLNTELLHLTNATKKKSFE RWVSIMSRPFEVRENPHTBRVEVLDSVTKLETLUSOLNTENLHLTNATKKKKSFE RWVSIMSRPFEVRENPHTBRVEVLDSVTKLETLUSOLNTENLHLTNATKKKKSFE RWVSIMSRPFEVRENPHTBRVEVLDSVTKLETLUSOLNTENLHLTNATKKKKSFE RWVSIMSRPFEVRENPHTBRVEVLDSVTKLETLIGOLNTENLHLTNATKKKKSFE RWVSIMSRPFEVRENPHTBRVEVLDSVTKLETLIGOLNTENLHLTNATKKKKSFE RWVSIMSRPFEVRENPHTBRVEVLDSVTKLETLIGOLNTENLHLTNATKKKKSFE RWVSIMSRPFEVRENPHTBRVEVLDSVTKLETLIGOLNTENLHLTNATKKKKSFE RWVSIMSRPFEVRENPHTBRVEVLDSVTKLETLIGOLNTENLHLTNATKKKFSFE

38th hour of pupation ds*TH2* ds*Red*

38th hour of pupation

Table S1. Primers used in this study

Primer name	Sequence						
	F primer (5'3')	R primer (5'3')					
Primers for TH cloning							
AsTH sequence 1	CCGATACCTGCCAAATCCAC	TGAGTCTGACGAGCCCTAACTCT					
AsTH sequence 2	AAGACAAACTTCCGCAAGAGGT	CGTGTGGTAGGGCGAGTTG					
AsTH sequence 3	CGGAAAGCGGTATGCATTCATA	TCATCCAGGACGGTTTGTTTG					
AsTH sequence 4	CCAGCTCAACACCGAACTGC	AGGGGAAGAGGGAGGATGAAC					
3'RACE nested primer	CAGAGTTAGGGCTCGTCAGACTCAT	CGCTACGTAACGGCATGACAGTG					
3'RACE primer	CTTATGAGGACGGACAGAGTTAGGG	GCTGTCAACGATACGCTACGTAACG					
Primers used in RT-PCR							
AsTH	GCTGGCGTTCCGCATCTT	GCGATGGCATTGGTGAGGT					
RPL49	GGAGCCGGTCGGTGATATGT	TTCCTTCTCGGTCGGCTTCG					
AsAttacin	CGGGTTTTTCCTGATTTGTGC	GCGACCGAAGTGCTGCGTAT					
AsCecropin-A	ATCTTCGTATTCGTCCTGCTGG	GCCTTCTCTGCCGCCTTGA					
AsCecropin-B	GCCTGTTCGTGGTGTTGATG	AGCAGTGCCTTCTGAGCCG					
AsDefensin	ATCGTGCTGGTTGTGGTGGTA	GCAGGTTGCCCGCTTGAA					
AsGambicin	TTCTCCTCGCCGTCCTCCT	CCGTATCGTTGGCAGTCCG					
AsPPO 2	CTGGACGAGGAGCGTGGTAT	AGTCACATGGTGCGTTAGGATC					
AsPPO 4	GTGCGATGGCGGTGTTTG	TCGTGGATGTAGCCGAGAATG					
AsPPO 5	GTGCCTTCGCCGACATCA	CATTGTATCGCAAACGACCCT					
AsPPO 9	CGGGTGTCACGCTATGGGA	TCTTCACGGCATCGTCTTCG					
Quantitative RT-PCR primers							
AsDDC	GGACAGGGTGGTGGTGTTATTCA	GATTGCCTTCTCCAGCGTTTC					
Aslaccase2	GTTCCCGTAACGAGCACACATT	CTCCAAACCGTCTTCGCATC					
RPS7	CGGAGAAGATGGCATGGGAGAT	ATAGTGAGCATAGGCCCGGTTA					
Primers used for dsRNA template amplifi	cation						
AsTH sequence 1	TAATACGACTCACTATAGGGAGAAAGACAAACTTCCGCAAGAGGT	TAATACGACTCACTATAGGGAGACGTGTGGTAGGGCGAGTTG					
AsTH sequence 2	TAATACGACTCACTATAGGGAGACCGATACCTGCCAAATCCAC	TAATACGACTCACTATAGGGAGATGAGTCTGACGAGCCCTAACTCT					
Red	TAATACGACTCACTATAGGGAGACTTCAAGGTGCGCATGGAG	TAATACGACTCACTATAGGGAGATGTGGATCTCGCCCTTCAG					

	An. gamb iae	An. sine sis	An. dir us	An. funes tus	An. steph ensi	An. arabie nsis	An. colu zzii	Culex quinquefas ciatus	Aede s aegy pti	Drosoph ila melanog aster	Bom byx mori	Dana us plexip pus	Mand uca sexta	Triboli um castan eum
An. gambiae	100%	96%	99 %	98%	99%	100%	100%	93%	95%	87%	82%	81%	83%	84%
An. sinesis		100 %	96 %	97%	96%	96%	96%	95%	96%	86%	81%	80%	82%	85%
An. dirus			100 %	98%	99%	99%	99%	93%	95%	87%	83%	81%	83%	85%
An. funestus				100%	98%	98%	98%	95%	95%	87%	83%	81%	83%	85%
An. stephensi					100%	99%	99%	93%	95%	88%	83%	81%	83%	85%
An. arabiensis						100%	100%	93%	95%	87%	82%	81%	83%	84%
An. coluzzii							100%	93%	95%	87%	82%	81%	83%	84%
Culex quinquefas ciatus								100%	95%	85%	81%	79%	80%	83%
Aedes aegypti									100%	87%	82%	81%	83%	85%
Drosophila melanogast er										100%	83%	81%	83%	83%
Bombyx mori											100%	94%	96%	83%
Danaus plexippus												100%	94%	82%
Manduca sexta													100%	83%
Tribolium castaneum														100%

Table S2. Amino acid identity of AsTH Biopterin_H domain with its orthologs

Treatment	Injected No.	No. of individuals with tanning impaired (alive)	No. of Death at 38 th hour of pupation		
ds <i>TH</i>	58	32	6		
dsTH2	42	18	5		
dsRed (For dsTH)	49	0	5		
dsRed (For dsTH2)	36	0	4		

Table S3. Statistic of RNAi (For Cuticle tanning, at 38th hour of pupation)