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1 Tables 

Table S1. A list of computational tools for gene set analysis of two sample groups 

Tool Description Reference 

GSAASeqSP 

Gene set association analysis for RNA-Seq data based on sample 
permutation. GSAASeqSP includes three statistics (Signal2Noise, 
log2Ratio, Signal2Noise_log2Ratio) for gene differential expression 
analysis and eight statistics (Weighted_KS, L2Norm, Mean, 
WeightedSigRatio, SigRatio, GeometricMean, FisherMethod, RankSum) 
for gene set association analysis. GSAASeqSP is a pure Java application, 
and it runs fast. 

http://gsaa.unc.edu/login/u
serguide_gsaaseqsp.html 

 

GSAASeqGP 

Gene set association analysis for RNA-Seq data based on gene 
permutation. GSAASeqGP uses several existing R packages (edgeR1, 
DESeq2, NOISeq3, DEGseq4, baySeq5) for gene differential expression 
analysis, and transform the output (p-values or probabilities) from these 
packages into ranks, and then takes as input these ranks for gene set 
association analysis, which is based on a weighted Kolmogorov-Smirnov 
test. 

http://gsaa.unc.edu/login/u
serguide_gsaaseqgp.html 

GSAA 

Integrative gene set association analysis of microarray gene expression 
data and SNP data. GSAA includes five statistics (ChiSquare_Geno, 
ChiSquare_Allele, Diff_of_Alleles, tTest_Geno, tTest_Allele) for 
single-SNP association analysis, one statistic (Maximum) for SNP set 
association analysis, three statistics (Signal2Noise, tTest, log2Ratio) for 
gene differential expression analysis, three statistics (ZScore_Sum, 
Fisher_Method, Rank_Sum) for integrative gene association analysis, and 

Genome Res. (Xiong, et 
al., 2012)6 
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one statistic (Weighted_KS) for gene set association analysis. 

GSAA-SNP 

Gene set association analysis for SNP data. GSAA-SNP includes five 
statistics (ChiSquare_Geno, ChiSquare_Allele, Diff_of_Alleles, 
tTest_Geno, tTest_Allele) for single-SNP association analysis and one 
statistic (Weighted_KS) for gene set association analysis. 

http://gsaa.unc.edu/login/u
serguide_gsaasnp.html 

GSEA 

Gene set enrichment analysis for microarray gene expression data. 
GSEA includes eight statistics (Signal2Noise, tTest, Cosine, Euclidean, 
Manhatten, Pearson, Ratio_of_Classes, Diff_of_Classes) for gene 
differential expression analysis and one statistic (Weighted_KS) for gene 
set enrichment analysis. 

Proc Natl Acad Sci U S A. 
(Subramanian, et al., 
2005)7 

SeqGSEA 

Integrative gene set enrichment analysis of differential expression and 
splicing for RNA-Seq data. SeqGSEA designed an additional tool for 
gene set enrichment analysis purely based on differential expression – the 
DE-only analysis. This tool uses an existing R package, DESeq2, for gene 
differential expression analysis, and uses the Weighted_KS statistic for 
gene set enrichment analysis. 

BMC Bioinformatics. 
(Wang, et al., 2013)8 

Bioinformatics (Wang, et 
al., 2014)9 

 

2 Methods 

2.1 Differential expression analysis 

In GSAASeqSP, we provide three statistics for differential expression analysis of individual genes: 

Signal2Noise, log2Ratio, and Signal2Noise_log2Ratio. GSAASeqSP employs a sample-based permutation 

procedure to assess the association significance, so in this step a differential expression score and a p-value 

are computed for each gene for both the observed data and permutations.  

Consider two phenotype classes, and :  

(1) Signal2Noise is the absolute value of the difference of the class means scaled by the standard deviation 

          （1） 

Where  and  are the means and standard deviations of expression values of gene  in 

classes  and , respectively. Each s-score is normalized by the sum of s-scores of all genes in the data 

set. The value of the statistic represents the extent to which a gene is differentially expressed between two 

phenotypic classes; bigger value indicates higher differential expression. 
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  To estimate p-values, we first generate the gene-wise null distribution of the Signal2Noise statistic by a 

sample-based permutation procedure, and we then calculate a p-value for the test statistic based on its null 

distribution. Suppose 	   is the value of the Signal2Noise statistic for the observed data and  are 

the values for permutations .	  The p-value for the Signal2Noise statistic is computed as 

          （2） 

Where 
	  

is an indicator variable that is one if  and is otherwise zero. Smaller p-value 

indicates higher probability that a gene is differentially expressed between two phenotypic classes. 

(2) log2Ratio is the absolute value of the log2 ratio of the class means 
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Where  are the means of expression values of gene  in classes  and , respectively. Each 

r-score is normalized by the sum of r-scores of all genes in the data set. The value of the statistic represents 

the extent to which a gene is differentially expressed between two phenotypic classes; bigger value indicates 

higher differential expression. 

  We first generate the gene-wise null distribution of the log2Ratio statistic by a sample-based permutation 

procedure, and we then estimate a p-value for the test statistic based on its null distribution. Suppose 	   is 

the value of the log2Ratio statistic for the observed data and  are the values for permutations 

.	  The p-value for the log2Ratio statistic is computed as 

          （4） 

Where 
	  

is an indicator variable that is one if  and is otherwise zero. Smaller p-value 

indicates higher probability that a gene is differentially expressed between two phenotypic classes. 

(3) Signal2Noise_log2Ratio is the mean of Signal2Noise and log2Ratio 
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We first generate the gene-wise joint null distribution of the Signal2Noise statistic and log2Ratio statistic by a 

sample-based permutation procedure, and we then calculate a gene’s differential expression score and its 

p-value based on this null distribution. Suppose 	   and	   	   are the values of the Signal2Noise statistic and 

log2Ratio statistic for the observed data, respectively.  and  are the values for 

permutations . These s-scores and r-scores are from different types of tests and thus have 

different scales. In order to bring these scores to a common scale, we convert them to standard scores. The 

standard s-scores  are computed as 

          （5）

 

and the standard r-scores  are similarly computed as  

          （6） 

Where  and  are the means and standard deviations of the null distributions 

corresponding to  and , respectively. The Signal2Noise_log2Ratio statistic is then defined by 

          （7） 

Where  is the minimum score of all standard s-scores and standard r-scores of all genes over the observed 

data and all permutations.  is used to convert all z-scores to positive values. The value of the statistic 

represents the extent to which a gene is differentially expressed between two phenotypic classes; bigger value 

indicates higher differential expression. The p-value from the joint distribution is computed as 

          （8） 

Where 
	  

is an indicator variable that is one if 
	  

and ,	   and is otherwise 

zero. This statistic was created by modifying an existing statistic introduced by NOISeq3. Smaller p-value 

indicates higher probability that a gene is differentially expressed between two phenotypic classes. 
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2.2 Gene set association analysis 

2.2.1 Computation of gene set association scores 

Ten statistics are evaluated for gene set association analysis of RNA-Seq data: Weighted_KS, L2Norm, Mean, 

WeightedSigRatio, SigRatio, GeometricMean, TruncatedProduct, FisherMethod, MinP, and RankSum. These 

statistics can be divided into three categories: score based (Weighted_KS, L2Norm, Mean, WeightedSigRatio, 

SigRatio), p-value based (GeometricMean, TruncatedProduct, FisherMethod, MinP) and rank based 

(RankSum). In this step, for a particular gene set  including  genes, given the differential expression 

scores  and the corresponding p-values  for all genes in the gene set, a gene set 

association score (AS) is computed for both the observed data and permutations based on any of the following 

gene set-level statistics. The differential expression scores and p-values can be computed by any of the above 

three gene-level statistics: Signal2Noise, log2Ratio, or Signal2Noise_log2Ratio. 

(1) Weighted Kolmogorov-Smirnov test (Weighted_KS) 

Given the differential expression scores of all genes in the data set, a weighted Kolmogorov-Smirnov (KS) 

test is used to determine the extent to which a gene set is associated with a given phenotype. This test was 

originally proposed by Subramanian et al7. Essentially, the weighted KS test determines for each gene set 

whether the genes belonging to that gene set are preferentially near the top of the ranked ordered list based on 

differential expression scores. More specifically, for gene set , given the differential expression scores 

 for all genes in the data set, a running association score  for the rank ordered genes in 

positions  is computed as 

          （9） 

Where  is an indicator variable that is one if the jth gene in the rank ordered list is in gene set  

and is otherwise zero. Similarly,  takes the value of zero if the jth gene is in the gene set and is 

otherwise one. The association score of gene set , , is the maximum deviation from zero of the 

running association score over the positions  

          （10） 
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Finally, if  then the final gene set association score , 

otherwise . 

  The AS indicates the strength of the association between the gene set and the phenotype, bigger value 

indicates stronger association. The differential expression scores we used lack directionality, so a negative 

AS(S) means there is no association between the gene set and the phenotype. We set AS(S) = 0.0001 if 

AS(S)<0 so that negative AS will not confuse the interpretation.    

(2) L2-norm (L2Norm) 

We here use the L2-norm of the differential expression scores of all genes in a gene set as the test statistic to 

evaluate the association of that gene set with the phenotype. This statistic has been adopted as the gene 

set-level statistic for analyzing microarray data by SAM-GS10, The association score of the gene set  based 

on the L2-norm of differential expressions is computed as 

          （11） 

  The AS indicates the strength of the association between the gene set and the phenotype, bigger value 

indicates stronger association. 

(3) Mean (Mean) 

The simple mean statistic tests whether the mean of differential expression scores in the gene set from the 

observed data is bigger than what would be expected from random samples. The association score of the gene 

set  based on the mean test is computed as 

          （12） 

  The AS indicates the strength of the association between the gene set and the phenotype, bigger value 

indicates stronger association. 

(4) Weighted Significance Ratio (WeightedSigRatio) 
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The Weighted Significance Ratio (WSR) is defined as the ratio of the sum of significant differential 

expression scores to the sum of all differential expression scores in the gene set. The association score of the 

gene set  based on the WSR test is computed as 

          （13） 

Where 	   is the p-value threshold that is used as a cutoff for determining significance.  is a parameter that 

can be specified by users in GSAASeqSP. In this study, we set ;  is an indicator variable 

that is one if , and is otherwise zero. The AS indicates the strength of the association between the gene 

set and the phenotype, bigger value indicates stronger association. 

(5) Significance Ratio (SigRatio) 

The Significance Ratio (SR) test compares the proportion of significant genes to all genes in the gene set. The 

association score of the gene set  based on the SR test is computed as 

          （14） 

Where 	   is the p-value cutoff, it was set to 0.05 in this study.  is a parameter that can be specified by 

users in GSAASeqSP.  is an indicator variable that is one if , and is otherwise zero. The AS 

indicates the strength of the association between the gene set and the phenotype, bigger value indicates 

stronger association. 

(6) Geometric mean (GeometricMean) 

The geometric mean (GM) is defined as the nth root of the product of n numbers. Here we use the geometric 

mean of the p-values over all genes in a gene set as the test statistic to evaluate the association of that gene set 

with the phenotype. The association score of the gene set  based on the GM test is computed as 

          （15） 
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  The AS indicates the strength of the association between the gene set and the phenotype, smaller value 

indicates stronger association. 

(7) Truncated product method (TruncatedProduct) 

Truncated product method (TPM)11 is a global test that combines p-values from several hypothesis tests to 

provide a p-value for the overall hypothesis that all single hypotheses are true. It has several advantages over 

the ordinary Fisher product test. Here we use TPM test statistic to combine p-values of genes in a gene set into 

an overall significance level to investigate the association of that gene set with the phenotype. The association 

score of the gene set  based on the TPM is computed as 

          （16） 

Where 	   is the p-value cutoff, it was set to 0.05 in this study.  is an indicator variable that is one 

if , and is otherwise zero. The AS indicates the strength of the association between the gene set and the 

phenotype, smaller value indicates stronger association. 

(8) Fisher's method (FisherMethod) 

Fisher's method is widely used to combine p-values from multiple independent tests. Here we use Fisher's 

method to summarize p-value evidence from all genes in a gene set into an overall significance level. The 

association score of the gene set based on the Fisher product test is computed as 

          （17） 

  The AS indicates the strength of the association between the gene set and the phenotype, smaller value 

indicates stronger association. 

(9) Minimum p-value (MinP) 

We modified a MinP statistic12 and use it as the test statistic for gene set association analysis. For gene set , 

given the p-value matrix  of all genes in  calculated from the 

observed data and permutations , the association score based on the MinP method is computed as 
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 for           （18） 

Where 
	  

is an indicator variable that is one if , and is otherwise zero. 

The AS indicates the strength of the association between the gene set and the phenotype, smaller value 

indicates stronger association. 

(10) Rank Sum (RankSum) 

The Rank Sum is the sum of ranks of all gens in the gene set. We first transform the differential expression 

scores  of all genes in the data set into ranks , the association score of the gene set 

 based on the Rank Sum statistic is therefore defined as 

          （19） 

  The AS indicates the strength of the association between the gene set and the phenotype, smaller value 

indicates stronger association. 

2.2.2 Normalization of gene set association scores 

To correct for possible heterogeneity of information at each gene set, for example differences in the gene set 

size or correlation structure, we normalize the AS by the mean of its null distribution generated by 

permutations. For a particular gene set , given its actual AS  and ASs calculated from permutations 

, the normalized association score (NAS) is computed as 

          （20） 

  This normalization method was originally introduced by GSEA7. The normalized association scores are 

then used for downstream analyses. 

2.3 Generation of simulated data 

To evaluate the effectiveness of different gene-level and gene set-level statistics, we conducted a 

comprehensive simulation study. We designed 6 scenarios of differential expression. For each scenario, 200 
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case-control data sets were independently generated from the same statistical model. In each data set, we 

simulated 200 cases and 200 controls, and for each case and control, we simulated the read counts of 1000 

genes. It is well known that genetic variants are one of the major determinants that cause differential 

expression13,14.  Therefore, in our simulations, we assume that the expression difference observed between 

cases and controls are the results from genotypic difference. Based on this assumption, we first simulated the 

genetic association between gene sets and phenotype then simulated the differential expression corresponding 

to the genetic association. 

2.3.1 Gene set data 

For each simulation we generated 100 gene sets. Only the first gene set (causal gene set) included risk genes 

or differentially expressed genes. We randomly chose a pathway, P53PATHWAY that contains 16 genes from 

MSigDB as a prototype to simulate the causal gene set. The gene expression and genotype information of 

P53PATHWAY were obtained from breast invasive carcinoma (BRCA) RNA-Seq data and glioblastoma data 

generated through The Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov) project. The remaining 

99 gene sets were simulated from null models, namely none of genes in these gene sets were associated with 

the phenotype of interest with respect to gene expression profiles or genotypes. The sizes of null gene sets 

were randomly drawn from U [15, 30]. Genes within null gene sets were randomly drawn from a pool of 984 

non-causal genes. 

2.3.2 SNP data 

Each simulated SNP data set included 1000 genes, each gene with one genotyped SNP for a total of 1000 

SNPs. Some of these SNPs were considered causally related to the phenotype of interest. We simulated the 

causal SNPs in the causal gene set based on the genotype information of P53PATHWAY. We first assigned 

SNPs that were within the region 1 kilobase pair (kb) upstream of the transcription start site (TSS) to the end 

of the transcribed bases to each gene in the P53PATHWAY, then we removed SNPs with minor allele 

frequency (MAF) less than 0.05 and chose the SNP with the highest score in chi-square test as the tag SNP of 

the gene. We set the allele frequencies of causal SNPs in the simulated causal gene set same as the allele 

frequencies of corresponding tag SNPs in the P53PATHWAY. The heterozygote odds ratio for each causal 

SNP was generated from U [1.2, 1.4]. We used an additive disease model for the causal loci and the disease 
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prevalence was set to 0.05. We drew allele frequencies from a Beta distribution, Beta (0.1, 0.1), for null SNPs 

with no association with the phenotype based on the approximation for the unconditional distribution of allele 

frequencies in the HapMap populations stated in (Coram and Tang, 2007)15. Based on these parameter settings, 

the genotype data were generated by PLINK16 (http://pngu.mgh.harvard.edu/purcell/plink/). We then assigned 

the case-control status based on the model  

.          （21） 

Where  is the number of causal SNPs in the causal gene set. 
 

denotes the coding of the genotype at 

causal SNP  for sample  with effect size  that is the log odds ratio at SNP .  denotes a random 

sample-specific error term for sample ,  is sampled from a standard normal distribution.  

2.3.3 Gene expression data 

Each simulated gene expression data set consisted of 1000 genes corresponding to the 1000 genes in the SNP 

data set. Some of these genes were considered risk genes that were differentially expressed in cases and 

controls. We first generated the baseline expression levels for all genes in the data set from the negative 

binomial (NB) distribution. The NB-distributed read counts were generated by a function in the R Stats 

Package – rnbinom (n, size, prob, mu). The parameters mu and size were estimated from the normal samples 

in the TCGA BRCA RNA-Seq data set. Next, we added disease effect to the causal genes in the causal gene 

set based on the model , where  is the expression level of gene  in sample ,  

is the baseline expression level of gene  in sample ,  denotes the coding of the genotype at SNP  

for sample  in the SNP data.  is the effect size of the genotype on gene expression and reflects the 

degree to which the gene expression is correlated with the genotype of tag SNP of the same gene.  was 

drawn from either U [0.8, 1], U[1, 3], or U [2, 4]. 
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