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SUPPLEMENTARY METHODS

PRINCIPAL COMPONENT ANALYSIS (PCA)

As shown in Fig. 3a and Fig. 3b, many of the 16 fea-
tures are correlated and not all measured features in the
data set produced by the time stretch quantitative phase
imaging have the same amount of information. That re-
sult suggests that it may be possible to reduce the 16
dimensional data set to a smaller set of uncorrelated or-
thogonal dimensions without significantly compromising
the classification accuracy. In that spirit, we have used
principle component analysis (PCA) for dimensionality
reduction and computation speed-up. The PCA algo-
rithm finds an alternative lower dimension space such
that variance of data projected onto this subspace is max-
imized along subspace dimensions. Fig. S2a shows the
percent of the variance in data explained by each compo-
nent (lower chart). The key observation is that most of
the variance can be accounted for by the first two prin-
ciple components. The upper portion of the plot shows
the accuracy for binary classification using each of the
principle components. Interestingly, the first component
with the highest explained variance is not necessarily the
most important component for classification. Therefore,
apriori intuition about the physical significance of the
features in the case here, is superior to PCA in eliminat-
ing dimensions that do not provide high value in clas-
sification. By revealing the structure in data that best
explains the variance, PCA achieves data compression
via dimensionality reduction.

PCA components acts as the input features for the
classification algorithm. As number of PCA components
retained increases, the classification accuracy improves
while computation time increases (Fig. S2b). Since accu-
racy is the main concern here, we employ all 16 biophys-
ical features, rather than dimensionality-reduced PCA
components.

CROSS VALIDATION

The k-fold cross-validation implemented here splits
data points into training, validation, and test subsets
(Fig. S3a). For each iteration, one fold is used as test
data, one for validation while the other folds are used
during training process. After initially trained, the per-
formance of the network is analyzed by the validation
data to fine tune the neural network architecture and
regularization parameter. Fig. S3b shows that either a
too small or a too large regularization parameter, λ, in-
creases network error due to overfitting or underfitting,

respectively. Therefore, there is a suitable range of regu-
larization parameter for each learning model.

Once the network architecture and regularization pa-
rameter are chosen and optimized based on the validation
data, the learning model performance is finally verified
by the test fold, which has never been used before in
this iteration. The process of training in each iterations
is independent, so each iteration has no prior knowledge
about the chosen learning models in other iterations. The
final reported results are aggregate of the performance for
different test datasets.

COMPUTATION TIME

Our deep learning technique uses AUC as the cost func-
tion and performs training via genetic algorithm. Since
AUC is calculated based on the entire dataset, the genetic
algorithm is employed as a global optimization method.
Thus, our technique has inherently higher accuracy and
repeatability compared to conventional deep learning and
other classification algorithms studied here. However,
the global optimization in our algorithm sacrifices the
computation time. The performance of balanced accu-
racy and computation time of different classification al-
gorithms are compared in Table S1.

SYSTEM PERFORMANCE AND RESOLVABLE
POINTS

Lateral resolution of time stretch camera is decided
by the limiting factor among Abbe diffraction limit of
the objective lens, spectral resolvability of the diffraction
grating pairs, spectral resolution in amplified dispersive
Fourier transform, the photodetector rise-time and band-
width, and the sampling rate of the back-end digitizer.
Details of the limiting factors of lateral resolution and
evaluation of these factors for our TS-QPI system can
be found in Table S2. Field of view (FOV) is the area
covered by the interrogation rainbow when the rainbow
pulses hit the imaging plane. The rainbow pulse width is
decided by the optical bandwidth selected from the laser
source, ∆λ, the magnification factor of the objective lens,
the focal length of the other lenses and parabolic mirrors,
as well as the dimensions and blaze angles of the diffrac-
tion gratings.

The resolution of phase measurement along axial di-
rection is determined by the effective number of bits
(ENOB) of the digitizer and affected by the noise of laser
source. Since pulse-to-pulse intensity and phase fluctua-
tions are small, noise from laser source is not the limiting
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FIG. S1. Comparison of the interferograms measured by optical spectrum analyzer and time-stretch dispersive Fourier Trans-
form; (a) Optical spectrum of the signal after quantitative phase imaging (box 1 in Fig. 1) and before it enters the amplified
time-stretch system (box 2 in Fig. 1). The interference pattern in spectral domain is measured by an optical spectrum ana-
lyzer. (b) With time stretch, the interference pattern in spectral domain is linearly mapped into time. The baseband intensity
envelope is slightly modified by the wavelength-dependent gain profile of the Raman amplifier. The inserts in panels a and
b show the zoomed-in spectrum and waveform in the dashed black boxes, respectively. Clearly, the single-shot interferogram
measured by Raman-amplified time-stretch dispersive Fourier Transform has a higher signal-to-noise ratio compared to that
captured by optical spectrum analyzer.

TABLE S1. Performance comparison of different classification algorithms

Algorithm Averaged Standard deviation of Computation time
balanced accuracy balanced accuracy (second)

Deep neural network trained by AUC 95.5% 0.9% 365.6
Deep neural network trained by cross entropy 94.4% 2.1% 4.7

Logistic regression 93.5% 0.9% 0.8
Support vector machine 93.4% 1.0% 1.7

Naive Bayes 88.7% 1.6% 2.8

factor in our phase measurements. Supposing the ENOB
of the digitizer isN , the minimum detectable optical path
length difference, ∆L can be estimated as

1

2
sin

(
4π∆L

λ+ ∆λ/2

)
= 2−N (6)

where λ is the central wavelength of light, and ∆λ is the
optical bandwidth. In our system, ENOB of the analog-
to-digital converter is 5. Thus, the OPD resolution along
the axial direction is about 8.0 nm, corresponding to re-
fractive index difference down to the order of 0.001 for
cellular level measurements.

MICROFLUIDIC CHANNEL DESIGN AND
FABRICATION

The Polydimethylsiloxane (PDMS) microfluidic chan-
nel is custom-designed so that it could fit into the reflec-
tive optics design. Cells are hydrodynamically focused
[1, 2] at the center of the channel flowing at a velocity of
1.3 m/s. The microfluidic device consists of a hydrody-
namic focusing region and an imaging region targeted by
the interrogation rainbow flashes in TS-QPI system. At
the hydrodynamic focusing region, the sheath pressure
focused the sample at the center of the channel by nar-
rowing its flow width from 200 µm to about 40 µm with
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FIG. S2. Principal component analysis (PCA) on the multivariate data set produced by time stretch quantitative phase imaging.
(a) Upper bar chart shows accuracy of classification by each individual principal component, and lower bar chart shows the
percentage of the total variance explained by each principal component, accounting for the variability expressed in the data. As
expected, principal components with larger variability do not necessarily give high accuracy in classification. (b) Cumulative
accuracy. The value at each data point corresponds to the number of PCA components retained in order to achieve that total
explained variance. In order to reduce the number of input features and decrease computation time, a subset of the PCA
components can be used for classification. The classification accuracy improves as the total variance retained in the subset of
PCA components goes up. Nearly 90% accuracy can be achieve with the first three PCA components. The small deviation
among accuracies of data points with the same number of PCA components are due to variations in random data partitioning.

a sheath to sample volume ratio of 3:1. The dimension
of the channel was chosen as 200 µm (width) × 25 µm
(height) so that the cells will be imaged within depth
of focus with a narrow lateral distribution. The size of
the entire PDMS channel is optimized for fitting on a 2
inch diameter dielectric mirror with sufficient space at
the edges to achieve strong bonding. The thickness of
the channel top layer is optimized for stabilizing peek
tubes performance reliability while accommodating the
working distance of the objective lens.

The PDMS microfluidic channel (Fig. S4) is fabri-
cated using standard soft lithography. The mask was de-

signed in AutoCAD and printed with a resolution down
to 1 µm. Then a 4-inch silicon wafer was spin-coated
with 75 µm thickness of a negative photoresist (SU-8 from
MicroChem) and was exposed under the mask using an
aligner. After post-exposure baking, the wafer was devel-
oped at room temperature, rinsed with isopropyl alcohol
(IPA), and placed in a petri dish. A PDMS mixture (Syl-
gard 184 Silicone Elastomer, Dow Corning) was poured
onto the patterned wafer, degassed in a vacuum chamber
for 30 min and cured at 80 ◦C for one hour. Once cured,
the PDMS channel was cut out and peeled off from the
master wafer. We used 1.25 µm diameter hollow needle
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FIG. S3. (a) The implementation of the k-fold cross-validation here splits data points into training, validation, and test subsets.
In each iteration, one fold is used for fine tuning the learning model (validation dataset) and another fold is used for evaluation
of the final results (test dataset), while rest of the data points are used for training (training dataset). The final reported
results are aggregate of the outcomes from the test datasets. (b) A suitable regularization parameter, λ, balances the trade-off
between overfitting (variance) and underfitting (bias) and minimizes the cross entropy of the validation dataset.

TABLE S2. Resolution Limiting Factors in TS-QPI

System catagory Component Number of resolvable points
Lateral
resolution

Free-space optics
Diffraction grat-
ings

Ngrating =
∆λ

δλgrating
= ∆λ/(λ · d

m · 2w0
) (1)

where ∆λ is the optical bandwidth, λ is the central wave-
length, m is the order of diffraction, w0 is the beam waist,
and d is the groove spacing.

3.09 µm

Lenses and mirrors
NAbbe =

FOV

δxdiffraction
=

FOV

(λ+∆λ/2
2·NA )

(2)

where FOV is field of view, NA is numerical aperture of
the objective lens.

2.00 µm

Time Stretch
Group delay dis-
persion

NDFT =
∆λ

δλ
=

∆λ

λ ·
√

2
DLf ·c

(3)

where D is the group velocity dispersion, Lf is the dis-
persive fiber length.

0.73 µm

Electronic back-end
Photodetector
bandwidth

NPD =
∆t

δt
=
DLf∆λ

0.35/B
(4)

where B is the bandwidth of the photodetector.

0.28 µm

ADC sampling
rate

NADC = DLf∆λfADC (5)

where fADC is the sampling rate of digitizer.

0.10 µm
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FIG. S4. PDMS microfluidic channel mounted on a highly
reflective surface with near-infrared dielectric coating; The
microfluidic device consists of a hydrodynamic focusing re-
gion and an imaging region targeted by the interrogation rain-
bow flashes in TS-QPI system. (a) Sample solution with sus-
pended cells is fed into the channel through the sample inlet,
and deionized water as the sheath fluid is injected through
the sheath inlet. At the hydrodynamic focusing region, the
sheath pressure focused the sample at the center of the chan-
nel by narrowing its flow width from 200 µm to about 40 µm
with a sheath to sample volume ratio of 3:1. (b) The pattern
of the mask used to imprint microfluidic channel design on
silicon wafer with photoresist. The circles are inlet and outlet
reservoirs.

to punch the inlet and outlet holes. The punched PDMS
channel was then cleaned with nitrogen gun and magic

tape (3M), treated with oxygen plasma (Enercon Dyne-
A-Mite 3D Treater) for 2 min, and bonded to a 2-inch di-
ameter broadband dielectric mirror (Thorlabs BB2-E04)
for obtaining high reflectance from channel substrate at
near infrared spectral window. Finally microtubes (PE-
50 tubing, .023 × .038 in) with steel catheter couplers
(Instech, 22 ga ×15 mm) are connected to the inlet and
outlet punctures.

PREPARATION OF ALGAE CELL LINES

Chlamydomonas reinhardtii strains used were cw15
(nit1 NIT2 mt+−) and sta6 (cw15 nit1 NIT2 arg7-
7 sta6-1::ARG7 mt+), available as CC-4568, CC-4348
respectively from the Chlamydomonas resource center
(CRC)[3].

Cells were grown in tris-acetate-phosphate (TAP)
medium supplemented with arginine (100 µg mL−1).
Cultures were grown in Innova incubators (New
Brunswick Scientific, Edison, NJ) at 24 ◦C, agitated at
180 rpm with continuous light (95 µmol m−2 s−1, 6 cool
white fluorescent bulbs at 4100 K and 3 warm white
fluorescent bulbs at 3000 K per incubator). To induce
lipid production, cells were cultured to mid-log phase
in regular TAP prior to deprivation of N by transfer
to ammonium-free (i.e. nitrogen-free) TAP medium, as
described previously [4]. Briefly, cells subjected to ni-
trogen deprivation were grown to 4 × 106 cells mL−1 and
collected by centrifugation at 1006 xg for 5 min at room
temperature. The supernatant was discarded, and the
cells were washed in nitrogen-free TAP. Cells were then
resuspended in nitrogen-free TAP to a final cell count of
2 × 106 cells mL−1. Cell densities were determined using
a hemocytometer.
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