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Supplementary Notes 

Supplementary Note 1: The validation of normality assumption of the latent space in VAE 

To validate whether the latent space of the VAE model conforms to the assumption of normal distribution, 

we conducted a comparative experiment on the mouse Splenocyte dataset1. We trained a standard VAE 

model following the pipeline of SCALE2 with the default parameters. Then we investigated the 

distributional characteristics of the latent embeddings extracted from the model from four aspects: 

First, the histogram of each latent dimension can provide a visual assessment of its distribution of the 

latent embeddings. If the distribution appears bell-shaped and symmetric, it suggests a closer approximation 

to a normal distribution. 

Second, a quantile-quantile (Q-Q) plot compares the quantiles of the observed latent variable with the 

quantiles of a normal distribution. If the points lie close to a straight line, it indicates a good fit to the normal 

distribution. 

Third, the skewness is a measure of the asymmetry of a distribution3. The skewness of the normal 

distribution is equal to 0. Negative skewness commonly indicates that the tail is on the left side of the 

distribution, and positive skewness indicates that the tail is on the right. 

Fourth, the kurtosis is a measure of the tailedness of a distribution3. The kurtosis of the normal 

distribution is equal to 3. The kurtosis greater than 3 commonly indicates that the peak is steep, and the 

kurtosis less than 3 indicates that the peak is gentle. 

In the standard VAE model trained on the Splenocyte dataset, the histogram fitting curves of latent 

feature 4, 6, 7 and 9 display noticeable asymmetry and multiple peaks, and the Q-Q plots of these latent 

features reveal a notable departure from the straight line representing the standard normal distribution, 

which evidently deviate from the characteristics of a standard normal distribution (Supplementary Figure 

1). The skewness of latent feature 2, 3, 8 and 10 is not equal to 0, and the Q-Q plots of these latent features 

reveal a notable departure from the straight line representing the standard normal distribution, deviating 

from the characteristics of a standard normal distribution (Supplementary Figure 2). The kurtosis of latent 

feature 1 and 5 is not equal to 3, and the Q-Q plots of these latent features reveal a notable departure from 

the straight line representing the standard normal distribution, deviating from the characteristics of a 

standard normal distribution (Supplementary Figure 3).  
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Supplementary Note 2: Evaluation metrics for clustering 

Let U represent the known ground-truth cell type labels, V represent the predicted clustering assignments, 

N represent the total number of single cells, 𝑥𝑖 represent the number of cells in the i-th cluster of V, 𝑦𝑗 

represent the number of cells with the j-th unique cell type label of U, and 𝑛𝑖𝑗 represent the number of 

cells shared between the i-th cluster and the j-th unique cell type label. The Rand Index (RI) computes a 

similarity measure between two clustering assignments by considering all pairs of samples and counting 

pairs that are assigned in the same or different clusters in the predicted and true clustering assignments. The 

ARI4 is derived from the RI by taking into account the expected agreement due to chance: 
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Both AMI5 and NMI6 are derived from Mutual Information (MI), which is a measure of the similarity 

between two labels of the same data. Where 𝑁𝑈𝑝
 is the number of the samples in cluster 𝑈𝑝 and 𝑁𝑉𝑞

 is 

the number of the samples in cluster 𝑉𝑞, the Mutual Information between clustering assignments U and V 

is given as: 
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AMI adjusts MI by considering the expected value under random clustering as follows: 

𝐴𝑀𝐼 =
𝑀𝐼(𝐔, 𝐕) − 𝐸[𝑀𝐼(𝐔, 𝐕)]

𝑎𝑣𝑔[𝐻(𝐔), 𝐻(𝐕)] − 𝐸[𝑀𝐼(𝐔, 𝐕)]
 

where E(·) is the expectation function and H(·) is the entropy function. 

NMI scales MI to a range between 0 and 1, and its calculation is as follows: 

𝑁𝑀𝐼 =
𝑀𝐼(𝐔, 𝐕)

√𝐻(𝐔)𝐻(𝐕)
 

Let TP denote the number of True Positive (i.e. the number of pairs of cells that belong to the same 

clusters in both U and V), FP denote the number of False Positive (i.e. the number of pairs of cells that 

belong to the same clusters in V and not in U) and FN denote the number of False Negative (i.e. the number 

of pairs of cells that belong to the same clusters in U and not in V). FMI7 is calculated as follows: 

𝐹𝑀𝐼 =
TP

√(TP+FP)(TP+FN)
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Supplementary Note 3: Evaluation of performance based on kNN classification 

Similar to existing research8, we conducted experiments to evaluate the performance of cell embeddings 

by comparing k-nearest neighbor (kNN) classification results according to two classification metrics 

including classification accuracy and median F1 score for different cell types (mF1)9, 10. For a single-cell 

chromatin accessibility sequencing (scCAS) dataset, we chose 80% of the cells as a train set and the 

remaining 20% as a test set. Specifically, we included cell types with fewer than 10 cells entirely in the 

train set9, 10. Then we trained a kNN classifier with the cell embeddings and cell type labels of train set and 

used the classifier to predict the cell type labels of test set. CASTLE performs equally well in accuracy 

compared to cisTopic11 and scBasset12 (Supplementary Figure 5). Generally, compared with accuracy, F1 

score is a better metric for imbalanced datasets13-15. CASTLE achieves better median mF1 than all baseline 

methods (Supplementary Figure 5), demonstrating that CASTLE excels in accurate cell type identification. 
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Supplementary Note 4: Stability of batch correction for CASTLE 

We conducted comparative experiments to showcase the versatility of CASTLE across datasets with 

complex batch effects. As highlighted with red circles in Fig. 3g, CASTLE acquires better batch integration 

and illustrates a clearer separation between L2/3 IT (intratelencephalic neurons from layer 2 or 3 of mouse 

brain), L4 (layer 4 of mouse brain), L5 IT (intratelencephalic neurons from layer 5 of mouse brain) and L6 

IT (intratelencephalic neurons from layer 6 of mouse brain) across two batches than baseline methods. To 

verify the capacity of CASTLE for treating datasets with certain abundant cell types existing only in one 

batch, we removed cells that belongs to one or all of L2/3 IT, L4, L5 IT and L6 IT cell types in the batch 

“10X” of the Brain dataset. For datasets with partially overlapping batches, CASTLE achieves highly 

robustness for batch correction and exhibits weak over-correction, in terms of UMAP visualization 

(Supplementary Figure 14a-f) and the performance of batch correction evaluated by ARI and kBET16 

(Supplementary Figure 14g). To sum up, CASTLE not only effectuates the excellent balance between 

removing batch variations and preserving cell heterogeneity, but also demonstrates strong robustness to 

datasets with complex batch effects. 
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Supplementary Note 5: Imbalanced datasets and rare cell types 

To assess the competence of CASTLE for dealing with complex and imbalanced scCAS data, we 

simulated eight datasets with diverse degrees of cell type imbalance17 based on the Stimulated Droplet 

dataset again (“Simulation of datasets with different imbalances” in Methods). The cell type imbalance of 

the original Stimulated Droplet is 0.175. To simulate datasets with higher degrees of cell type imbalance, 

we randomly downsampled cell types with a cell count less than 10,000 to the following fractions of their 

original counts: half, one-fourth, one-sixth, one-eighth, one-tenth, one-sixteenth, and one-thirtieth, and 

simulated the datasets with cell type imbalances of 0.281, 0.407, 0.476, 0.520, 0.551, 0.604 and 0.656. As 

the imbalance gradually increases, the clustering performance of all methods decreases, while CASTLE 

substantially outperforms all other methods at distinct cell type imbalances and displays the highest level 

of stability (Fig. 4c and Supplementary Figure 17). 

Then we removed cell types with a cell count larger than 10,000 (Mono and CD4) and evaluated the 

performance over the remaining rare cell types. As the degree of cell type imbalance increases sharply, the 

UMAP visualization and clustering performance of CASTLE for the identification of rare cell types 

deteriorates slowly (Supplementary Figure 18). Specifically, CASTLE achieves the overall best clustering 

performance compared with four baseline methods (Supplementary Figure 18i). In summary, CASTLE 

exhibits strong robustness and stability for the identification of rare cell types. 

 

  



6 

Supplementary Note 6: Ablation studies for CASTLE 

In CASTLE, there are seven hyperparameters including  denoting the weight of 𝐿𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡 ,  

denoting the decay ratio, K denoting the size of codebook, M denoting the time of split quantization18,  

denoting the weight of 𝐿𝑏𝑎𝑡𝑐ℎ,  denoting the weight of 𝐿𝑐𝑒𝑙𝑙𝑡𝑦𝑝𝑒,  denoting the weight of 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟. We 

designed comprehensive comparative experiments about robustness analyses for these hyperparameters. 

First, similar to the original studies of Vector Quantized Variational AutoEncoder (VQ-VAE)19, 20, we 

aimed for the codebook to have less impact on the output of the encoder so that we set the default value of 

, the weight of 𝐿𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡, to 0.25. To validate the robustness of CASTLE with different weights of 

𝐿𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡 , we trained CASTLE with different values of  (0.1, 0.25, 0.5, 1.0, 5.0 and 10.0) on 16 

benchmark datasets. The results, as shown in Supplementary Figure 21a, demonstrate that CASTLE 

consistently obtains stable clustering performance under different values of . 

Second, we mainly followed the original studies of VQ-VAE19, 20 to set the default value of , the decay 

ratio for updating the codebook, to 0.99. To assess the stability of CASTLE with different decay ratios, we 

conducted two experiments. We first trained CASTLE under a series of , 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.96, 

0.97, 0.98 and 0.99, on 16 benchmark datasets. The results, as shown in Supplementary Figure 21b, 

demonstrate the stability of the clustering, while the value of 0.99 is preferred for its slightly higher 

clustering performance. We further analyzed values of  around 0.99. We trained CASTLE under a series 

values of  ranging from 0.991 to 0.999 on 16 benchmark datasets. As shown in Supplementary Figure 21c, 

it seems that the results at 0.99 is still better than those at the larger values. We again trained CASTLE 

under a series values of  ranging from 0.981 to 0.989 on 16 benchmark datasets and also obtained slightly 

higher clustering performance at 0.99 (Supplementary Figure 21c). All these empirical analyses, including 

the above results for  ranging from 0.10 to 0.99, support that 0.99 is indeed a reasonable default value of 

the decay ratio . 

Third, to evaluate the robustness of CASTLE to the size of the codebook, K, we trained CASTLE with 

different values of K (100, 200, 400, 600, 800 and 1000) on 16 benchmark datasets. The results 

(Supplementary Figure 21d) show that CASTLE is insensitive to this hyperparameter. Taking into account 

the balance of cell heterogeneity preservation and codebook utilization, we set the default value of K to 400. 

Fourth, to evaluate the stability of CASTLE to the time of split quantization18, we trained CASTLE with 

different values of M (1, 2, 5, 10, 25, 50) on 16 benchmark datasets. The results (Supplementary Figure 21e) 

show that CASTLE acquires relatively poor clustering performance when the time of split quantization is 
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1 or 2, while CASTLE attains highly stable clustering performance when the time of split quantization is 

higher than 5. Evidently, the lower the time of split quantization, the higher the dimension of codebook 

features. With the consideration that it is obviously challenging to look up the nearest neighbors for high-

dimensional vectors, we set the default value of M to 10. 

Fifth, to verify the robustness of CASTLE to the weight of 𝐿𝑏𝑎𝑡𝑐ℎ, we trained CASTLE with different 

values of  ranging from 0 to 1 on 4 benchmark datasets with multiple batches. The results (Supplementary 

Figure 22a) show the stability of CASTLE under these values, while excessive weights of 𝐿𝑏𝑎𝑡𝑐ℎ may lead 

to poor batch correction. We therefore set the default value of  to 0.001. 

Sixth, to demonstrate the stability of CASTLE toe the weight of 𝐿𝑐𝑒𝑙𝑙𝑡𝑦𝑝𝑒, we trained CASTLE with 

different values of  ranging from 0 to 1 on 8 benchmark datasets when incorporating labeled reference 

datasets. The results (Supplementary Figure 22b) show that CASTLE yields bad results when  equals 1 

on the Stimulated Droplet dataset21, while obtaining stable clustering performance when  below 1. We 

therefore set the default value of  to 0.001, with which CASTLE achieves relatively better performance. 

Seventh, to evaluate the sensitivity of CASTLE to the weight of 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟, we trained CASTLE with 

different values of  ranging from 0 to 100 on 8 benchmark datasets when incorporating labeled reference 

datasets. The results (Supplementary Figure 22c) show that CASTLE attains the highest performance when 

 equals 1, and somewhat lower performance when  equals 0 and 100. We therefore set the default value 

of  to 1 to avoid inappropriate selection of . 

In addition, since 𝐿𝑟𝑒𝑐𝑜𝑛 and 𝐿𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡 are basic and indispensable loss functions in CASTLE, we 

designed comprehensive ablation studies only for the contributions of 𝐿𝑏𝑎𝑡𝑐ℎ on 4 benchmark datasets 

with multiple batches, 𝐿𝑐𝑒𝑙𝑙𝑡𝑦𝑝𝑒  and 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟  on 8 benchmark datasets when incorporating labeled 

reference datasets. Compared with CASTLE without 𝐿𝑏𝑎𝑡𝑐ℎ, 𝐿𝑐𝑒𝑙𝑙𝑡𝑦𝑝𝑒 and 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟, as long as the loss 

weights are within a reasonable range, the incorporation of these loss functions in CASTLE consistently 

leads to improvements of clustering performance (Supplementary Figure 22). The above results support the 

effectiveness of three self-designed loss functions. 

Besides, we conducted comparative experiments to validate the effectiveness of replacing 𝐿𝑐𝑜𝑑𝑒𝑏𝑜𝑜𝑘 

with EMA and separating 𝐿𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡 and 𝐿𝑐𝑜𝑑𝑒𝑏𝑜𝑜𝑘. We referred to the model that updates codebook 

using 𝐿𝑐𝑜𝑑𝑒𝑏𝑜𝑜𝑘 instead of EMA as CASTLE-noEMA, and the model that updates encoder and codebook 

using the integrated 𝐿𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡 and 𝐿𝑐𝑜𝑑𝑒𝑏𝑜𝑜𝑘 instead of using them separately as CASTLE-integrated. 

Then we applied CASTLE-noEMA and CASTLE-integrated to the 16 benchmark datasets. As illustrated 

in Supplementary Figure 23, CASTLE obtains significantly better clustering performance than CASTLE-
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noEMA (one-sided paired Wilcoxon signed-rank tests p-values < 3e-3) and CASTLE-integrated (one-sided 

paired Wilcoxon signed-rank tests p-values < 2e-3). Evidently, CASTLE-noEMA achieves better clustering 

performance than CASTLE-integrated. The results above thoroughly demonstrate the effectiveness of 

replacing 𝐿𝑐𝑜𝑑𝑒𝑏𝑜𝑜𝑘 with EMA and separating 𝐿𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡 and 𝐿𝑐𝑜𝑑𝑒𝑏𝑜𝑜𝑘. 
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Supplementary Note 7: Comparative experiments for different designs of 𝑳𝒄𝒆𝒍𝒍𝒕𝒚𝒑𝒆 

As shown in the “Batch correction and reference incorporation” section of Methods, we developed 

𝐿𝑐𝑒𝑙𝑙𝑡𝑦𝑝𝑒 for maximizing the distance between the cells from different cell types. We further compared 

CASTLE with a variant model that only minimizes the distance between the cells in the same cell types, 

and we referred to such a model as CASTLE-ref-labeled(min). Moreover, we referred to the model 

incorporating the redesigned 𝐿𝑐𝑒𝑙𝑙𝑡𝑦𝑝𝑒 for simultaneously maximizing the distance between the cells from 

different cell types and minimizing the distance between the cells in the same cell types as CASTLE-ref-

labeled(+min). Similar to the model referred to as CASTLE-ref-labeled, we applied CASTLE-ref-

labeled(min) and CASTLE-ref-labeled(+min) to the eight scCAS datasets with labeled reference datasets 

and obtained results for comparison. 

As shown in Supplementary Figure 24b, CASTLE-ref-labeled obtained the highest clustering 

performance based on the cell embeddings of target datasets, consistently superior to CASTLE-ref-

labeled(min) and CASTLE-ref-labeled(+min), indicating that the newly designed loss functions actually 

impaired the clustering performance. The results are reasonable, because we need to avoid losing potential 

heterogeneity of cell subtypes that may exist within cell types, especially when we are unsure about the 

granularity of cell type labels in the reference dataset and whether it aligns with the target dataset. All the 

above results demonstrate the rationality and efficiency of 𝐿𝑐𝑒𝑙𝑙𝑡𝑦𝑝𝑒 to maximize the distance between the 

cells from different cell types. 
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Supplementary Note 8: Comparative experiments with different reference datasets 

Taking the Stimulated Droplet dataset21 as an example, we further designed comprehensive comparative 

experiments to demonstrate the versatility of CASTLE with reference datasets under various conditions 

from five perspectives. First, to assess the ability of CASTLE for coping with reference datasets of different 

sizes, we downsampled the cells in the reference dataset (Resting Droplet dataset21) at different downsample 

rates ranging from 10% to 100%. Second, to evaluate the capacity of CASTLE for tackling reference 

datasets with different degrees of sparsity, we randomly dropped out the non-zero values in the reference 

dataset at distinct dropout rates ranging from 0 to 50%. Third, to validate the power of CASTLE for treating 

regular reference datasets only with major cell types, we reserved the cells belonging to major cell types of 

which the proportion is greater than a threshold in the reference dataset. We selected thresholds ranging 

from 0 to 10%. Fourth, to verify the ability of CASTLE for handling reference datasets with missing cell 

types present in the target dataset, we deleted one or more cell types in the reference dataset. Fifth, to assess 

the capacity of CASTLE for dealing with reference datasets with novel cell types, we deleted one or more 

cell types in the target dataset. 
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Supplementary Note 9: Quantitative recommendation score for reference dataset 

Similar to the existing study22, we developed a quantitative strategy that quantifies recommendation 

scores to guide users to select high-quality reference data. Suppose there are several different reference 

datasets for the target dataset, we designed a quantitative recommendation score to evaluate the quality of 

these reference datasets. First, we performed Principal Component Analysis (PCA)23 on the raw cell-by-

region matrix of target dataset and then acquired several sets of pseudo labels based on Louvain algorithm 

with different resolution parameters. Second, similar to the previous step, we performed PCA on the raw 

cell-by-region matrix of integrated dataset including target dataset and reference dataset, and then acquired 

several sets of pseudo labels for the target dataset. Third, we calculated the Silhouette Coefficient (SC)24 

for each set of pseudo labels. Generally, higher SC indicates better clustering outcomes. Finally, we 

calculated the recommendation score as follows: 

𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 =
𝑀𝑒𝑎𝑛(𝑆𝐶𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑡𝑎𝑟𝑔𝑒𝑡
)

𝑀𝑒𝑎𝑛(𝑆𝐶𝑁𝑜𝑛𝑒
𝑡𝑎𝑟𝑔𝑒𝑡

)
∙

𝑆𝑡𝑑(𝑆𝐶𝑁𝑜𝑛𝑒
𝑡𝑎𝑟𝑔𝑒𝑡

)

𝑆𝑡𝑑 (𝑆𝐶𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
𝑡𝑎𝑟𝑔𝑒𝑡

)
 

where 𝑆𝐶𝑁𝑜𝑛𝑒
𝑡𝑎𝑟𝑔𝑒𝑡

  or 𝑆𝐶𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
𝑡𝑎𝑟𝑔𝑒𝑡   represents the SCs for target dataset without or with reference dataset, 

𝑀𝑒𝑎𝑛(∙) and 𝑆𝑡𝑑(∙) are the formulas for calculating the average and the standard deviation. Intuitively, a 

higher recommendation score represents stronger and more consistent clustering performance. 

Taking the Stimulated Droplet dataset21 as an example, we conducted multiple experiments for six 

different reference datasets. Overall, whether the introduced reference dataset is unlabeled or labeled, the 

reference data with a higher recommendation score can provide better clustering performance of the target 

dataset (Supplementary Figure 34). For example, when the Recommendation score of introduced reference 

dataset is higher than 0.95, the unlabeled incorporation will improve the clustering performance of the target 

dataset; conversely, if it is lower, it may be detrimental to the clustering performance. For the labeled 

reference dataset, the threshold of Recommendation score for enhancing or impairing clustering 

performance is 0.8. 
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Supplementary Note 10: Comparative experiments between the cell type-specific peaks identified by 

CASTLE and epiScanpy 

We applied the function rank_features implemented in epiScanpy25 to identify the basic cell type-

specific peaks with the raw cell-by-region matrix and the cell type labels of the Stimulated Droplet dataset21. 

Following the same steps as the “Downstream analyses” section of Methods, we implemented downstream 

analysis26, 27using these epiScanpy-identified peaks. With regard to single-nucleotide polymorphisms 

(SNPs) enrichment analysis, cell type-specific peaks identified by epiScanpy also demonstrate excellent 

cell type specificity (Supplementary Figure 43). However, the background peaks identified by epiScanpy 

also exhibit strong cell type specificity (Supplementary Figure 43a), which is not evident in the background 

peaks identified by CASTLE. Besides, 721_B_Lymphoblasts is the tissue with most significant enrichment 

for pDC-specific peaks identified by epiScanpy (Supplementary Figure 43b), which is not desirable. B-

specific peaks identified by epiScanpy display significant enrichment in multiple cell types including PB-

CD19+B_cells, PB-BDCA4+Dentritic_cells, PB-CD56+NK_cells, PB-CD14+Monocytes and so forth 

(Supplementary Figure 43c). About heritability enrichment analysis, the enrichment results for blood-

related phenotypes in the cell type-specific peaks identified by epiScanpy are unsatisfactory, which may be 

due to the inferior identification for the background peaks (Supplementary Figure 44). Overall, the 

enrichment results with the cell type-specific peaks identified by CASTLE (Fig. 6c-g and Supplementary 

Figures 41-42) are relatively stronger than that identified by epiScanpy (Supplementary Figures 43-44), 

especially the more significant heritability enrichment results, demonstrating the biological significance of 

the cell type-specific peaks identified by CASTLE. 
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Supplementary Note 11: Trajectory inference and motif enrichment analysis 

Indeed, the discrete cell embeddings generated by CASTLE can be further employed for trajectory 

inference which aims to reconstruct the developmental trajectories or temporal dynamics of cells. Following 

the original study28, we created the Immune dataset by selecting 18,489 CD34+ bone marrow progenitors 

and dendritic cells across 10 subpopulations from full hematopoiesis. We applied Slingshot29, 30 to the 

trajectory inference. First, we fed the low-dimensional cell embeddings generated by CASTLE and the 

clustering assignments acquired from Louvain clustering to Slingshot for the clustering relationships using 

the function getLineages. Then we used the getCurves function to cultivate smooth curves denoting the 

estimated cell lineages and using the embedCurves function to map the curves to the two-dimensional 

UMAP space for visualization. CASTLE with Slingshot uncovers the differentiation lineage, which is 

clearly consistent with the true hematopoietic differentiation tree (Supplementary Figure 45a-b). For 

example, the differentiation path (HSC→MPP→LMPP→CLP→Pro-B) on the inferred trajectory has been 

proved in the original study28. Altogether, CASTLE facilitates trajectory inference, shedding light on the 

underlying regulatory dynamics and cell fate decisions during development or disease progression. 

We conducted comparative experiments to assess the performance of baseline methods for trajectory 

inference on the Immune dataset. Similarly, we employed Slingshot with default settings to infer the smooth 

curves representing the estimated cell lineages from the cell embeddings of four baseline methods including 

SCALEX31, SCALE2, cisTopic11 and scBasset12. We note that other baseline methods except cisTopic11 

have not been validated the ability for trajectory inference in their original papers. Obviously, the inferred 

trajectories from baseline methods are chaotic, redundant, and even intersect with each other 

(Supplementary Figure 46), which probably results from the poor performance of cell clustering 

(Supplementary Figure 9d) and UMAP visualization (Supplementary Figure 13b) on the Immune dataset 

with multiple batches. In summary, baseline methods struggled in trajectory inference over the Immune 

dataset, while CASTLE performed well. 

We next proceeded to conduct motif enrichment analysis, which is a critical step for illuminating the 

context-specific regulatory mechanisms. With the Louvain clustering assignments based on cell 

embeddings from CASTLE, we applied scABC32 and chromVAR33 with default settings to the InSilico 

dataset34 for the identification of the cluster-specific enriched motifs from the JASPAR database35. We 

selected the top 1000 peaks with smallest p-values for each cluster, then performed TF binding motif 

enrichment within these peaks using chromVAR, and subsequently visualized the top 50 most variable 

transcription factor (TF) binding motifs (Supplementary Figure 45c). Our analysis reveals that the most 



14 

active TFs are often specific to one or two clusters, indicating their unique regulatory roles in those 

particular cell types. It is reported in the previous literature that some motifs are cell type-specific. For 

example, FOS is specific to human foreskin fibroblasts (BJ)36, GATA1::TAL1 is specific to K562 chronic 

myelogenous leukaemia cells (K562)37, SPI1 is specific to human promyeloblasts (HL-60)38, NFKB2 is 

specific to GM12878 lymphoblastoid cells (GM12878)34, 39 and POU motifs (e.g. POU3F2) are specific to 

H1 human embryonic stem cells (H1)32, 40 (Supplementary Figure 45d). These findings allow us to identify 

the active TFs in each cell type, providing insights into the specific regulatory mechanisms operating in 

different clusters. 
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Supplementary Note 12: Comparative experiments for different feature-to-peak ratios 

As shown in the “Feature spectrum and cell type-specific peaks” section of Methods, we selected 50% 

of the cell type-specific features to identify the cell type-specific peaks. We conducted comparative 

experiments to elucidate the rationale behind our choice of a 50% feature-to-peak ratio. Following the steps 

in the “Feature spectrum and cell type-specific peaks” section of Methods, we identified the cell type-

specific peaks with four different feature-to-peak ratios including 25%, 50%, 75%, and 100% and 

implemented downstream analysis26, 27 on the Stimulated Droplet dataset21. With regard to single-nucleotide 

polymorphisms (SNPs) enrichment analysis, cell type-specific peaks identified by CASTLE with the ratio 

of 50% (Fig. 6c-e and Supplementary Figure 41) show more remarkable cell type specificity than that with 

other ratios (Supplementary Figures 47-50). As shown in Supplementary Figure 47a-b, at the feature-to-

peak ratio of 50%, in 15 out of 28 cases (53.6%), the SNP enrichment folds between the number of 

significantly enriched tissues or significantly enriched blood-related tissues on the cell type-specific peaks 

versus background peaks are the highest. In contrast, considering ties, at the feature-to-peak ratio of 25%, 

75% and 100%, the highest fold changes only appear 8 (28.6%), 2 (7.1%) and 9 (32.1%) cases, respectively. 

For example, the background peaks identified with the feature-to-peak ratios of 25% and 75% also exhibit 

strong cell type specificity (Supplementary Figure 48a and Supplementary Figure 49a), which is not 

desirable. PB-CD19+B_cells is the tissue with the most significant enrichment for pDC-specific peaks 

identified with the feature-to-peak ratios of 75% and 100% (Supplementary Figure 49b and Supplementary 

Figure 50b). About heritability enrichment analysis, the enrichment results with the feature-to-peak ratio of 

50% (Fig. 6f-g and Supplementary Figure 42) are relatively stronger than that with other ratios 

(Supplementary Figure 47 and Supplementary Figures 51-53). Taking all of the 10 traits into consideration 

(Supplementary Figure 47c-l), in 118 out of 140 cases (84.3%), the highest fold changes between the 

heritability enrichments of cell type-specific peaks and background peaks for blood-related traits appear at 

the feature-to-peak ratio of 50%. In contrast, at the feature-to-peak ratio of 25%, 75% and 100%, the highest 

fold changes only appear in 5 (3.6%), 15 (10.7%) and 2 (1.4%) cases, respectively. Specifically, the 

background peaks identified with the feature-to-peak ratio of 100% also display high heritability 

enrichment (Supplementary Figure 53), which is not desirable. The CD8-specific peaks identified with the 

feature-to-peak ratios of 25%, 75% and 100% show lower heritability enrichment than the background 

peaks (Supplementary Figure 51a-b, Supplementary Figure 52a and Supplementary Figure 53a-b), which 

is not evident in the CD8-specific peaks identified with the feature-to-peak ratio of 50% (Fig. 6f-g). Overall, 

we first theorized that 50% might be better feature-to-peak ratio in principle, and then demonstrated by the 

comparative experiments that 50% is indeed a better feature-to-peak ratio compared with 25%, 75% and 
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100% on the Stimulated Droplet dataset. 

Moreover, we conducted SNP enrichment analysis and heritability enrichment analysis with different 

feature-to-peak ratios on 4 additional real datasets, including the Resting Droplet dataset21, the Immune 

dataset28, the Fetal Lung dataset41 and the Fetal Liver dataset41. For the Resting Droplet dataset, as shown 

in Supplementary Figure 54a-b, at the feature-to-peak ratio of 50%, in 20 out of 28 cases (71.4%), the SNP 

enrichment folds between the number of significantly enriched tissues or significantly enriched dataset-

related tissues on the cell type-specific peaks versus background peaks are the highest. In contrast, 

considering ties, at the feature-to-peak ratio of 25%, 75% and 100%, the highest fold changes only appear 

5 (17.9%), 3 (10.7%) and 5 (17.9%) cases, respectively. Similarly, taking all of the 4 traits into consideration 

(Supplementary Figure 54c-f), in 27 out of 56 cases (48.2%), the highest fold changes between the 

heritability enrichments of cell type-specific peaks and background peaks for dataset-related traits appear 

at the feature-to-peak ratio of 50%. In contrast, considering ties, at the feature-to-peak ratio of 25%, 75% 

and 100%, the highest fold changes only appear in 8 (14.3%), 14 (25.0%) and 7 (12.5%) cases, respectively. 

Specifically, at the feature-to-peak ratio of 50%, we identify PB-BDCA4+Dentritic_cells as the tissue with 

most significant enrichment (p-value < 5e-5) for pDC-specific peaks (Supplementary Figure 55b) and 

721_B_Lymphoblasts as the tissue with the most significant enrichment (p-value < 2e-3) for B-specific 

peaks (Supplementary Figure 55c). The enrichment of heritability for the HbA1c in the cell type-specific 

peaks is higher than that in the background peaks (Supplementary Figure 56a). 

For the Immune dataset, as shown in Supplementary Figure 57a-b, at the feature-to-peak ratio of 50%, 

in 12 out of 20 cases (60.0%), the SNP enrichment folds between the number of significantly enriched 

tissues or significantly enriched dataset-related tissues on the cell type-specific peaks versus background 

peaks are the highest. In contrast, considering ties, at the feature-to-peak ratio of 25%, 75% and 100%, the 

highest fold changes only appear 2 (10.0%), 5 (25.0%) and 7 (35.0%) cases, respectively. Similarly, taking 

all of the 4 traits into consideration (Supplementary Figure 57c-f), in 31 out of 40 cases (77.5%), the highest 

fold changes between the heritability enrichments of cell type-specific peaks and background peaks for 

dataset-related traits appear at the feature-to-peak ratio of 50%. In contrast, considering ties, at the feature-

to-peak ratio of 25%, 75% and 100%, the highest fold changes only appear in 11 (27.5%), 0 (0.0%) and 14 

(35.0%) cases, respectively. Specifically, at the feature-to-peak ratio of 50%, PB-BDCA4+Dentritic_cells 

is the tissue with the most significant enrichment (p-value < 5e-6) for pDC-specific peaks (Supplementary 

Figure 58k). The enrichment of heritability for the Monocyte count in the cell type-specific peaks is higher 

than that in the background peaks except CLP cells (Supplementary Figure 59d). 
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For the Fetal Lung dataset, as shown in Supplementary Figure 60a-b, at the feature-to-peak ratio of 50%, 

in 9 out of 18 cases (50.0%), the SNP enrichment folds between the number of significantly enriched tissues 

or significantly enriched dataset-related tissues on the cell type-specific peaks versus background peaks are 

the highest. In contrast, considering ties, at the feature-to-peak ratio of 25%, 75% and 100%, the highest 

fold changes only appear 6 (33.3%), 5 (27.8%) and 5 (27.8%) cases, respectively. Similarly, taking all of 

the 4 traits into consideration (Supplementary Figure 60c-f), in 32 out of 36 cases (88.9%), the highest fold 

changes between the heritability enrichments of cell type-specific peaks and background peaks for dataset-

related traits appear at the feature-to-peak ratio of 50%. In contrast, considering ties, at the feature-to-peak 

ratio of 25%, 75% and 100%, the highest fold changes only appear in 9 (25.0%), 2 (5.6%) and 0 (0.0%) 

cases, respectively. Specifically, at the feature-to-peak ratio of 50%, we identify lung and fetal lung as the 

tissues with significant enrichment (p-value < 2e-2) for cell type-specific peaks in bronchiolar and alveolar 

epithelial cells (Supplementary Figure 61b). The enrichment of heritability for the lung FVC smoke in the 

cell type-specific peaks is higher than that in the background peaks except ciliated epithelial cells and 

lymphatic endothelial cells (Supplementary Figure 62a). 

For the Fetal Liver dataset, as shown in Supplementary Figure 63a-b, at the feature-to-peak ratio of 50%, 

in 10 out of 16 cases (62.5%), the SNP enrichment folds between the number of significantly enriched 

tissues or significantly enriched dataset-related tissues on the cell type-specific peaks versus background 

peaks are the highest. In contrast, at the feature-to-peak ratio of 25%, 75% and 100%, the highest fold 

changes only appear 2 (12.5%), 3 (18.8%) and 1 (6.3%) cases, respectively. Similarly, taking all of the 4 

traits into consideration (Supplementary Figure 63c-f), in 26 out of 32 cases (81.3%), the highest fold 

changes between the heritability enrichments of cell type-specific peaks and background peaks for dataset-

related traits appear at the feature-to-peak ratio of 50%. In contrast, at the feature-to-peak ratio of 25%, 75% 

and 100%, the highest fold changes only appear in 6 (18.8%), 0 (0.0%) and 0 (0.0%) cases, respectively. 

Specifically, at the feature-to-peak ratio of 50%, we identify liver as the tissue with the most significant 

enrichment (p-value < 2e-3) for cell type-specific peaks in hematopoietic stem cells (Supplementary Figure 

64c). The enrichment of heritability for the HDL cholesterol in the cell type-specific peaks is higher than 

that in the background peaks (Supplementary Figure 65b). 

To sum up, we demonstrated by the comparative experiments that 50% is indeed a better feature-to-peak 

ratio compared with 25%, 75% and 100% (Supplementary Figures 47, 54, 57, 60, 63). At the feature-to-

peak ratio of 50%, the identified cell type-specific peaks on 5 real datasets show remarkable tissue 

specificity (Supplementary Figures 41, 55, 58, 61, 64) and are functionally relevant and potentially involved 

in the regulation of the studied phenotypes (Supplementary Figures 42, 56, 59, 62, 65).  
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Supplementary Figures 

 

Supplementary Figure 1. Multimodal behavior of latent features in VAE. a-d, In the standard VAE model trained on 

the Splenocyte dataset, latent feature 4 (a), 6 (b), 7 (c) and 9 (d) exhibit multimodal behavior by the frequency distribution 

histogram (top) and Q-Q plot (bottom).  
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Supplementary Figure 2. Unexpected skewness of latent features in VAE. a-d, In the standard VAE model trained on 

the Splenocyte dataset, latent feature 2 (a), 3 (b), 8 (c) and 10 (d) exhibit unexpected skewness (equal to 0 in standard 

normal distribution) by the frequency distribution histogram (top) and Q-Q plot (bottom).  
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Supplementary Figure 3. Unexpected kurtosis of latent features in VAE. a-b, In the standard VAE model trained on 

the Splenocyte dataset, latent feature 1 (a) and 5 (b) exhibit unexpected kurtosis (equal to 3 in standard normal distribution) 

by the frequency distribution histogram (top) and Q-Q plot (bottom).  
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Supplementary Figure 4. Comparison between the models with and without split quantization. a, The model 

architecture without split quantization. b, Utilization of the codebook (that is, perplexity) increases when applying split 

quantization on the Stimulated Droplet dataset. 
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Supplementary Figure 5. Evaluation of performance based on kNN classification. Boxplot of kNN classification 

performance for CASTLE and four baseline methods including SCALEX, SCALE, cisTopic and scBasset, evaluated by 

Accuracy and mF1 on 16 benchmark datasets. Each boxplot ranges from the upper and lower quartiles with the median as 

the horizontal line, whiskers extend to 1.5 times the interquartile range and points represent outliers.  
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Supplementary Figure 6. Clustering performance of CASTLE compared with baseline methods. a-d, Performance 

evaluated by ARI, AMI, NMI and FMI based on the Louvain clustering and Leiden clustering on the Splenocyte (a), 

InSilico (b), Stimulated Droplet (c) and Resting Droplet (d) datasets compared with baseline methods. Each method was 

run three times with different random seeds. The error bars denote the 95% confidence interval, and the centers of error 

bars denote the average value.  
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Supplementary Figure 7. Clustering performance of CASTLE compared with baseline methods. a-d, Performance 

evaluated by ARI, AMI, NMI and FMI based on the Louvain clustering and Leiden clustering on the Bone Marrow A (a), 

Bone Marrow B (b), Lung A (c) and Lung B (d) datasets compared with baseline methods. Each method was run three 

times with different random seeds. The error bars denote the 95% confidence interval, and the centers of error bars denote 

the average value.  
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Supplementary Figure 8. Clustering performance of CASTLE compared with baseline methods. a-d, Performance 

evaluated by ARI, AMI, NMI and FMI based on the Louvain clustering and Leiden clustering on the Whole Brain A (a), 

Whole Brain B (b), Cerebellum (c) and Testes (d) datasets compared with baseline methods. Each method was run three 

times with different random seeds. The error bars denote the 95% confidence interval, and the centers of error bars denote 

the average value.  
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Supplementary Figure 9. Clustering performance of CASTLE compared with baseline methods. a-d, Performance 

evaluated by ARI, AMI, NMI and FMI based on the Louvain clustering and Leiden clustering on the Fetal Liver (a), Fetal 

Lung (b), Brain (c) and Immune (d) datasets compared with baseline methods. Each method was run three times with 

different random seeds. The error bars denote the 95% confidence interval, and the centers of error bars denote the average 

value.  
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Supplementary Figure 10. UMAP visualization of CASTLE compared with baseline methods. a-d, UMAP 

visualizations of the cell embeddings from SCALEX, SCALE, cisTopic, scBasset and CASTLE on the Splenocyte (a), 

InSilico (b), Resting Droplet (c) and Fetal Lung (d) datasets. 
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Supplementary Figure 11. UMAP visualization of CASTLE compared with baseline methods.a-d, UMAP 

visualizations of the cell embeddings from SCALEX, SCALE, cisTopic, scBasset and CASTLE on the Bone Marrow A 

(a), Bone Marrow B (b), Lung A (c) and Lung B (d) datasets. 
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Supplementary Figure 12. UMAP visualization of CASTLE compared with baseline methods.a-d, UMAP 

visualizations of the cell embeddings from SCALEX, SCALE, cisTopic, scBasset and CASTLE on the Whole Brain A (a), 

Whole Brain B (b), Cerebellum (c) and Testes (d) datasets. 
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Supplementary Figure 13. UMAP visualization of CASTLE compared with baseline methods.a-b, UMAP 

visualizations of the cell embeddings from SCALEX, SCALE, cisTopic, scBasset and CASTLE on the Brain (a) and 

Immune (b) datasets. 
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Supplementary Figure 14. Performance of batch correction for CASTLE over datasets with complex batch effects. 

a-f, UMAP visualizations of cell embeddings for the Brain dataset with None (a), L2/3 IT (b), L4 (c), L5 IT (d), L6 IT (e), 

and L2/3 IT, L4, L5 IT, L6 IT (f) missing cell types in the batch “10X”. Cells are colored by data batch (left) and cell type 

(right). g, Performance comparison of batch correction for CASTLE on the Brain dataset with None, L2/3 IT, L4, L5 IT, 

L6 IT, and L2/3 IT, L4, L5 IT, L6 IT missing cell types in the batch “10X”. 
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Supplementary Figure 15. Clustering performance under different downsample rates. a-c, AMI (a), NMI (b), FMI 

(c) of different methods under different downsample rates on the Stimulated Droplet dataset. 
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Supplementary Figure 16. Clustering performance under different dropout rates. a-c, AMI (a), NMI (b), FMI (c) of 

different methods under different dropout rates on the Stimulated Droplet dataset. 
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Supplementary Figure 17. Clustering performance under different imbalance degrees. a-c, AMI (a), NMI (b), FMI 

(c) of different methods under different degrees of cell type imbalance on the Stimulated Droplet dataset. 
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Supplementary Figure 18. Performance of CASTLE for the identification of rare cell types. a-h, UMAP 

visualizations of cell embeddings from SCALEX, SCALE, cisTopic, scBasset and CASTLE on the Stimulated Droplet 

dataset with degree of cell type imbalance of 0.175 (original) (a), 0.281 (b), 0.407 (c), 0.476 (d), 0.520 (e), 0.551 (f), 0.604 

(g) and 0.656 (h). i, Clustering performance of different methods for recovering the rare cell types on the Stimulated 

Droplet datasets with different degrees of cell type imbalance.  
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Supplementary Figure 18 (continue). Performance of CASTLE for the identification of rare cell types. a-h, UMAP 

visualizations of cell embeddings from SCALEX, SCALE, cisTopic, scBasset and CASTLE on the Stimulated Droplet 

dataset with degree of cell type imbalance of 0.175 (original) (a), 0.281 (b), 0.407 (c), 0.476 (d), 0.520 (e), 0.551 (f), 0.604 

(g) and 0.656 (h). i, Clustering performance of different methods for recovering the rare cell types on the Stimulated 

Droplet datasets with different degrees of cell type imbalance.  
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Supplementary Figure 19. Clustering performance with major cell types. a-c, AMI (a), NMI (b), FMI (c) of different 

methods under different thresholds for reserving major cell types on the Stimulated Droplet dataset. 
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Supplementary Figure 20. Clustering performance under different resolutions. a-c, AMI (a), NMI (b), FMI (c) of 

different methods under different resolutions in Louvain clustering on the Stimulated Droplet dataset. 
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Supplementary Figure 21. Performance of CASTLE with different values of hyperparameters. a, Clustering 

performance of CASTLE under different values of alpha (weight of commitment loss) on 16 benchmark datasets. b, 

Clustering performance of CASTLE under different values of gamma (decay ratio) with a precision of 0.01 on 16 

benchmark datasets. c, Clustering performance of CASTLE under different values of gamma with a precision of 0.001 on 

16 benchmark datasets. d, Clustering performance of CASTLE under different values of K (size of codebook) on 16 

benchmark datasets. e, Clustering performance of CASTLE under different values of M (time of split quantization) on 16 

benchmark datasets. Each boxplot ranges from the upper and lower quartiles with the median as the horizontal line, 

whiskers extend to 1.5 times the interquartile range and points represent outliers. 

  



40 

 
Supplementary Figure 22. Performance of CASTLE with different weights of self-designed loss functions. a, 

Clustering performance of CASTLE under different values of zeta (weight of batch loss) on 4 benchmark datasets with 

multiple batches. b, Clustering performance of CASTLE under different values of eta (weight of cell type loss) on 8 

benchmark datasets when incorporating labeled reference datasets. c, Clustering performance of CASTLE under different 

values of lambda (weight of classifier loss) on 8 benchmark datasets when incorporating labeled reference datasets. Each 

boxplot ranges from the upper and lower quartiles with the median as the horizontal line, whiskers extend to 1.5 times the 

interquartile range and points represent outliers. 
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Supplementary Figure 23. Clustering performance with different designs of loss functions. Clustering performance 

evaluated by ARI, AMI, NMI and FMI on 16 benchmark datasets for CASTLE, CASTLE-noEMA and CASTLE-integrated. 

We referred to the model that updates codebook using 𝐿𝑐𝑜𝑑𝑒𝑏𝑜𝑜𝑘 instead of EMA as CASTLE-noEMA, and the model 

that updates encoder and codebook using the integrated 𝐿𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡 and 𝐿𝑐𝑜𝑑𝑒𝑏𝑜𝑜𝑘 instead of using them separately as 

CASTLE-integrated. Each boxplot ranges from the upper and lower quartiles with the median as the horizontal line, 

whiskers extend to 1.5 times the interquartile range and points represent outliers. 
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Supplementary Figure 24. Model architecture and performance of CASTLE with reference data. a, Model 

architecture of CASTLE when incorporating reference dataset with known cell type label. b, Clustering performance 

evaluated by ARI, AMI, NMI and FMI on 8 benchmark datasets when incorporating labeled reference datasets with 

𝐿𝑐𝑒𝑙𝑙𝑡𝑦𝑝𝑒, redesigned 𝐿𝑐𝑒𝑙𝑙𝑡𝑦𝑝𝑒 for only minimizing the distance between the cells from the same cell types, or redesigned 

𝐿𝑐𝑒𝑙𝑙𝑡𝑦𝑝𝑒  for simultaneously maximizing the distance between the cells from different cell types and minimizing the 

distance between the cells from the same cell types. c, Clustering performance evaluated by ARI, AMI, NMI and FMI on 

8 benchmark datasets when incorporating unlabeled or labeled reference datasets. Each boxplot ranges from the upper and 

lower quartiles with the median as the horizontal line, whiskers extend to 1.5 times the interquartile range and points 

represent outliers.  
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Supplementary Figure 25. Clustering performance under different downsample rates. a-f, AMI (a, b), NMI (c, d), 

FMI (e, f) of different methods on the Stimulated Droplet dataset when incorporating unlabeled (a, c, e) or labeled (b, d, 

f) reference dataset (Resting Droplet dataset) under different downsample rates. 
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Supplementary Figure 26. Clustering performance under different dropout rates. a-f, AMI (a, b), NMI (c, d), FMI 

(e, f) of different methods on the Stimulated Droplet dataset when incorporating unlabeled (a, c, e) or labeled (b, d, f) 

reference dataset (Resting Droplet dataset) under different dropout rates. 

  



45 

 

Supplementary Figure 27. Clustering performance with major cell types. a-h, ARI (a, b), AMI (c, d), NMI (e, f), FMI 

(g, h) of different methods on the Stimulated Droplet dataset when incorporating unlabeled (a, c, e, g) or labeled (b, d, f, 

h) reference dataset (Resting Droplet dataset) with different thresholds for reserving the major cell types.  
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Supplementary Figure 28. Clustering performance with missing cell types. a-f, AMI (a, b), NMI (c, d), FMI (e, f) of 

different methods on the Stimulated Droplet dataset when incorporating unlabeled (a, c, e) or labeled (b, d, f) reference 

dataset (Resting Droplet dataset) with none, one or all missing cell types of proB, preB and B cells. 
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Supplementary Figure 29. Clustering performance with missing cell types. a-h, ARI (a, b), AMI (c, d), NMI (e, f), 

FMI (g, h) of different methods on the Stimulated Droplet dataset when incorporating unlabeled (a, c, e, g) or labeled (b, 

d, f, h) reference dataset (Resting Droplet dataset) with none, one or all missing cell types of CD4, CD8 and NK cells. 
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Supplementary Figure 30. Clustering performance with missing cell types. a-h, ARI (a, b), AMI (c, d), NMI (e, f), 

FMI (g, h) of different methods on the Stimulated Droplet dataset when incorporating unlabeled (a, c, e, g) or labeled (b, 

d, f, h) reference dataset (Resting Droplet dataset) with none, one or all missing cell types of HSPC-ery, Ery-early and 

Ery-late cells. 
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Supplementary Figure 31. Clustering performance with novel cell types. a-f, AMI (a, b), NMI (c, d), FMI (e, f) of 

different methods on the Stimulated Droplet dataset when incorporating unlabeled (a, c, e) or labeled (b, d, f) reference 

dataset (Resting Droplet dataset) with none, one or all novel cell types of proB, preB and B cells. 
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Supplementary Figure 32. Clustering performance with novel cell types. a-h, ARI (a, b), AMI (c, d), NMI (e, f), FMI 

(g, h) of different methods on the Stimulated Droplet dataset when incorporating unlabeled (a, c, e, g) or labeled (b, d, f, 

h) reference dataset (Resting Droplet dataset) with none, one or all novel cell types of CD4, CD8 and NK cells. 
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Supplementary Figure 33. Clustering performance with novel cell types. a-h, ARI (a, b), AMI (c, d), NMI (e, f), FMI 

(g, h) of different methods on the Stimulated Droplet dataset when incorporating unlabeled (a, c, e, g) or labeled (b, d, f, 

h) reference dataset (Resting Droplet dataset) with none, one or all novel cell types of HSPC-ery, Ery-early and Ery-late 

cells. 
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Supplementary Figure 34. Recommendation scores of reference datasets. a-b, Correlation between clustering 

performance and Recommendation scores for different unlabeled (a) or labeled (b) reference datasets on the Stimulated 

Droplet dataset. 
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Supplementary Figure 35. Feature spectrum. a-e, Feature spectrum for each cell type of the Splenocyte (a), Resting 

Droplet (b), InSilico (c), Fetal Liver (d) and Fetal Lung (e) datasets. 
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Supplementary Figure 36. Feature spectrum. a-b, Feature spectrum for each cell type of the Bone Marrow A (a) and 

Bone Marrow B (b) datasets. 
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Supplementary Figure 37. Feature spectrum. a-b, Feature spectrum for each cell type of the Lung A (a) and Lung B (b) 

datasets. 
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Supplementary Figure 38. Feature spectrum. a-b, Feature spectrum for each cell type of the Whole Brain A (a) and 

Whole Brain B (b) datasets. 
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Supplementary Figure 39. Feature spectrum. a-d, Feature spectrum for each cell type of the Cerebellum (a), Testes (b), 

Brain (c) and Immune (d) datasets.  
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Supplementary Figure 40. Process of identifying the cell type-specific peaks linked with cell type-specific features. 

a, The standard process of CASTLE. b, Process of CASTLE when information derived from a certain cell type-specific 

feature in codebook is removed by zeroing it out before passing the cell embeddings again through the decoder. c, By 

performing the one-sided paired Wilcoxon signed-rank test between the reconstructed cell-by-region matrices with or 

without zeroing, we identified the cell type-specific peaks that are significantly impacted, and thus causally linked, to that 

feature. 
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Supplementary Figure 41. SNP enrichment analysis for cell type-specific peaks identified by CASTLE on the 

Stimulated Droplet dataset. a-l, Top 30 significantly enriched tissues in SNPsea analysis on Mono-specific peaks (a), 

Ery-late-specific peaks (b), Ery-early-specific peaks (c), HSPC-ery-specific peaks (d), HSPC-specific peaks (e), CLP-

specific peaks (f), proB-specific peaks (g), preB-specific peaks (h), CD4-specific peaks (i), CD8-specific peaks (j), NK-

specific peaks (k) and Collision-specific peaks (l) identified by CASTLE. The vertical dashed line represents the one-sided 

p-value cutoff at the 0.05 level, while the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with 

Bonferroni correction. Using hierarchical clustering with unweighted pair-group method with arithmetic means (UPGMA), 

the expression profiles were ordered. The Pearson correlation coefficients, denoting the correlation between expression 

profiles, were displayed in the heatmaps.  



60 

 

Supplementary Figure 41 (continue). SNP enrichment analysis for cell type-specific peaks identified by CASTLE 

on the Stimulated Droplet dataset. a-l, Top 30 significantly enriched tissues in SNPsea analysis on Mono-specific peaks 

(a), Ery-late-specific peaks (b), Ery-early-specific peaks (c), HSPC-ery-specific peaks (d), HSPC-specific peaks (e), CLP-

specific peaks (f), proB-specific peaks (g), preB-specific peaks (h), CD4-specific peaks (i), CD8-specific peaks (j), NK-

specific peaks (k) and Collision-specific peaks (l) identified by CASTLE. The vertical dashed line represents the one-sided 

p-value cutoff at the 0.05 level, while the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with 

Bonferroni correction. Using hierarchical clustering with unweighted pair-group method with arithmetic means (UPGMA), 

the expression profiles were ordered. The Pearson correlation coefficients, denoting the correlation between expression 

profiles, were displayed in the heatmaps.  



61 

 

Supplementary Figure 42. Heritability enrichment analysis for cell type-specific peaks identified by CASTLE on 

the Stimulated Droplet dataset. a-h, Heritability enrichments estimated by LDSC within cell type-specific peaks 

identified by CASTLE and the background peaks for blood-related traits including coronary artery disease (a), alanine 

amino transferase (b), creatinine (c), cystatinC (d), phosphate (e), urate (f), mean corpuscular hemogolobin (g) and 

monocyte count (h). The error bars denote jackknife standard errors over 200 equally sized blocks of adjacent SNPs about 

the estimates of enrichment, and the centers of error bars represent the average value. 
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Supplementary Figure 43. SNP enrichment analysis for cell type-specific peaks identified by epiScanpy on the 

Stimulated Droplet dataset. a-o, Top 30 significantly enriched tissues in SNPsea analysis on the background peaks (a), 

pDC-specific peaks (b), B-specific peaks (c), Mono-specific peaks (d), Ery-late-specific peaks (e), Ery-early-specific 

peaks (f), HSPC-ery-specific peaks (g), HSPC-specific peaks (h), CLP-specific peaks (i), proB-specific peaks (j), preB-

specific peaks (k), CD4-specific peaks (l), CD8-specific peaks (m), NK-specific peaks (n) and Collision-specific peaks (o) 

identified by epiScanpy. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level, while the solid 

lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical clustering 

with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered. The Pearson 

correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.  
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Supplementary Figure 43 (continue). SNP enrichment analysis for cell type-specific peaks identified by epiScanpy 

on the Stimulated Droplet dataset. a-o, Top 30 significantly enriched tissues in SNPsea analysis on the background peaks 

(a), pDC-specific peaks (b), B-specific peaks (c), Mono-specific peaks (d), Ery-late-specific peaks (e), Ery-early-specific 

peaks (f), HSPC-ery-specific peaks (g), HSPC-specific peaks (h), CLP-specific peaks (i), proB-specific peaks (j), preB-

specific peaks (k), CD4-specific peaks (l), CD8-specific peaks (m), NK-specific peaks (n) and Collision-specific peaks (o) 

identified by epiScanpy. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level, while the solid 

lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical clustering 

with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered. The Pearson 

correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.  
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Supplementary Figure 43 (continue). SNP enrichment analysis for cell type-specific peaks identified by epiScanpy 

on the Stimulated Droplet dataset. a-o, Top 30 significantly enriched tissues in SNPsea analysis on the background peaks 

(a), pDC-specific peaks (b), B-specific peaks (c), Mono-specific peaks (d), Ery-late-specific peaks (e), Ery-early-specific 

peaks (f), HSPC-ery-specific peaks (g), HSPC-specific peaks (h), CLP-specific peaks (i), proB-specific peaks (j), preB-

specific peaks (k), CD4-specific peaks (l), CD8-specific peaks (m), NK-specific peaks (n) and Collision-specific peaks (o) 

identified by epiScanpy. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level, while the solid 

lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical clustering 

with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered. The Pearson 

correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.  
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Supplementary Figure 44. Heritability enrichment analysis for cell type-specific peaks identified by epiScanpy on 

the Stimulated Droplet dataset. a-j, Heritability enrichments estimated by LDSC within cell type-specific peaks and the 

background peaks for blood-related traits including albumin (a), lymphocyte count (b), coronary artery disease (c), alanine 

amino transferase (d), creatinine (e), cystatinC (f), phosphate (g), urate (h), mean corpuscular hemogolobin (i) and 

monocyte count (j). The error bars denote jackknife standard errors over 200 equally sized blocks of adjacent SNPs about 

the estimates of enrichment, and the centers of error bars represent the average value. 
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Supplementary Figure 45. Trajectory inference and motif enrichment analysis. a, A schematic of the authentic 

hematopoietic differentiation tree for the Immune dataset, with each color representing a different cell type. b, UMAP 

visualization of cell embeddings from the Immune dataset and the inferred trajectory with Slingshot. c, Heatmap of the top 

50 most variable TF binding motifs within the peaks specific to each cluster by CASTLE and Louvain clustering for the 

InSilico dataset. The deviations calculated by chromVAR are shown. d, UMAP visualization of cell embeddings for the 

InSilico dataset, and chromVAR-derived deviation scores of five literature-validated motifs.  
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Supplementary Figure 46. Trajectory inference based on cell embeddings from baseline methods. a-d, UMAP 

visualization of cell embeddings on the Immune dataset with SCALEX (a), SCALE (b), cisTopic (c), scBasset (d), and the 

inferred trajectories with Slingshot. 
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Supplementary Figure 47. SNP enrichment and heritability enrichment fold changes between the cell type-specific 

peaks and background peaks with different feature-to-peak ratios on the Stimulated Droplet dataset. a-b, SNP 

enrichment fold between the number of significantly enriched tissues (a) and significantly enriched blood-related tissues 

(b) on the cell type-specific peaks versus background peaks with the feature-to-peak ratio of 25%, 50%, 75% and 100%. 

c-l, Fold changes between the heritability enrichments of cell type-specific peaks and background peaks for blood-related 

traits including albumin (c), lymphocyte count (d), coronary artery disease (e), alanine amino transferase (f), creatinine 

(g), cystatinC (h), phosphate (i), urate (j), mean corpuscular hemogolobin (k) and monocyte count (l) with the feature-to-

peak ratio of 25%, 50%, 75% and 100%. “inf” indicates infinity.  
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Supplementary Figure 47 (continue). SNP enrichment and heritability enrichment fold changes between the cell 

type-specific peaks and background peaks with different feature-to-peak ratios on the Stimulated Droplet dataset. 

a-b, SNP enrichment fold between the number of significantly enriched tissues (a) and significantly enriched blood-related 

tissues (b) on the cell type-specific peaks versus background peaks with the feature-to-peak ratio of 25%, 50%, 75% and 

100%. c-l, Fold changes between the heritability enrichments of cell type-specific peaks and background peaks for blood-

related traits including albumin (c), lymphocyte count (d), coronary artery disease (e), alanine amino transferase (f), 

creatinine (g), cystatinC (h), phosphate (i), urate (j), mean corpuscular hemogolobin (k) and monocyte count (l) with the 

feature-to-peak ratio of 25%, 50%, 75% and 100%. “inf” indicates infinity.  
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Supplementary Figure 48. SNP enrichment analysis for cell type-specific peaks with the feature-to-peak ratio of 25% 

on the Stimulated Droplet dataset. a-o, Top 30 significantly enriched tissues in SNPsea analysis on the background peaks 

(a), pDC-specific peaks (b), B-specific peaks (c), Mono-specific peaks (d), Ery-late-specific peaks (e), Ery-early-specific 

peaks (f), HSPC-ery-specific peaks (g), HSPC-specific peaks (h), CLP-specific peaks (i), proB-specific peaks (j), preB-

specific peaks (k), CD4-specific peaks (l), CD8-specific peaks (m), NK-specific peaks (n) and Collision-specific peaks (o) 

identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level, while the solid 

lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical clustering 

with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered. The Pearson 

correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.  
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Supplementary Figure 48 (continue). SNP enrichment analysis for cell type-specific peaks with the feature-to-peak 

ratio of 25% on the Stimulated Droplet dataset. a-o, Top 30 significantly enriched tissues in SNPsea analysis on the 

background peaks (a), pDC-specific peaks (b), B-specific peaks (c), Mono-specific peaks (d), Ery-late-specific peaks (e), 

Ery-early-specific peaks (f), HSPC-ery-specific peaks (g), HSPC-specific peaks (h), CLP-specific peaks (i), proB-specific 

peaks (j), preB-specific peaks (k), CD4-specific peaks (l), CD8-specific peaks (m), NK-specific peaks (n) and Collision-

specific peaks (o) identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level, 

while the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical 

clustering with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered. 

The Pearson correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.  
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Supplementary Figure 48 (continue). SNP enrichment analysis for cell type-specific peaks with the feature-to-peak 

ratio of 25% on the Stimulated Droplet dataset. a-o, Top 30 significantly enriched tissues in SNPsea analysis on the 

background peaks (a), pDC-specific peaks (b), B-specific peaks (c), Mono-specific peaks (d), Ery-late-specific peaks (e), 

Ery-early-specific peaks (f), HSPC-ery-specific peaks (g), HSPC-specific peaks (h), CLP-specific peaks (i), proB-specific 

peaks (j), preB-specific peaks (k), CD4-specific peaks (l), CD8-specific peaks (m), NK-specific peaks (n) and Collision-

specific peaks (o) identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level, 

while the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical 

clustering with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered. 

The Pearson correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.  
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Supplementary Figure 49. SNP enrichment analysis for cell type-specific peaks with the feature-to-peak ratio of 75% 

on the Stimulated Droplet dataset. a-o, Top 30 significantly enriched tissues in SNPsea analysis on the background peaks 

(a), pDC-specific peaks (b), B-specific peaks (c), Mono-specific peaks (d), Ery-late-specific peaks (e), Ery-early-specific 

peaks (f), HSPC-ery-specific peaks (g), HSPC-specific peaks (h), CLP-specific peaks (i), proB-specific peaks (j), preB-

specific peaks (k), CD4-specific peaks (l), CD8-specific peaks (m), NK-specific peaks (n) and Collision-specific peaks (o) 

identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level, while the solid 

lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical clustering 

with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered. The Pearson 

correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.  
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Supplementary Figure 49 (continue). SNP enrichment analysis for cell type-specific peaks with the feature-to-peak 

ratio of 75% on the Stimulated Droplet dataset. a-o, Top 30 significantly enriched tissues in SNPsea analysis on the 

background peaks (a), pDC-specific peaks (b), B-specific peaks (c), Mono-specific peaks (d), Ery-late-specific peaks (e), 

Ery-early-specific peaks (f), HSPC-ery-specific peaks (g), HSPC-specific peaks (h), CLP-specific peaks (i), proB-specific 

peaks (j), preB-specific peaks (k), CD4-specific peaks (l), CD8-specific peaks (m), NK-specific peaks (n) and Collision-

specific peaks (o) identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level, 

while the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical 

clustering with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered. 

The Pearson correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.  
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Supplementary Figure 49 (continue). SNP enrichment analysis for cell type-specific peaks with the feature-to-peak 

ratio of 75% on the Stimulated Droplet dataset. a-o, Top 30 significantly enriched tissues in SNPsea analysis on the 

background peaks (a), pDC-specific peaks (b), B-specific peaks (c), Mono-specific peaks (d), Ery-late-specific peaks (e), 

Ery-early-specific peaks (f), HSPC-ery-specific peaks (g), HSPC-specific peaks (h), CLP-specific peaks (i), proB-specific 

peaks (j), preB-specific peaks (k), CD4-specific peaks (l), CD8-specific peaks (m), NK-specific peaks (n) and Collision-

specific peaks (o) identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level, 

while the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical 

clustering with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered. 

The Pearson correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.  
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Supplementary Figure 50. SNP enrichment analysis for cell type-specific peaks with the feature-to-peak ratio of 

100% on the Stimulated Droplet dataset. a-o, Top 30 significantly enriched tissues in SNPsea analysis on the background 

peaks (a), pDC-specific peaks (b), B-specific peaks (c), Mono-specific peaks (d), Ery-late-specific peaks (e), Ery-early-

specific peaks (f), HSPC-ery-specific peaks (g), HSPC-specific peaks (h), CLP-specific peaks (i), proB-specific peaks (j), 

preB-specific peaks (k), CD4-specific peaks (l), CD8-specific peaks (m), NK-specific peaks (n) and Collision-specific 

peaks (o) identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level, while 

the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical 

clustering with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered. 

The Pearson correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.  
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Supplementary Figure 50 (continue). SNP enrichment analysis for cell type-specific peaks with the feature-to-peak 

ratio of 100% on the Stimulated Droplet dataset. a-o, Top 30 significantly enriched tissues in SNPsea analysis on the 

background peaks (a), pDC-specific peaks (b), B-specific peaks (c), Mono-specific peaks (d), Ery-late-specific peaks (e), 

Ery-early-specific peaks (f), HSPC-ery-specific peaks (g), HSPC-specific peaks (h), CLP-specific peaks (i), proB-specific 

peaks (j), preB-specific peaks (k), CD4-specific peaks (l), CD8-specific peaks (m), NK-specific peaks (n) and Collision-

specific peaks (o) identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level, 

while the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical 

clustering with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered. 

The Pearson correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.  
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Supplementary Figure 50 (continue). SNP enrichment analysis for cell type-specific peaks with the feature-to-peak 

ratio of 100% on the Stimulated Droplet dataset. a-o, Top 30 significantly enriched tissues in SNPsea analysis on the 

background peaks (a), pDC-specific peaks (b), B-specific peaks (c), Mono-specific peaks (d), Ery-late-specific peaks (e), 

Ery-early-specific peaks (f), HSPC-ery-specific peaks (g), HSPC-specific peaks (h), CLP-specific peaks (i), proB-specific 

peaks (j), preB-specific peaks (k), CD4-specific peaks (l), CD8-specific peaks (m), NK-specific peaks (n) and Collision-

specific peaks (o) identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level, 

while the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical 

clustering with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered. 

The Pearson correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.  
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Supplementary Figure 51. Heritability enrichment analysis for cell type-specific peaks with the feature-to-peak 

ratio of 25% on the Stimulated Droplet dataset. a-j, Heritability enrichments estimated by LDSC within cell type-

specific peaks identified by CASTLE and the background peaks for blood-related traits including albumin (a), lymphocyte 

count (b), coronary artery disease (c), alanine amino transferase (d), creatinine (e), cystatinC (f), phosphate (g), urate (h), 

mean corpuscular hemogolobin (i) and monocyte count (j). The error bars denote jackknife standard errors over 200 equally 

sized blocks of adjacent SNPs about the estimates of enrichment, and the centers of error bars represent the average value. 
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Supplementary Figure 52. Heritability enrichment analysis for cell type-specific peaks with the feature-to-peak 

ratio of 75% on the Stimulated Droplet dataset. a-j, Heritability enrichments estimated by LDSC within cell type-

specific peaks identified by CASTLE and the background peaks for blood-related traits including albumin (a), lymphocyte 

count (b), coronary artery disease (c), alanine amino transferase (d), creatinine (e), cystatinC (f), phosphate (g), urate (h), 

mean corpuscular hemogolobin (i) and monocyte count (j). The error bars denote jackknife standard errors over 200 equally 

sized blocks of adjacent SNPs about the estimates of enrichment, and the centers of error bars represent the average value. 
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Supplementary Figure 53. Heritability enrichment analysis for cell type-specific peaks with the feature-to-peak 

ratio of 100% on the Stimulated Droplet dataset. a-j, Heritability enrichments estimated by LDSC within cell type-

specific peaks identified by CASTLE and the background peaks for blood-related traits including albumin (a), lymphocyte 

count (b), coronary artery disease (c), alanine amino transferase (d), creatinine (e), cystatinC (f), phosphate (g), urate (h), 

mean corpuscular hemogolobin (i) and monocyte count (j). The error bars denote jackknife standard errors over 200 equally 

sized blocks of adjacent SNPs about the estimates of enrichment, and the centers of error bars represent the average value. 
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Supplementary Figure 54. SNP enrichment and heritability enrichment fold changes between the cell type-specific 

peaks and background peaks with different feature-to-peak ratios on the Resting Droplet dataset. a-b, SNP 

enrichment fold between the number of significantly enriched tissues (a) and significantly enriched dataset-related tissues 

(b) on the cell type-specific peaks versus background peaks with the feature-to-peak ratio of 25%, 50%, 75% and 100%. 

c-f, Fold changes between the heritability enrichments of cell type-specific peaks and background peaks for dataset-related 

traits including HbA1c (c), Red blood cell distribution width (d), SHBG (e) and Total Bilirubin (f) with the feature-to-peak 

ratio of 25%, 50%, 75% and 100%. 
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Supplementary Figure 55. SNP enrichment analysis for cell type-specific peaks with the feature-to-peak ratio of 50% 

on the Resting Droplet dataset. a-o, Top 30 significantly enriched tissues in SNPsea analysis on the background peaks 

(a), pDC-specific peaks (b), B-specific peaks (c), Mono-specific peaks (d), Ery-late-specific peaks (e), Ery-early-specific 

peaks (f), HSPC-ery-specific peaks (g), HSPC-specific peaks (h), CLP-specific peaks (i), proB-specific peaks (j), preB-

specific peaks (k), CD4-specific peaks (l), CD8-specific peaks (m), NK-specific peaks (n) and Collision-specific peaks (o) 

identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level, while the solid 

lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical clustering 

with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered. The Pearson 

correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.  
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Supplementary Figure 55 (continue). SNP enrichment analysis for cell type-specific peaks with the feature-to-peak 

ratio of 50% on the Resting Droplet dataset. a-o, Top 30 significantly enriched tissues in SNPsea analysis on the 

background peaks (a), pDC-specific peaks (b), B-specific peaks (c), Mono-specific peaks (d), Ery-late-specific peaks (e), 

Ery-early-specific peaks (f), HSPC-ery-specific peaks (g), HSPC-specific peaks (h), CLP-specific peaks (i), proB-specific 

peaks (j), preB-specific peaks (k), CD4-specific peaks (l), CD8-specific peaks (m), NK-specific peaks (n) and Collision-

specific peaks (o) identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level, 

while the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical 

clustering with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered. 

The Pearson correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.  
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Supplementary Figure 55 (continue). SNP enrichment analysis for cell type-specific peaks with the feature-to-peak 

ratio of 50% on the Resting Droplet dataset. a-o, Top 30 significantly enriched tissues in SNPsea analysis on the 

background peaks (a), pDC-specific peaks (b), B-specific peaks (c), Mono-specific peaks (d), Ery-late-specific peaks (e), 

Ery-early-specific peaks (f), HSPC-ery-specific peaks (g), HSPC-specific peaks (h), CLP-specific peaks (i), proB-specific 

peaks (j), preB-specific peaks (k), CD4-specific peaks (l), CD8-specific peaks (m), NK-specific peaks (n) and Collision-

specific peaks (o) identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level, 

while the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical 

clustering with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered. 

The Pearson correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.  
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Supplementary Figure 56. Heritability enrichment analysis for cell type-specific peaks with the feature-to-peak 

ratio of 50% on the Resting Droplet dataset. a-d, Heritability enrichments estimated by LDSC within cell type-specific 

peaks identified by CASTLE and the background peaks for dataset-related traits including HbA1c (a), Red blood cell 

distribution width (b), SHBG (c) and Total Bilirubin (d). The error bars denote jackknife standard errors over 200 equally 

sized blocks of adjacent SNPs about the estimates of enrichment, and the centers of error bars represent the average value. 
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Supplementary Figure 57. SNP enrichment and heritability enrichment fold changes between the cell type-specific 

peaks and background peaks with different feature-to-peak ratios on the Immune dataset. a-b, SNP enrichment fold 

between the number of significantly enriched tissues (a) and significantly enriched dataset-related tissues (b) on the cell 

type-specific peaks versus background peaks with the feature-to-peak ratio of 25%, 50%, 75% and 100%. c-f, Fold changes 

between the heritability enrichments of cell type-specific peaks and background peaks for dataset-related traits including 

HbA1c (c), Triglycerides (d), Large artery stroke (e) and Monocyte count (f) with the feature-to-peak ratio of 25%, 50%, 

75% and 100%. “inf” indicates infinity. 
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Supplementary Figure 58. SNP enrichment analysis for cell type-specific peaks with the feature-to-peak ratio of 50% 

on the Immune dataset. a-k, Top 30 significantly enriched tissues in SNPsea analysis on the background peaks (a), CLP-

specific peaks (b), CMP/BMP-specific peaks (c), GMP-specific peaks (d), HSC/MPP-specific peaks (e), LMPP-specific 

peaks (f), MDP-specific peaks (g), MEP-specific peaks (h), Pro-B-specific peaks (i), cDC-specific peaks (j) and pDC-

specific peaks (k) identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level, 

while the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical 

clustering with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered. 

The Pearson correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.  
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Supplementary Figure 58 (continue). SNP enrichment analysis for cell type-specific peaks with the feature-to-peak 

ratio of 50% on the Immune dataset. a-k, Top 30 significantly enriched tissues in SNPsea analysis on the background 

peaks (a), CLP-specific peaks (b), CMP/BMP-specific peaks (c), GMP-specific peaks (d), HSC/MPP-specific peaks (e), 

LMPP-specific peaks (f), MDP-specific peaks (g), MEP-specific peaks (h), Pro-B-specific peaks (i), cDC-specific peaks 

(j) and pDC-specific peaks (k) identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at 

the 0.05 level, while the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. 

Using hierarchical clustering with unweighted pair-group method with arithmetic means (UPGMA), the expression 

profiles were ordered. The Pearson correlation coefficients, denoting the correlation between expression profiles, were 

displayed in the heatmaps.  
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Supplementary Figure 59. Heritability enrichment analysis for cell type-specific peaks with the feature-to-peak 

ratio of 50% on the Immune dataset. a-d, Heritability enrichments estimated by LDSC within cell type-specific peaks 

identified by CASTLE and the background peaks for dataset-related traits including HbA1c (a), Triglycerides (b), Large 

artery stroke (c) and Monocyte count (d). The error bars denote jackknife standard errors over 200 equally sized blocks of 

adjacent SNPs about the estimates of enrichment, and the centers of error bars represent the average value. 
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Supplementary Figure 60. SNP enrichment and heritability enrichment fold changes between the cell type-specific 

peaks and background peaks with different feature-to-peak ratios on the Fetal Lung dataset. a-b, SNP enrichment 

fold between the number of significantly enriched tissues (a) and significantly enriched dataset-related tissues (b) on the 

cell type-specific peaks versus background peaks with the feature-to-peak ratio of 25%, 50%, 75% and 100%. c-f, Fold 

changes between the heritability enrichments of cell type-specific peaks and background peaks for dataset-related traits 

including Lung FVC smoke (c), Cardiovascular (d), Hypertension (e) and Mean platelet volume (f) with the feature-to-

peak ratio of 25%, 50%, 75% and 100%. “inf” indicates infinity. 
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Supplementary Figure 61. SNP enrichment analysis for cell type-specific peaks with the feature-to-peak ratio of 50% 

on the Fetal Lung dataset. a-j, Top 30 significantly enriched tissues in SNPsea analysis on the background peaks (a), 

Bronchiolar and alveolar epithelial cells-specific peaks (b), Ciliated epithelial cells-specific peaks (c), Lymphatic 

endothelial cells-specific peaks (d), Lymphoid cells-specific peaks (e), Megakaryocytes-specific peaks (f), Myeloid cells-

specific peaks (g), Neuroendocrine cells-specific peaks (h), Stromal cells-specific peaks (i) and Vascular endothelial cells-

specific peaks (j) identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level, 

while the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical 

clustering with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered. 

The Pearson correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.  
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Supplementary Figure 61 (continue). SNP enrichment analysis for cell type-specific peaks with the feature-to-peak 

ratio of 50% on the Fetal Lung dataset. a-j, Top 30 significantly enriched tissues in SNPsea analysis on the background 

peaks (a), Bronchiolar and alveolar epithelial cells-specific peaks (b), Ciliated epithelial cells-specific peaks (c), Lymphatic 

endothelial cells-specific peaks (d), Lymphoid cells-specific peaks (e), Megakaryocytes-specific peaks (f), Myeloid cells-

specific peaks (g), Neuroendocrine cells-specific peaks (h), Stromal cells-specific peaks (i) and Vascular endothelial cells-

specific peaks (j) identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level, 

while the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical 

clustering with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered. 

The Pearson correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.  
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Supplementary Figure 62. Heritability enrichment analysis for cell type-specific peaks with the feature-to-peak 

ratio of 50% on the Fetal Lung dataset. a-d, Heritability enrichments estimated by LDSC within cell type-specific peaks 

identified by CASTLE and the background peaks for dataset-related traits including Lung FVC smoke (a), Cardiovascular 

(b), Hypertension (c) and Mean platelet volume (d). The error bars denote jackknife standard errors over 200 equally sized 

blocks of adjacent SNPs about the estimates of enrichment, and the centers of error bars represent the average value. 
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Supplementary Figure 63. SNP enrichment and heritability enrichment fold changes between the cell type-specific 

peaks and background peaks with different feature-to-peak ratios on the Fetal Liver dataset. a-b, SNP enrichment 

fold between the number of significantly enriched tissues (a) and significantly enriched dataset-related tissues (b) on the 

cell type-specific peaks versus background peaks with the feature-to-peak ratio of 25%, 50%, 75% and 100%. c-f, Fold 

changes between the heritability enrichments of cell type-specific peaks and background peaks for dataset-related traits 

including Cholesterol (c), HDL Cholesterol (d), Triglycerides (e) and Monocyte count (f) with the feature-to-peak ratio of 

25%, 50%, 75% and 100%. 
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Supplementary Figure 64. SNP enrichment analysis for cell type-specific peaks with the feature-to-peak ratio of 50% 

on the Fetal Liver dataset. a-i, Top 30 significantly enriched tissues in SNPsea analysis on the background peaks (a), 

Erythroblasts-specific peaks (b), Hematopoietic stem cells-specific peaks (c), Hepatoblasts-specific peaks (d), Lymphoid 

cells-specific peaks (e), Megakaryocytes-specific peaks (f), Myeloid cells-specific peaks (g), Stellate cells-specific peaks 

(h) and Vascular endothelial cells-specific peaks (i) identified by CASTLE. The vertical dashed line represents the one-

sided p-value cutoff at the 0.05 level, while the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with 

Bonferroni correction. Using hierarchical clustering with unweighted pair-group method with arithmetic means (UPGMA), 

the expression profiles were ordered. The Pearson correlation coefficients, denoting the correlation between expression 

profiles, were displayed in the heatmaps.  
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Supplementary Figure 64 (continue). SNP enrichment analysis for cell type-specific peaks with the feature-to-peak 

ratio of 50% on the Fetal Liver dataset. a-i, Top 30 significantly enriched tissues in SNPsea analysis on the background 

peaks (a), Erythroblasts-specific peaks (b), Hematopoietic stem cells-specific peaks (c), Hepatoblasts-specific peaks (d), 

Lymphoid cells-specific peaks (e), Megakaryocytes-specific peaks (f), Myeloid cells-specific peaks (g), Stellate cells-

specific peaks (h) and Vascular endothelial cells-specific peaks (i) identified by CASTLE. The vertical dashed line 

represents the one-sided p-value cutoff at the 0.05 level, while the solid lines denotes the cutoff at 0.05 level for the one-

sided p-value with Bonferroni correction. Using hierarchical clustering with unweighted pair-group method with arithmetic 

means (UPGMA), the expression profiles were ordered. The Pearson correlation coefficients, denoting the correlation 

between expression profiles, were displayed in the heatmaps.  
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Supplementary Figure 65. Heritability enrichment analysis for cell type-specific peaks with the feature-to-peak 

ratio of 50% on the Fetal Liver dataset. a-d, Heritability enrichments estimated by LDSC within cell type-specific peaks 

identified by CASTLE and the background peaks for dataset-related traits including Cholesterol (a), HDL Cholesterol (b), 

Triglycerides (c) and Monocyte count (d). The error bars denote jackknife standard errors over 200 equally sized blocks 

of adjacent SNPs about the estimates of enrichment, and the centers of error bars represent the average value. 
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Supplementary Tables 

Supplementary Table 1. Summary of datasets used in this study. 

Dataset Species No. of cells No. of peaks No. of cell types Sparsity (%) 

InSilico34 Human 1377 68,069 6 96.849% 

Stimulated Droplet21 Human 75,968 156,311 14 99.330% 

Resting Droplet21 Human 60,495 156,311 14 99.458% 

Fetal Lung41 Human 72,662 1,050,819 9 99.658% 

Fetal Liver41 Human 183,175 1,050,819 8 99.823% 

Immune28 Human 18,489 571,400 10 98.453% 

Splenocyte1 Mouse 3166 77,453 12 83.386% 

Bone Marrow A42 Mouse 4033 436,206 15 99.095% 

Bone Marrow B42 Mouse 4370 436,206 18 99.207% 

Lung A42 Mouse 5122 436,206 22 99.174% 

Lung B42 Mouse 4874 436,206 25 99.174% 

Whole Brain A42 Mouse 5494 436,206 21 98.537% 

Whole Brain B42 Mouse 3272 436,206 20 98.325% 

Cerebellum42 Mouse 2278 436,206 20 99.178% 

Testes42 Mouse 2723 436,206 10 98.936% 

Brain31, 43 Mouse 13,671 479,127 20 98.923% 
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