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Supplementary Notes

Supplementary Note 1: The validation of normality assumption of the latent space in VAE

To validate whether the latent space of the VAE model conforms to the assumption of normal distribution,
we conducted a comparative experiment on the mouse Splenocyte dataset!. We trained a standard VAE
model following the pipeline of SCALE? with the default parameters. Then we investigated the

distributional characteristics of the latent embeddings extracted from the model from four aspects:

First, the histogram of each latent dimension can provide a visual assessment of its distribution of the
latent embeddings. If the distribution appears bell-shaped and symmetric, it suggests a closer approximation

to a normal distribution.

Second, a quantile-quantile (Q-Q) plot compares the quantiles of the observed latent variable with the
quantiles of a normal distribution. If the points lie close to a straight line, it indicates a good fit to the normal

distribution.

Third, the skewness is a measure of the asymmetry of a distribution®. The skewness of the normal
distribution is equal to 0. Negative skewness commonly indicates that the tail is on the left side of the

distribution, and positive skewness indicates that the tail is on the right.

Fourth, the kurtosis is a measure of the tailedness of a distribution’. The kurtosis of the normal
distribution is equal to 3. The kurtosis greater than 3 commonly indicates that the peak is steep, and the

kurtosis less than 3 indicates that the peak is gentle.

In the standard VAE model trained on the Splenocyte dataset, the histogram fitting curves of latent
feature 4, 6, 7 and 9 display noticeable asymmetry and multiple peaks, and the Q-Q plots of these latent
features reveal a notable departure from the straight line representing the standard normal distribution,
which evidently deviate from the characteristics of a standard normal distribution (Supplementary Figure
1). The skewness of latent feature 2, 3, 8 and 10 is not equal to 0, and the Q-Q plots of these latent features
reveal a notable departure from the straight line representing the standard normal distribution, deviating
from the characteristics of a standard normal distribution (Supplementary Figure 2). The kurtosis of latent
feature 1 and 5 is not equal to 3, and the Q-Q plots of these latent features reveal a notable departure from
the straight line representing the standard normal distribution, deviating from the characteristics of a

standard normal distribution (Supplementary Figure 3).



Supplementary Note 2: Evaluation metrics for clustering

Let U represent the known ground-truth cell type labels, V represent the predicted clustering assignments,
N represent the total number of single cells, x; represent the number of cells in the i-th cluster of V, y;
represent the number of cells with the j-th unique cell type label of U, and n;; represent the number of
cells shared between the i-th cluster and the j-th unique cell type label. The Rand Index (RI) computes a
similarity measure between two clustering assignments by considering all pairs of samples and counting
pairs that are assigned in the same or different clusters in the predicted and true clustering assignments. The

ARI* is derived from the RI by taking into account the expected agreement due to chance:
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Both AMP° and NMI° are derived from Mutual Information (MI), which is a measure of the similarity

between two labels of the same data. Where Ny, is the number of the samples in cluster U, and Ny, is

the number of the samples in cluster V;, the Mutual Information between clustering assignments U and V

is given as:
= U, Ny N|U, NV
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AMI adjusts MI by considering the expected value under random clustering as follows:

_ MI(U,V) - E[MI(U,V)]
~ avg[H(U), H(V)] — E[MI(U, V)]

AMI

where E(-) is the expectation function and H(*) is the entropy function.
NMI scales MI to a range between 0 and 1, and its calculation is as follows:

MI(U,V)

VHQU)H(V)

Let TP denote the number of True Positive (i.e. the number of pairs of cells that belong to the same

NMI =

clusters in both U and V), FP denote the number of False Positive (i.e. the number of pairs of cells that
belong to the same clusters in V and not in U) and FN denote the number of False Negative (i.e. the number
of pairs of cells that belong to the same clusters in U and not in V). FMI is calculated as follows:

TP

FMI= V (TP+FP)(TP+FN)




Supplementary Note 3: Evaluation of performance based on kNN classification

Similar to existing research®, we conducted experiments to evaluate the performance of cell embeddings
by comparing k-nearest neighbor (kNN) classification results according to two classification metrics
including classification accuracy and median F1 score for different cell types (mF1)* '°. For a single-cell
chromatin accessibility sequencing (scCAS) dataset, we chose 80% of the cells as a train set and the
remaining 20% as a test set. Specifically, we included cell types with fewer than 10 cells entirely in the
train set™ 1. Then we trained a kNN classifier with the cell embeddings and cell type labels of train set and
used the classifier to predict the cell type labels of test set. CASTLE performs equally well in accuracy

compared to cisTopic!' and scBasset!?

(Supplementary Figure 5). Generally, compared with accuracy, F1
score is a better metric for imbalanced datasets'3'>. CASTLE achieves better median mF1 than all baseline

methods (Supplementary Figure 5), demonstrating that CASTLE excels in accurate cell type identification.



Supplementary Note 4: Stability of batch correction for CASTLE

We conducted comparative experiments to showcase the versatility of CASTLE across datasets with
complex batch effects. As highlighted with red circles in Fig. 3g, CASTLE acquires better batch integration
and illustrates a clearer separation between L2/3 IT (intratelencephalic neurons from layer 2 or 3 of mouse
brain), L4 (layer 4 of mouse brain), L5 IT (intratelencephalic neurons from layer 5 of mouse brain) and L6
IT (intratelencephalic neurons from layer 6 of mouse brain) across two batches than baseline methods. To
verify the capacity of CASTLE for treating datasets with certain abundant cell types existing only in one
batch, we removed cells that belongs to one or all of L2/3 IT, L4, L5 IT and L6 IT cell types in the batch
“10X” of the Brain dataset. For datasets with partially overlapping batches, CASTLE achieves highly
robustness for batch correction and exhibits weak over-correction, in terms of UMAP visualization
(Supplementary Figure 14a-f) and the performance of batch correction evaluated by ARI and kBET!'®
(Supplementary Figure 14g). To sum up, CASTLE not only effectuates the excellent balance between
removing batch variations and preserving cell heterogeneity, but also demonstrates strong robustness to

datasets with complex batch effects.



Supplementary Note 5: Imbalanced datasets and rare cell types

To assess the competence of CASTLE for dealing with complex and imbalanced scCAS data, we
simulated eight datasets with diverse degrees of cell type imbalance!” based on the Stimulated Droplet
dataset again (“Simulation of datasets with different imbalances” in Methods). The cell type imbalance of
the original Stimulated Droplet is 0.175. To simulate datasets with higher degrees of cell type imbalance,
we randomly downsampled cell types with a cell count less than 10,000 to the following fractions of their
original counts: half, one-fourth, one-sixth, one-eighth, one-tenth, one-sixteenth, and one-thirtieth, and
simulated the datasets with cell type imbalances of 0.281, 0.407, 0.476, 0.520, 0.551, 0.604 and 0.656. As
the imbalance gradually increases, the clustering performance of all methods decreases, while CASTLE
substantially outperforms all other methods at distinct cell type imbalances and displays the highest level

of stability (Fig. 4c and Supplementary Figure 17).

Then we removed cell types with a cell count larger than 10,000 (Mono and CD4) and evaluated the
performance over the remaining rare cell types. As the degree of cell type imbalance increases sharply, the
UMAP visualization and clustering performance of CASTLE for the identification of rare cell types
deteriorates slowly (Supplementary Figure 18). Specifically, CASTLE achieves the overall best clustering
performance compared with four baseline methods (Supplementary Figure 18i). In summary, CASTLE

exhibits strong robustness and stability for the identification of rare cell types.



Supplementary Note 6: Ablation studies for CASTLE

In CASTLE, there are seven hyperparameters including « denoting the weight of L ommitment> ¥

denoting the decay ratio, K denoting the size of codebook, M denoting the time of split quantization'®, ¢
denoting the weight of Lpg¢cp, 77 denoting the weight of Ly pe, A denoting the weight of Lejgssifier. We

designed comprehensive comparative experiments about robustness analyses for these hyperparameters.

First, similar to the original studies of Vector Quantized Variational AutoEncoder (VQ-VAE)'* 2%, we
aimed for the codebook to have less impact on the output of the encoder so that we set the default value of
a, the weight of L ommitment> t0 0.25. To validate the robustness of CASTLE with different weights of
Lcommitment, We trained CASTLE with different values of « (0.1, 0.25, 0.5, 1.0, 5.0 and 10.0) on 16
benchmark datasets. The results, as shown in Supplementary Figure 21a, demonstrate that CASTLE

consistently obtains stable clustering performance under different values of c.

Second, we mainly followed the original studies of VQ-VAE!®-?? to set the default value of y, the decay
ratio for updating the codebook, to 0.99. To assess the stability of CASTLE with different decay ratios, we
conducted two experiments. We first trained CASTLE under a series of y, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.96,
0.97, 0.98 and 0.99, on 16 benchmark datasets. The results, as shown in Supplementary Figure 21b,
demonstrate the stability of the clustering, while the value of 0.99 is preferred for its slightly higher
clustering performance. We further analyzed values of yaround 0.99. We trained CASTLE under a series
values of y, ranging from 0.991 to 0.999 on 16 benchmark datasets. As shown in Supplementary Figure 21c,
it seems that the results at 0.99 is still better than those at the larger values. We again trained CASTLE
under a series values of , ranging from 0.981 to 0.989 on 16 benchmark datasets and also obtained slightly
higher clustering performance at 0.99 (Supplementary Figure 21c). All these empirical analyses, including
the above results for yranging from 0.10 to 0.99, support that 0.99 is indeed a reasonable default value of

the decay ratio y.

Third, to evaluate the robustness of CASTLE to the size of the codebook, K, we trained CASTLE with
different values of K (100, 200, 400, 600, 800 and 1000) on 16 benchmark datasets. The results
(Supplementary Figure 21d) show that CASTLE is insensitive to this hyperparameter. Taking into account

the balance of cell heterogeneity preservation and codebook utilization, we set the default value of K to 400.

Fourth, to evaluate the stability of CASTLE to the time of split quantization'®, we trained CASTLE with
different values of M (1, 2, 5, 10, 25, 50) on 16 benchmark datasets. The results (Supplementary Figure 21¢)

show that CASTLE acquires relatively poor clustering performance when the time of split quantization is



1 or 2, while CASTLE attains highly stable clustering performance when the time of split quantization is
higher than 5. Evidently, the lower the time of split quantization, the higher the dimension of codebook
features. With the consideration that it is obviously challenging to look up the nearest neighbors for high-

dimensional vectors, we set the default value of M to 10.

Fifth, to verify the robustness of CASTLE to the weight of Ly ,¢cn, We trained CASTLE with different
values of {ranging from 0 to 1 on 4 benchmark datasets with multiple batches. The results (Supplementary
Figure 22a) show the stability of CASTLE under these values, while excessive weights of Ly, may lead

to poor batch correction. We therefore set the default value of {'to 0.001.

Sixth, to demonstrate the stability of CASTLE toe the weight of Lcejitype, we trained CASTLE with
different values of 7 ranging from 0 to 1 on 8 benchmark datasets when incorporating labeled reference
datasets. The results (Supplementary Figure 22b) show that CASTLE yields bad results when 7 equals 1

t21

on the Stimulated Droplet dataset”’, while obtaining stable clustering performance when 7 below 1. We

therefore set the default value of 77to 0.001, with which CASTLE achieves relatively better performance.

Seventh, to evaluate the sensitivity of CASTLE to the weight of Lgssifier» we trained CASTLE with
different values of A ranging from 0 to 100 on 8 benchmark datasets when incorporating labeled reference
datasets. The results (Supplementary Figure 22¢) show that CASTLE attains the highest performance when
A equals 1, and somewhat lower performance when A equals 0 and 100. We therefore set the default value

of Ato 1 to avoid inappropriate selection of A.

In addition, since L,econ and Leoommirment are basic and indispensable loss functions in CASTLE, we
designed comprehensive ablation studies only for the contributions of Ly, on 4 benchmark datasets
with multiple batches, Leejitype and Leygssirier On 8 benchmark datasets when incorporating labeled
reference datasets. Compared with CASTLE without Lygtcn, Leetitype @nd Lejgssifiers as long as the loss
weights are within a reasonable range, the incorporation of these loss functions in CASTLE consistently
leads to improvements of clustering performance (Supplementary Figure 22). The above results support the

effectiveness of three self-designed loss functions.

Besides, we conducted comparative experiments to validate the effectiveness of replacing L ,gepook
with EMA and separating L.ommitment @4 Lcodepoor- We referred to the model that updates codebook
using Lcogepoor 1nstead of EMA as CASTLE-noEMA, and the model that updates encoder and codebook
using the integrated L ommitment @04 Lcodenoor 1nstead of using them separately as CASTLE-integrated.
Then we applied CASTLE-noEMA and CASTLE-integrated to the 16 benchmark datasets. As illustrated

in Supplementary Figure 23, CASTLE obtains significantly better clustering performance than CASTLE-
7



noEMA (one-sided paired Wilcoxon signed-rank tests p-values < 3e-3) and CASTLE-integrated (one-sided
paired Wilcoxon signed-rank tests p-values < 2e-3). Evidently, CASTLE-noEMA achieves better clustering
performance than CASTLE-integrated. The results above thoroughly demonstrate the effectiveness of

replacing L.pgepoor With EMA and separating L.ommitment @04 Lcodebook-



Supplementary Note 7: Comparative experiments for different designs of L cji¢ype

As shown in the “Batch correction and reference incorporation” section of Methods, we developed
Leentype for maximizing the distance between the cells from different cell types. We further compared
CASTLE with a variant model that only minimizes the distance between the cells in the same cell types,
and we referred to such a model as CASTLE-ref-labeled(min). Moreover, we referred to the model
incorporating the redesigned L ejjtype for simultaneously maximizing the distance between the cells from
different cell types and minimizing the distance between the cells in the same cell types as CASTLE-ret-
labeled(+min). Similar to the model referred to as CASTLE-ref-labeled, we applied CASTLE-ref-
labeled(min) and CASTLE-ref-labeled(+min) to the eight scCAS datasets with labeled reference datasets

and obtained results for comparison.

As shown in Supplementary Figure 24b, CASTLE-ref-labeled obtained the highest clustering
performance based on the cell embeddings of target datasets, consistently superior to CASTLE-ref-
labeled(min) and CASTLE-ref-labeled(+min), indicating that the newly designed loss functions actually
impaired the clustering performance. The results are reasonable, because we need to avoid losing potential
heterogeneity of cell subtypes that may exist within cell types, especially when we are unsure about the
granularity of cell type labels in the reference dataset and whether it aligns with the target dataset. All the
above results demonstrate the rationality and efficiency of Lceytype to maximize the distance between the

cells from different cell types.



Supplementary Note 8: Comparative experiments with different reference datasets

Taking the Stimulated Droplet dataset?! as an example, we further designed comprehensive comparative
experiments to demonstrate the versatility of CASTLE with reference datasets under various conditions
from five perspectives. First, to assess the ability of CASTLE for coping with reference datasets of different
sizes, we downsampled the cells in the reference dataset (Resting Droplet dataset®!) at different downsample
rates ranging from 10% to 100%. Second, to evaluate the capacity of CASTLE for tackling reference
datasets with different degrees of sparsity, we randomly dropped out the non-zero values in the reference
dataset at distinct dropout rates ranging from 0 to 50%. Third, to validate the power of CASTLE for treating
regular reference datasets only with major cell types, we reserved the cells belonging to major cell types of
which the proportion is greater than a threshold in the reference dataset. We selected thresholds ranging
from 0 to 10%. Fourth, to verify the ability of CASTLE for handling reference datasets with missing cell
types present in the target dataset, we deleted one or more cell types in the reference dataset. Fifth, to assess
the capacity of CASTLE for dealing with reference datasets with novel cell types, we deleted one or more

cell types in the target dataset.
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Supplementary Note 9: Quantitative recommendation score for reference dataset

Similar to the existing study??, we developed a quantitative strategy that quantifies recommendation
scores to guide users to select high-quality reference data. Suppose there are several different reference
datasets for the target dataset, we designed a quantitative recommendation score to evaluate the quality of
these reference datasets. First, we performed Principal Component Analysis (PCA)* on the raw cell-by-
region matrix of target dataset and then acquired several sets of pseudo labels based on Louvain algorithm
with different resolution parameters. Second, similar to the previous step, we performed PCA on the raw
cell-by-region matrix of integrated dataset including target dataset and reference dataset, and then acquired
several sets of pseudo labels for the target dataset. Third, we calculated the Silhouette Coefficient (SC)**
for each set of pseudo labels. Generally, higher SC indicates better clustering outcomes. Finally, we

calculated the recommendation score as follows:

Mean(SCroforonce)  Std(SCLAT9e

reference None

Mean(SCtarget) Std (Sctarget )

None reference

Recommendation score =

where SCyg9™" or SCroror .. Tepresents the SCs for target dataset without or with reference dataset,

Mean(-) and Std(-) are the formulas for calculating the average and the standard deviation. Intuitively, a

higher recommendation score represents stronger and more consistent clustering performance.

Taking the Stimulated Droplet dataset?! as an example, we conducted multiple experiments for six
different reference datasets. Overall, whether the introduced reference dataset is unlabeled or labeled, the
reference data with a higher recommendation score can provide better clustering performance of the target
dataset (Supplementary Figure 34). For example, when the Recommendation score of introduced reference
dataset is higher than 0.95, the unlabeled incorporation will improve the clustering performance of the target
dataset; conversely, if it is lower, it may be detrimental to the clustering performance. For the labeled
reference dataset, the threshold of Recommendation score for enhancing or impairing clustering

performance is 0.8.
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Supplementary Note 10: Comparative experiments between the cell type-specific peaks identified by

CASTLE and epiScanpy

We applied the function rank features implemented in epiScanpy® to identify the basic cell type-
specific peaks with the raw cell-by-region matrix and the cell type labels of the Stimulated Droplet dataset?!.
Following the same steps as the “Downstream analyses” section of Methods, we implemented downstream

26, 2ysing these epiScanpy-identified peaks. With regard to single-nucleotide polymorphisms

analysis
(SNPs) enrichment analysis, cell type-specific peaks identified by epiScanpy also demonstrate excellent
cell type specificity (Supplementary Figure 43). However, the background peaks identified by epiScanpy
also exhibit strong cell type specificity (Supplementary Figure 43a), which is not evident in the background
peaks identified by CASTLE. Besides, 721 B Lymphoblasts is the tissue with most significant enrichment
for pDC-specific peaks identified by epiScanpy (Supplementary Figure 43b), which is not desirable. B-
specific peaks identified by epiScanpy display significant enrichment in multiple cell types including PB-
CD19+B_cells, PB-BDCA4+Dentritic_cells, PB-CD56+NK cells, PB-CD14+Monocytes and so forth
(Supplementary Figure 43c). About heritability enrichment analysis, the enrichment results for blood-
related phenotypes in the cell type-specific peaks identified by epiScanpy are unsatisfactory, which may be
due to the inferior identification for the background peaks (Supplementary Figure 44). Overall, the
enrichment results with the cell type-specific peaks identified by CASTLE (Fig. 6¢-g and Supplementary
Figures 41-42) are relatively stronger than that identified by epiScanpy (Supplementary Figures 43-44),

especially the more significant heritability enrichment results, demonstrating the biological significance of

the cell type-specific peaks identified by CASTLE.
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Supplementary Note 11: Trajectory inference and motif enrichment analysis

Indeed, the discrete cell embeddings generated by CASTLE can be further employed for trajectory
inference which aims to reconstruct the developmental trajectories or temporal dynamics of cells. Following
the original study?®, we created the Immune dataset by selecting 18,489 CD34+ bone marrow progenitors
and dendritic cells across 10 subpopulations from full hematopoiesis. We applied Slingshot?* *° to the
trajectory inference. First, we fed the low-dimensional cell embeddings generated by CASTLE and the
clustering assignments acquired from Louvain clustering to Slingshot for the clustering relationships using
the function getLineages. Then we used the getCurves function to cultivate smooth curves denoting the
estimated cell lineages and using the embedCurves function to map the curves to the two-dimensional
UMAP space for visualization. CASTLE with Slingshot uncovers the differentiation lineage, which is
clearly consistent with the true hematopoietic differentiation tree (Supplementary Figure 45a-b). For
example, the differentiation path (HSC—MPP—LMPP—CLP—Pro-B) on the inferred trajectory has been
proved in the original study®®. Altogether, CASTLE facilitates trajectory inference, shedding light on the

underlying regulatory dynamics and cell fate decisions during development or disease progression.

We conducted comparative experiments to assess the performance of baseline methods for trajectory
inference on the Immune dataset. Similarly, we employed Slingshot with default settings to infer the smooth
curves representing the estimated cell lineages from the cell embeddings of four baseline methods including
SCALEX3!, SCALE?, cisTopic!! and scBasset'?. We note that other baseline methods except cisTopic'!
have not been validated the ability for trajectory inference in their original papers. Obviously, the inferred
trajectories from baseline methods are chaotic, redundant, and even intersect with each other
(Supplementary Figure 46), which probably results from the poor performance of cell clustering
(Supplementary Figure 9d) and UMAP visualization (Supplementary Figure 13b) on the Immune dataset
with multiple batches. In summary, baseline methods struggled in trajectory inference over the Immune

dataset, while CASTLE performed well.

We next proceeded to conduct motif enrichment analysis, which is a critical step for illuminating the
context-specific regulatory mechanisms. With the Louvain clustering assignments based on cell
embeddings from CASTLE, we applied scABC*? and chromVAR?? with default settings to the InSilico
dataset®* for the identification of the cluster-specific enriched motifs from the JASPAR database®>. We
selected the top 1000 peaks with smallest p-values for each cluster, then performed TF binding motif
enrichment within these peaks using chromVAR, and subsequently visualized the top 50 most variable

transcription factor (TF) binding motifs (Supplementary Figure 45c). Our analysis reveals that the most

13



active TFs are often specific to one or two clusters, indicating their unique regulatory roles in those
particular cell types. It is reported in the previous literature that some motifs are cell type-specific. For
example, FOS is specific to human foreskin fibroblasts (BJ)*¢, GATAI::TALI is specific to K562 chronic
myelogenous leukaemia cells (K562)%7, SPII is specific to human promyeloblasts (HL-60)*%, NFKB2 is
specific to GM12878 lymphoblastoid cells (GM12878)** 3 and POU motifs (e.g. POU3F2) are specific to
H1 human embryonic stem cells (H1)*>4° (Supplementary Figure 45d). These findings allow us to identify
the active TFs in each cell type, providing insights into the specific regulatory mechanisms operating in

different clusters.
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Supplementary Note 12: Comparative experiments for different feature-to-peak ratios

As shown in the “Feature spectrum and cell type-specific peaks” section of Methods, we selected 50%
of the cell type-specific features to identify the cell type-specific peaks. We conducted comparative
experiments to elucidate the rationale behind our choice of a 50% feature-to-peak ratio. Following the steps
in the “Feature spectrum and cell type-specific peaks” section of Methods, we identified the cell type-
specific peaks with four different feature-to-peak ratios including 25%, 50%, 75%, and 100% and

26.27 on the Stimulated Droplet dataset®!. With regard to single-nucleotide

implemented downstream analysis
polymorphisms (SNPs) enrichment analysis, cell type-specific peaks identified by CASTLE with the ratio
of 50% (Fig. 6¢-¢ and Supplementary Figure 41) show more remarkable cell type specificity than that with
other ratios (Supplementary Figures 47-50). As shown in Supplementary Figure 47a-b, at the feature-to-
peak ratio of 50%, in 15 out of 28 cases (53.6%), the SNP enrichment folds between the number of
significantly enriched tissues or significantly enriched blood-related tissues on the cell type-specific peaks
versus background peaks are the highest. In contrast, considering ties, at the feature-to-peak ratio of 25%,
75% and 100%, the highest fold changes only appear 8 (28.6%), 2 (7.1%) and 9 (32.1%) cases, respectively.
For example, the background peaks identified with the feature-to-peak ratios of 25% and 75% also exhibit
strong cell type specificity (Supplementary Figure 48a and Supplementary Figure 49a), which is not
desirable. PB-CD19+B_cells is the tissue with the most significant enrichment for pDC-specific peaks
identified with the feature-to-peak ratios of 75% and 100% (Supplementary Figure 49b and Supplementary
Figure 50b). About heritability enrichment analysis, the enrichment results with the feature-to-peak ratio of
50% (Fig. 6f-g and Supplementary Figure 42) are relatively stronger than that with other ratios
(Supplementary Figure 47 and Supplementary Figures 51-53). Taking all of the 10 traits into consideration
(Supplementary Figure 47c-1), in 118 out of 140 cases (84.3%), the highest fold changes between the
heritability enrichments of cell type-specific peaks and background peaks for blood-related traits appear at
the feature-to-peak ratio of 50%. In contrast, at the feature-to-peak ratio of 25%, 75% and 100%, the highest
fold changes only appear in 5 (3.6%), 15 (10.7%) and 2 (1.4%) cases, respectively. Specifically, the
background peaks identified with the feature-to-peak ratio of 100% also display high heritability
enrichment (Supplementary Figure 53), which is not desirable. The CD8-specific peaks identified with the
feature-to-peak ratios of 25%, 75% and 100% show lower heritability enrichment than the background
peaks (Supplementary Figure 51a-b, Supplementary Figure 52a and Supplementary Figure 53a-b), which
is not evident in the CD8-specific peaks identified with the feature-to-peak ratio of 50% (Fig. 6f-g). Overall,
we first theorized that 50% might be better feature-to-peak ratio in principle, and then demonstrated by the

comparative experiments that 50% is indeed a better feature-to-peak ratio compared with 25%, 75% and
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100% on the Stimulated Droplet dataset.

Moreover, we conducted SNP enrichment analysis and heritability enrichment analysis with different
feature-to-peak ratios on 4 additional real datasets, including the Resting Droplet dataset?!, the Immune
dataset®®, the Fetal Lung dataset*! and the Fetal Liver dataset*'. For the Resting Droplet dataset, as shown
in Supplementary Figure 54a-b, at the feature-to-peak ratio of 50%, in 20 out of 28 cases (71.4%), the SNP
enrichment folds between the number of significantly enriched tissues or significantly enriched dataset-
related tissues on the cell type-specific peaks versus background peaks are the highest. In contrast,
considering ties, at the feature-to-peak ratio of 25%, 75% and 100%, the highest fold changes only appear
5(17.9%), 3 (10.7%) and 5 (17.9%) cases, respectively. Similarly, taking all of the 4 traits into consideration
(Supplementary Figure 54c-f), in 27 out of 56 cases (48.2%), the highest fold changes between the
heritability enrichments of cell type-specific peaks and background peaks for dataset-related traits appear
at the feature-to-peak ratio of 50%. In contrast, considering ties, at the feature-to-peak ratio of 25%, 75%
and 100%, the highest fold changes only appear in 8 (14.3%), 14 (25.0%) and 7 (12.5%) cases, respectively.
Specifically, at the feature-to-peak ratio of 50%, we identify PB-BDCA4+Dentritic_cells as the tissue with
most significant enrichment (p-value < 5e-5) for pDC-specific peaks (Supplementary Figure 55b) and
721 B Lymphoblasts as the tissue with the most significant enrichment (p-value < 2e-3) for B-specific
peaks (Supplementary Figure 55¢). The enrichment of heritability for the HbAlc in the cell type-specific
peaks is higher than that in the background peaks (Supplementary Figure 56a).

For the Immune dataset, as shown in Supplementary Figure 57a-b, at the feature-to-peak ratio of 50%,
in 12 out of 20 cases (60.0%), the SNP enrichment folds between the number of significantly enriched
tissues or significantly enriched dataset-related tissues on the cell type-specific peaks versus background
peaks are the highest. In contrast, considering ties, at the feature-to-peak ratio of 25%, 75% and 100%, the
highest fold changes only appear 2 (10.0%), 5 (25.0%) and 7 (35.0%) cases, respectively. Similarly, taking
all of the 4 traits into consideration (Supplementary Figure 57c-f), in 31 out of 40 cases (77.5%), the highest
fold changes between the heritability enrichments of cell type-specific peaks and background peaks for
dataset-related traits appear at the feature-to-peak ratio of 50%. In contrast, considering ties, at the feature-
to-peak ratio of 25%, 75% and 100%, the highest fold changes only appear in 11 (27.5%), 0 (0.0%) and 14
(35.0%) cases, respectively. Specifically, at the feature-to-peak ratio of 50%, PB-BDCA4+Dentritic_cells
is the tissue with the most significant enrichment (p-value < 5e-6) for pDC-specific peaks (Supplementary
Figure 58k). The enrichment of heritability for the Monocyte count in the cell type-specific peaks is higher

than that in the background peaks except CLP cells (Supplementary Figure 59d).
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For the Fetal Lung dataset, as shown in Supplementary Figure 60a-b, at the feature-to-peak ratio of 50%,
in 9 out of 18 cases (50.0%), the SNP enrichment folds between the number of significantly enriched tissues
or significantly enriched dataset-related tissues on the cell type-specific peaks versus background peaks are
the highest. In contrast, considering ties, at the feature-to-peak ratio of 25%, 75% and 100%, the highest
fold changes only appear 6 (33.3%), 5 (27.8%) and 5 (27.8%) cases, respectively. Similarly, taking all of
the 4 traits into consideration (Supplementary Figure 60c-f), in 32 out of 36 cases (88.9%), the highest fold
changes between the heritability enrichments of cell type-specific peaks and background peaks for dataset-
related traits appear at the feature-to-peak ratio of 50%. In contrast, considering ties, at the feature-to-peak
ratio of 25%, 75% and 100%, the highest fold changes only appear in 9 (25.0%), 2 (5.6%) and 0 (0.0%)
cases, respectively. Specifically, at the feature-to-peak ratio of 50%, we identify lung and fetal lung as the
tissues with significant enrichment (p-value < 2e-2) for cell type-specific peaks in bronchiolar and alveolar
epithelial cells (Supplementary Figure 61b). The enrichment of heritability for the lung FVC smoke in the
cell type-specific peaks is higher than that in the background peaks except ciliated epithelial cells and

lymphatic endothelial cells (Supplementary Figure 62a).

For the Fetal Liver dataset, as shown in Supplementary Figure 63a-b, at the feature-to-peak ratio of 50%,
in 10 out of 16 cases (62.5%), the SNP enrichment folds between the number of significantly enriched
tissues or significantly enriched dataset-related tissues on the cell type-specific peaks versus background
peaks are the highest. In contrast, at the feature-to-peak ratio of 25%, 75% and 100%, the highest fold
changes only appear 2 (12.5%), 3 (18.8%) and 1 (6.3%) cases, respectively. Similarly, taking all of the 4
traits into consideration (Supplementary Figure 63c-f), in 26 out of 32 cases (81.3%), the highest fold
changes between the heritability enrichments of cell type-specific peaks and background peaks for dataset-
related traits appear at the feature-to-peak ratio of 50%. In contrast, at the feature-to-peak ratio of 25%, 75%
and 100%, the highest fold changes only appear in 6 (18.8%), 0 (0.0%) and 0 (0.0%) cases, respectively.
Specifically, at the feature-to-peak ratio of 50%, we identify liver as the tissue with the most significant
enrichment (p-value < 2e-3) for cell type-specific peaks in hematopoietic stem cells (Supplementary Figure
64c). The enrichment of heritability for the HDL cholesterol in the cell type-specific peaks is higher than
that in the background peaks (Supplementary Figure 65b).

To sum up, we demonstrated by the comparative experiments that 50% is indeed a better feature-to-peak
ratio compared with 25%, 75% and 100% (Supplementary Figures 47, 54, 57, 60, 63). At the feature-to-
peak ratio of 50%, the identified cell type-specific peaks on 5 real datasets show remarkable tissue
specificity (Supplementary Figures 41, 55, 58, 61, 64) and are functionally relevant and potentially involved

in the regulation of the studied phenotypes (Supplementary Figures 42, 56, 59, 62, 65).
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Supplementary Figure 1. Multimodal behavior of latent features in VAE. a-d, In the standard VAE model trained on
the Splenocyte dataset, latent feature 4 (a), 6 (b), 7 (¢) and 9 (d) exhibit multimodal behavior by the frequency distribution
histogram (top) and Q-Q plot (bottom).
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Supplementary Figure 2. Unexpected skewness of latent features in VAE. a-d, In the standard VAE model trained on
the Splenocyte dataset, latent feature 2 (a), 3 (b), 8 (¢) and 10 (d) exhibit unexpected skewness (equal to 0 in standard
normal distribution) by the frequency distribution histogram (top) and Q-Q plot (bottom).
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Supplementary Figure 3. Unexpected kurtosis of latent features in VAE. a-b, In the standard VAE model trained on
the Splenocyte dataset, latent feature 1 (a) and 5 (b) exhibit unexpected kurtosis (equal to 3 in standard normal distribution)
by the frequency distribution histogram (top) and Q-Q plot (bottom).
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Supplementary Figure 4. Comparison between the models with and without split quantization. a, The model
architecture without split quantization. b, Utilization of the codebook (that is, perplexity) increases when applying split
quantization on the Stimulated Droplet dataset.
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Supplementary Figure 5. Evaluation of performance based on kNN classification. Boxplot of kNN classification
performance for CASTLE and four baseline methods including SCALEX, SCALE, cisTopic and scBasset, evaluated by
Accuracy and mF1 on 16 benchmark datasets. Each boxplot ranges from the upper and lower quartiles with the median as
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Supplementary Figure 6. Clustering performance of CASTLE compared with baseline methods. a-d, Performance
evaluated by ARI, AMI, NMI and FMI based on the Louvain clustering and Leiden clustering on the Splenocyte (a),
InSilico (b), Stimulated Droplet (¢) and Resting Droplet (d) datasets compared with baseline methods. Each method was

run three times with different random seeds. The error bars denote the 95% confidence interval, and the centers of error

bars denote the average value.
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Supplementary Figure 7. Clustering performance of CASTLE compared with baseline methods. a-d, Performance
evaluated by ARI, AMI, NMI and FMI based on the Louvain clustering and Leiden clustering on the Bone Marrow A (a),
Bone Marrow B (b), Lung A (¢) and Lung B (d) datasets compared with baseline methods. Each method was run three

times with different random seeds. The error bars denote the 95% confidence interval, and the centers of error bars denote

the average value.
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Supplementary Figure 8. Clustering performance of CASTLE compared with baseline methods. a-d, Performance
evaluated by ARI, AMI, NMI and FMI based on the Louvain clustering and Leiden clustering on the Whole Brain A (a),
Whole Brain B (b), Cerebellum (¢) and Testes (d) datasets compared with baseline methods. Each method was run three
times with different random seeds. The error bars denote the 95% confidence interval, and the centers of error bars denote
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Supplementary Figure 9. Clustering performance of CASTLE compared with baseline methods. a-d, Performance
evaluated by ARI, AMI, NMI and FMI based on the Louvain clustering and Leiden clustering on the Fetal Liver (a), Fetal
Lung (b), Brain (c¢) and Immune (d) datasets compared with baseline methods. Each method was run three times with
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Supplementary Figure 10. UMAP visualization of CASTLE compared with baseline methods. a-d, UMAP
visualizations of the cell embeddings from SCALEX, SCALE, cisTopic, scBasset and CASTLE on the Splenocyte (a),
InSilico (b), Resting Droplet (¢) and Fetal Lung (d) datasets.
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Supplementary Figure 11. UMAP visualization of CASTLE compared with baseline methods.a-d, UMAP
visualizations of the cell embeddings from SCALEX, SCALE, cisTopic, scBasset and CASTLE on the Bone Marrow A
(a), Bone Marrow B (b), Lung A (¢) and Lung B (d) datasets.

28



SCALEX cisTopic scBasset CASTLE * Astrocytes » Macrophages
5] @ » . , Cersbellar  Microglia
< 15 . » granu_\e cells » Cligodendrocytes
< 1 N Collisions = Podocytes
£ ' 10 Endothelial | calls _ pyiinie cells
[ oy « Endothelial Il cells o
m 5 o - 5 3 ® Ex_neurons CPN Intemeurons
Q2 d Ex. neurons Sperm
° . * CThPN
o 4 T cell
£ » Tcells
£ o ’ s * Ex. neurons SCPN _ oo
N ' Hematopoietic
5 % P . * progenitars ::euls
: qulatory
b 2 0 2 4 6 B 10 12 14 [} 5 10 15 5 0 5 10 15 Inhibitory neurons * e
. SCALE cisTopic scBasset . y Immature B cells
: 125 150 T Cerebellar = Inhibitory neurons
125 Gt g‘} ; granule cells Macronh
m 10.0 10.0- cal A 12.5 ; o Collisions . .acmp. ages
£ e & 75 . # | 100 7 o Dendriticcells ~ * Microglia
[ 78 50 s i . Icells * 0
E =0 25 \ » Endothelial Il cells » Podocytes
3 25 50 & & « Ex. neurons PN« Purkinje cells
£ 0o . oo 25 Fo s . Ex. neurons SOM+
= : . 28 Y - % CThPN nfemeurans
25 é; ;‘ 0o %\ * Ex. neurons SCPN 4 T calls
o ) S0 25 Hematopoietic
5.0 ° Unk
5 5 13 3 G 2 4 b B 101218 5 5 1w 15 5 08 & 1 15 progenitors ° Hnnewn
c . .
SCALEX SCALE cisTopic scBasset « Astrocytes Macrophages
8 25 - . gé'rfﬁilg;us » Microglia
. 20 « Collisions = Oligodendrocytes
g . . o Dendritic cells  * Podocytes
= 4 L ” Endothelial | * Purkinje cells
2 10 - (glomerulary SOM+
o 2 « Endothelial | cells ~ Intemeurons.
@ 5 o ", » Endothelial Il cells « Unknown
g . . . « Ex. neurons CPN + Enterocytes
- - « Ex. neurons °Beels
= - Inhibitory neurons e EX neurons
d 5 0 5 10 15 4 6 B 10 12 14 16
scBasset CASTLE
12 . 8 * B cells
6
¢ 7 « DCT/CD
10 4l R « Endothelial | cells
« Endothelial Il cells
9 2 5
o 3 « Enterocytes
9 0 4 & Hematopoietic progenitors
Ll 3  Hepatocytes
2 2 » Macrophages
4 4 « Sperm
’
Unknown
o
% 2 4 6 B 10 12 14 4 2 0 2 4 6 8 0 2 4 6 B 10 12 14 16 5 0 5 10 4 2 0 2 4
E
UMAP1

Supplementary Figure 12. UMAP visualization of CASTLE compared with baseline methods.a-d, UMAP
visualizations of the cell embeddings from SCALEX, SCALE, cisTopic, scBasset and CASTLE on the Whole Brain A (a),
Whole Brain B (b), Cerebellum (c) and Testes (d) datasets.
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Supplementary Figure 13. UMAP visualization of CASTLE compared with baseline methods.a-b, UMAP
visualizations of the cell embeddings from SCALEX, SCALE, cisTopic, scBasset and CASTLE on the Brain (a) and
Immune (b) datasets.
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Supplementary Figure 14. Performance of batch correction for CASTLE over datasets with complex batch effects.
a-f, UMAP visualizations of cell embeddings for the Brain dataset with None (a), L2/3 IT (b), L4 (¢), L5 IT (d), L6 IT (e),
and L2/3 IT, L4, L5 IT, L6 IT (f) missing cell types in the batch “10X”. Cells are colored by data batch (left) and cell type
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Supplementary Figure 16. Clustering performance under different dropout rates. a-c, AMI (a), NMI (b), FMI (¢) of
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Supplementary Figure 18. Performance of CASTLE for the identification of rare cell types. a-h, UMAP
visualizations of cell embeddings from SCALEX, SCALE, cisTopic, scBasset and CASTLE on the Stimulated Droplet
dataset with degree of cell type imbalance of 0.175 (original) (a), 0.281 (b), 0.407 (c), 0.476 (d), 0.520 (e), 0.551 (f), 0.604
(g) and 0.656 (h). i, Clustering performance of different methods for recovering the rare cell types on the Stimulated
Droplet datasets with different degrees of cell type imbalance.
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Supplementary Figure 18 (continue). Performance of CASTLE for the identification of rare cell types. a-h, UMAP
visualizations of cell embeddings from SCALEX, SCALE, cisTopic, scBasset and CASTLE on the Stimulated Droplet
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Supplementary Figure 21. Performance of CASTLE with different values of hyperparameters. a, Clustering
performance of CASTLE under different values of alpha (weight of commitment loss) on 16 benchmark datasets. b,
Clustering performance of CASTLE under different values of gamma (decay ratio) with a precision of 0.01 on 16
benchmark datasets. ¢, Clustering performance of CASTLE under different values of gamma with a precision of 0.001 on
16 benchmark datasets. d, Clustering performance of CASTLE under different values of K (size of codebook) on 16
benchmark datasets. e, Clustering performance of CASTLE under different values of M (time of split quantization) on 16
benchmark datasets. Each boxplot ranges from the upper and lower quartiles with the median as the horizontal line,
whiskers extend to 1.5 times the interquartile range and points represent outliers.
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Supplementary Figure 22. Performance of CASTLE with different weights of self-designed loss functions. a,
Clustering performance of CASTLE under different values of zeta (weight of batch loss) on 4 benchmark datasets with
multiple batches. b, Clustering performance of CASTLE under different values of eta (weight of cell type loss) on 8
benchmark datasets when incorporating labeled reference datasets. ¢, Clustering performance of CASTLE under different
values of lambda (weight of classifier loss) on 8 benchmark datasets when incorporating labeled reference datasets. Each
boxplot ranges from the upper and lower quartiles with the median as the horizontal line, whiskers extend to 1.5 times the

interquartile range and points represent outliers.
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Supplementary Figure 23. Clustering performance with different designs of loss functions. Clustering performance
evaluated by ARL, AMI, NMI and FMI on 16 benchmark datasets for CASTLE, CASTLE-noEMA and CASTLE-integrated.
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Supplementary Figure 25. Clustering performance under different downsample rates. a-f, AMI (a, b), NMI (¢, d),
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Supplementary Figure 27. Clustering performance with major cell types. a-h, ARI (a, b), AMI (¢, d), NMI (e, ), FMI
(g, h) of different methods on the Stimulated Droplet dataset when incorporating unlabeled (a, c, e, g) or labeled (b, d, f,

h) reference dataset (Resting Droplet dataset) with different thresholds for reserving the major cell types.
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Supplementary Figure 28. Clustering performance with missing cell types. a-f, AMI (a, b), NMI (¢, d), FMI (e, f) of
different methods on the Stimulated Droplet dataset when incorporating unlabeled (a, ¢, e) or labeled (b, d, f) reference
dataset (Resting Droplet dataset) with none, one or all missing cell types of proB, preB and B cells.
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Supplementary Figure 29. Clustering performance with missing cell types. a-h, ARI (a, b), AMI (c, d), NMI (e, 1),
FMI (g, h) of different methods on the Stimulated Droplet dataset when incorporating unlabeled (a, ¢, e, g) or labeled (b,
d, f, h) reference dataset (Resting Droplet dataset) with none, one or all missing cell types of CD4, CD8 and NK cells.
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Supplementary Figure 30. Clustering performance with missing cell types. a-h, ARI (a, b), AMI (c, d), NMI (e, 1),
FMI (g, h) of different methods on the Stimulated Droplet dataset when incorporating unlabeled (a, ¢, e, g) or labeled (b,
d, f, h) reference dataset (Resting Droplet dataset) with none, one or all missing cell types of HSPC-ery, Ery-early and
Ery-late cells.
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Supplementary Figure 31. Clustering performance with novel cell types. a-f, AMI (a, b), NMI (¢, d), FMI (e, f) of
different methods on the Stimulated Droplet dataset when incorporating unlabeled (a, ¢, e) or labeled (b, d, f) reference
dataset (Resting Droplet dataset) with none, one or all novel cell types of proB, preB and B cells.
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Supplementary Figure 32. Clustering performance with novel cell types. a-h, ARI (a, b), AMI (¢, d), NMI (e, f), FMI
(g, h) of different methods on the Stimulated Droplet dataset when incorporating unlabeled (a, ¢, e, g) or labeled (b, d, f,
h) reference dataset (Resting Droplet dataset) with none, one or all novel cell types of CD4, CD8 and NK cells.
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Supplementary Figure 33. Clustering performance with novel cell types. a-h, ARI (a, b), AMI (¢, d), NMI (e, f), FMI
(g, h) of different methods on the Stimulated Droplet dataset when incorporating unlabeled (a, ¢, e, g) or labeled (b, d, f,
h) reference dataset (Resting Droplet dataset) with none, one or all novel cell types of HSPC-ery, Ery-early and Ery-late
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Supplementary Figure 34. Recommendation scores of reference datasets. a-b, Correlation between clustering
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Droplet dataset.
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Supplementary Figure 41. SNP enrichment analysis for cell type-specific peaks identified by CASTLE on the

Stimulated Droplet dataset. a-1, Top 30 significantly enriched tissues in SNPsea analysis on Mono-specific peaks (a),

Ery-late-specific peaks (b), Ery-early-specific peaks (¢), HSPC-ery-specific peaks (d), HSPC-specific peaks (e), CLP-

specific peaks (f), proB-specific peaks (g), preB-specific peaks (h), CD4-specific peaks (i), CD8-specific peaks (j), NK-

specific peaks (k) and Collision-specific peaks (1) identified by CASTLE. The vertical dashed line represents the one-sided

p-value cutoff at the 0.05 level, while the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with

Bonferroni correction. Using hierarchical clustering with unweighted pair-group method with arithmetic means (UPGMA),

the expression profiles were ordered. The Pearson correlation coefficients, denoting the correlation between expression

profiles, were displayed in the heatmaps.

59



proB-specific peaks

<

- —
410 05 00 05 10
Pearson’s r 0 1 2

-log1oP

——
10 -05 00 05 1.0

: 0 1 2
Pearson’s r -logsP

k NK-specific peaks

——
-1.0 05 00 05 10

. 0 1 2
Pearson’s r -lograP

CD4-specific peaks

Heart

Placenta

Liver

Pancreatic Islets

C%&CEEZH lion
i

K\dnreyr .

Spinal Cord

Fetal Brain

Testis Germ cell
e

stis
Testis Leydig cell

Trachea vaa

Thyroid

Prostate

Lun%

Fetal Lun

Adrenal Gland

Colorectal Adenocarcinoma
PB-CD19+B cells

PB-| BDGA4+Denu1t|c cells

EE EBE§+ T cel \s

PB-CD4+T cells
BM-CD34+

721B Lymphoblasts
Thymu:

Tonsil

Whole Blood
BM-CD33+Myeloid

BM.CD71+Early Erythroid

Testis Seminiferous Tubule
Adrenal Cortex

Pituita

Cerebellum

Medulla Oblongata

Whole Brain

Smooth Muscle

Cardiac Myocytes

Colorectal Adenucarcmoma
Uterus Cory

Leukemia Ie\{.mphoblastlc molt4)
Leukemia Chronic M enous(k562)
Lym homa Burkitts

7216 Lymphoblasts

T}{]mphoma Burkitts Raji
mus

PB CD4+T cells

+B cells
PB BDCA4+Denu1t|c cells
K cells

h 8 -
BM-CD105+Endothelial
PB-CD14+Monocytes
BM-CD33+Myeloid
t’h‘hole Blood

ng

Globus Pallidus

BM- CD71+Ear1y Erythroid
Adrenal Gland

Adrenal Cortex

Pancreatl:: Islets
721 B Lymphoblasts
Lymphoma Burkitts Raji

Leukemia Promyelocytic(hl60)
Lymphoma Burkitts E)Yt é

BM-CD34+
Leukemia Chronic Myelogenous(k562)
PB-CD4+T cells

c s

ells
PB- BDCA4+Denu1t|c cells
PB-CD56+NK cells
Thymus
Lymph Node
PB-CD14+Monocytes
BM-CD33+Myeloid
Whole Blood
Uterus
Prostate
Uterus Corpus
Fetal Lun
Cardiac Myocytes
Smooth Muscle
Adipocyte

P —

-1.0 05 00 05 10

Pearson’s r

g e —— |
410 -05 00 05 10
Pearson’s r

| e ——— |
10 05 00 05 10
Pearson’s r

preB-specific peaks

Atrioventricular Node
Trigeminal Ganglion
Occipital Lobe

Kidne

Testis Germ cel
Testis Semwnlferous Tubule

Testis
Tests Interstitial
Heart

Lung .

Thyroid .
Colorectal Adenocarcinoma
BM-CD105+Endothelial
Adrenal Gland

Uterus Corpus

)Z(m%homa Burkitts Raji
2 Lym hoblasts
Leukemla ﬁmphoblastlc molt4)

entritic cells

0

1

2
-log1oP

E CD5§+ ce Is
PB-CD8+T cel\s
34+

BM- CD33+MyeI0|d
PB-CD14+Monocytes
Whole Blood

4

CD8-specific peaks

BM-CD71+Early Erythroid
Bone Marmow
Caudate Nucleus

ncreas
Pancreatic |slets
Lymph Node

ymus
PB-BDCA4+Dentritic cells
PB-CD56+NK cells
PB-CD4+T cells
PB-CDB+T cells
PB- EDWS*—FE} cells I _—
Leukemia romyeo ic
Lymphoma Burkitts E)yt é
Leukemia Lymphoblastic(molt4)

M-CD34

Leukemia Chronic Myelogenous(k562)
¥m%homa Burkitts I{a

Lymphoblasts
PB-CDT4+Monocytes
BM-CD33+Myeloid

0

Whole Blood
Lung

Thyroid

Fefal Lung

Bronchial Epithelial cells
BM-CD105+Endothelial

Collision-specific peaks

0

1

-Iong

2

Pituitary

Trachea

Testis Leydig cell

Testis Seminiferous Tubule
Testis Germ cel

Ciliary Ganglion

Trigeminal Ganglion
Adrenal Gland

Adrenal Cortex

Olfactory Bulb

Uterus Corpus

Prostate

Cardiac Myoc es

Smooth Mus

Coloredal Adenocarcmoma

ung
DCA4+Dentritic cells
PB-CD19+B cells
PB-CD56+NK cells
PB-CD4+T cells
PB-CD8+T cells
Leukemia Promyelocytic(hlB0)
Lymphoma Burkitts Daudi
L mphoma Burkitts Raji

sil
BM CD33+MyeI0|d
PB-CD14+Monocytes
Whole Blood

Pancreas

Supplementary Figure 41 (continue). SNP enrichment analysis for cell type-specific peaks identified by CASTLE

on the Stimulated Droplet dataset. a-1, Top 30 significantly enriched tissues in SNPsea analysis on Mono-specific peaks

(a), Ery-late-specific peaks (b), Ery-early-specific peaks (¢), HSPC-ery-specific peaks (d), HSPC-specific peaks (e), CLP-

specific peaks (f), proB-specific peaks (g), preB-specific peaks (h), CD4-specific peaks (i), CD8-specific peaks (j), NK-

specific peaks (k) and Collision-specific peaks (1) identified by CASTLE. The vertical dashed line represents the one-sided

p-value cutoff at the 0.05 level, while the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with

Bonferroni correction. Using hierarchical clustering with unweighted pair-group method with arithmetic means (UPGMA),

the expression profiles were ordered. The Pearson correlation coefficients, denoting the correlation between expression

profiles, were displayed in the heatmaps.
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Supplementary Figure 42. Heritability enrichment analysis for cell type-specific peaks identified by CASTLE on
the Stimulated Droplet dataset. a-h, Heritability enrichments estimated by LDSC within cell type-specific peaks
identified by CASTLE and the background peaks for blood-related traits including coronary artery disease (a), alanine
amino transferase (b), creatinine (c¢), cystatinC (d), phosphate (e), urate (f), mean corpuscular hemogolobin (g) and
monocyte count (h). The error bars denote jackknife standard errors over 200 equally sized blocks of adjacent SNPs about

the estimates of enrichment, and the centers of error bars represent the average value.
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Supplementary Figure 43. SNP enrichment analysis for cell type-specific peaks identified by epiScanpy on the

Stimulated Droplet dataset. a-o, Top 30 significantly enriched tissues in SNPsea analysis on the background peaks (a),

pDC-specific peaks (b), B-specific peaks (¢), Mono-specific peaks (d), Ery-late-specific peaks (e), Ery-early-specific

peaks (f), HSPC-ery-specific peaks (g), HSPC-specific peaks (h), CLP-specific peaks (i), proB-specific peaks (j), preB-

specific peaks (k), CD4-specific peaks (1), CD8-specific peaks (m), NK-specific peaks (n) and Collision-specific peaks (0)

identified by epiScanpy. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level, while the solid

lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical clustering

with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered. The Pearson

correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.
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Supplementary Figure 43 (continue). SNP enrichment analysis for cell type-specific peaks identified by epiScanpy

on the Stimulated Droplet dataset. a-o, Top 30 significantly enriched tissues in SNPsea analysis on the background peaks

(a), pDC-specific peaks (b), B-specific peaks (¢), Mono-specific peaks (d), Ery-late-specific peaks (e), Ery-early-specific

peaks (f), HSPC-ery-specific peaks (g), HSPC-specific peaks (h), CLP-specific peaks (i), proB-specific peaks (j), preB-

specific peaks (k), CD4-specific peaks (1), CD8-specific peaks (m), NK-specific peaks (n) and Collision-specific peaks (0)

identified by epiScanpy. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level, while the solid

lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical clustering

with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered. The Pearson

correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.
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Supplementary Figure 43 (continue). SNP enrichment analysis for cell type-specific peaks identified by epiScanpy
on the Stimulated Droplet dataset. a-o, Top 30 significantly enriched tissues in SNPsea analysis on the background peaks
(a), pDC-specific peaks (b), B-specific peaks (¢), Mono-specific peaks (d), Ery-late-specific peaks (e), Ery-early-specific
peaks (f), HSPC-ery-specific peaks (g), HSPC-specific peaks (h), CLP-specific peaks (i), proB-specific peaks (j), preB-
specific peaks (k), CD4-specific peaks (1), CD8-specific peaks (m), NK-specific peaks (n) and Collision-specific peaks (0)
identified by epiScanpy. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level, while the solid
lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical clustering
with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered. The Pearson
correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.
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Supplementary Figure 44. Heritability enrichment analysis for cell type-specific peaks identified by epiScanpy on
the Stimulated Droplet dataset. a-j, Heritability enrichments estimated by LDSC within cell type-specific peaks and the
background peaks for blood-related traits including albumin (a), lymphocyte count (b), coronary artery disease (¢), alanine
amino transferase (d), creatinine (e), cystatinC (f), phosphate (g), urate (h), mean corpuscular hemogolobin (i) and
monocyte count (j). The error bars denote jackknife standard errors over 200 equally sized blocks of adjacent SNPs about

the estimates of enrichment, and the centers of error bars represent the average value.
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Supplementary Figure 45. Trajectory inference and motif enrichment analysis. a, A schematic of the authentic
hematopoietic differentiation tree for the Immune dataset, with each color representing a different cell type. b, UMAP
visualization of cell embeddings from the Immune dataset and the inferred trajectory with Slingshot. ¢, Heatmap of the top
50 most variable TF binding motifs within the peaks specific to each cluster by CASTLE and Louvain clustering for the
InSilico dataset. The deviations calculated by chromVAR are shown. d, UMAP visualization of cell embeddings for the

InSilico dataset, and chromVAR-derived deviation scores of five literature-validated motifs.
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Supplementary Figure 46. Trajectory inference based on cell embeddings from baseline methods. a-d, UMAP
visualization of cell embeddings on the Immune dataset with SCALEX (a), SCALE (b), cisTopic (¢), scBasset (d), and the
inferred trajectories with Slingshot.
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Supplementary Figure 47. SNP enrichment and heritability enrichment fold changes between the cell type-specific
peaks and background peaks with different feature-to-peak ratios on the Stimulated Droplet dataset. a-b, SNP
enrichment fold between the number of significantly enriched tissues (a) and significantly enriched blood-related tissues
(b) on the cell type-specific peaks versus background peaks with the feature-to-peak ratio of 25%, 50%, 75% and 100%.
c-1, Fold changes between the heritability enrichments of cell type-specific peaks and background peaks for blood-related
traits including albumin (c¢), lymphocyte count (d), coronary artery disease (e), alanine amino transferase (f), creatinine
(g), cystatinC (h), phosphate (i), urate (j), mean corpuscular hemogolobin (k) and monocyte count (1) with the feature-to-
peak ratio of 25%, 50%, 75% and 100%. “inf” indicates infinity.
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Supplementary Figure 47 (continue). SNP enrichment and heritability enrichment fold changes between the cell
type-specific peaks and background peaks with different feature-to-peak ratios on the Stimulated Droplet dataset.
a-b, SNP enrichment fold between the number of significantly enriched tissues (a) and significantly enriched blood-related
tissues (b) on the cell type-specific peaks versus background peaks with the feature-to-peak ratio of 25%, 50%, 75% and
100%. c-1, Fold changes between the heritability enrichments of cell type-specific peaks and background peaks for blood-
related traits including albumin (c), lymphocyte count (d), coronary artery disease (e), alanine amino transferase (f),
creatinine (g), cystatinC (h), phosphate (i), urate (j), mean corpuscular hemogolobin (k) and monocyte count (1) with the

feature-to-peak ratio of 25%, 50%, 75% and 100%. “inf” indicates infinity.
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Supplementary Figure 48. SNP enrichment analysis for cell type-specific peaks with the feature-to-peak ratio of 25%

on the Stimulated Droplet dataset. a-o, Top 30 significantly enriched tissues in SNPsea analysis on the background peaks

(a), pDC-specific peaks (b), B-specific peaks (¢), Mono-specific peaks (d), Ery-late-specific peaks (e), Ery-early-specific

peaks (f), HSPC-ery-specific peaks (g), HSPC-specific peaks (h), CLP-specific peaks (i), proB-specific peaks (j), preB-

specific peaks (k), CD4-specific peaks (1), CD8-specific peaks (m), NK-specific peaks (n) and Collision-specific peaks (0)
identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level, while the solid
lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical clustering

with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered. The Pearson

correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.
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Supplementary Figure 48 (continue). SNP enrichment analysis for cell type-specific peaks with the feature-to-peak
ratio of 25% on the Stimulated Droplet dataset. a-o, Top 30 significantly enriched tissues in SNPsea analysis on the
background peaks (a), pDC-specific peaks (b), B-specific peaks (¢), Mono-specific peaks (d), Ery-late-specific peaks (e),
Ery-early-specific peaks (f), HSPC-ery-specific peaks (g), HSPC-specific peaks (h), CLP-specific peaks (i), proB-specific
peaks (j), preB-specific peaks (k), CD4-specific peaks (1), CD8-specific peaks (m), NK-specific peaks (n) and Collision-
specific peaks (0) identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level,
while the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical
clustering with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered.
The Pearson correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.
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Supplementary Figure 48 (continue). SNP enrichment analysis for cell type-specific peaks with the feature-to-peak

ratio of 25% on the Stimulated Droplet dataset. a-o, Top 30 significantly enriched tissues in SNPsea analysis on the

background peaks (a), pDC-specific peaks (b), B-specific peaks (¢), Mono-specific peaks (d), Ery-late-specific peaks (e),

Ery-early-specific peaks (f), HSPC-ery-specific peaks (g), HSPC-specific peaks (h), CLP-specific peaks (i), proB-specific

peaks (j), preB-specific peaks (k), CD4-specific peaks (1), CD8-specific peaks (m), NK-specific peaks (n) and Collision-

specific peaks (0) identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level,

while the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical

clustering with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered.

The Pearson correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.
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Supplementary Figure 49. SNP enrichment analysis for cell type-specific peaks with the feature-to-peak ratio of 75%

on the Stimulated Droplet dataset. a-o, Top 30 significantly enriched tissues in SNPsea analysis on the background peaks

(a), pDC-specific peaks (b), B-specific peaks (¢), Mono-specific peaks (d), Ery-late-specific peaks (e), Ery-early-specific

peaks (f), HSPC-ery-specific peaks (g), HSPC-specific peaks (h), CLP-specific peaks (i), proB-specific peaks (j), preB-

specific peaks (k), CD4-specific peaks (1), CD8-specific peaks (m), NK-specific peaks (n) and Collision-specific peaks (0)
identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level, while the solid
lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical clustering

with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered. The Pearson

correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.

73



HSPC-ery-specific peaks

o a—— ]
-10 05 00 05 10

Pearson’s r 0

»

P —
-10 05 00 05 10

Pearson's r 0

1

2

-log1oP

1

2

-log1oP

o ————
-10 05 00 05

10
Pearson’s r 0

1

2
-log1oP

3

Placenta

Heart

Tongue

Medulla Oblongata
Cingulate Cortex

Caudate Nucleus

Liver

Fetal Lung

Fetal Thyroid

Lung
BM-CD105+Endothelial
Smooth Muscle

Adipocyte

Adrenal Cortex

Adrenal Gland

Testis Germ cell
PB-CD8+T cells
PB-CD4+T cells
PB-CD19+8 cells
PB-BDCA4 +Dentritic cells
PB-CD56+NK cells
Lymphoma Burkitts Raji
721 B Lymphoblasts
Lymphoma Burkitts Daudi
Leukemia Promyelocytic(hl60)
BM-CD344

Lymph Node
PB-CD14+Monocytes
BM-CD33+Myeloid
‘Whole Blood

CLP-specific peaks

Placenta

BM-CD71+Early Erythroid
Pancreas

Liver

Uterus

Prostate

Thymus

Ovary

Leukemia Chronic Myelogenous(k562)
Leukemia Lymphoblastic(moltd)
721 B Lymphoblasts
PB-CD4+T cells

PB-CD8+T cells
PB-BDCA4+Dentritic cells
Smooth Muscle

Adipocyte

Colorectal Adenecarcinoma
PB-CD14+Monocytes
Whole Blood

Lung

Fetal Lung

Adrenal Gland

Trachea

Cerebellum Peduncles
Cerebellum

Whole Brain

Fetal Brain

Testis Germ cell

Testis
Testis Interstitial

preB-specific peaks

Atrioventricular Node
Trigeminal Ganglion
Parietal Lobe
Qecipital Lobe

ney
Testis Germ cell
Testis
Testis Leydig cell
Testis Seminiferous Tubule
Testis Interstitial
Placenta

Heart
BM-CD105+Endothelial
Lung

Cardiac Myocytes

Uterus Corpus

Lymphoma Burkitts Raji
721 B Lymphoblasts
Leukemia Lymphoblastic(molt4)
PB-CD56+NK cells
PB-BDCA4+Dentritic cells
PB-CD19+B cells
PB-CD4+4T cells
PB-CD8+T cells
BM-CD34+

Thymus

Lymph Node
BM-CD33+Myeloid
PB-CD14+Monocytes
Whole Blood

e
-10 05 00 05

Pearson’s r

—
1.0 05 00 05

Pearson’s r

.
-10 05 00 05

Pearson’s r

10

1.0

10

HSPC-specific peaks

0

1

2 3
-log1oP

BM-CD71+Early Erythroid
Fetal Liver

Placenta

Heart

Thalamus

Temporal Lobe

Caudate Nucleus
Olfactory Bulb

Prostate

Uterus

Thymus

BM-CD34+

Lymphoma Burkitts Daudi
721 B Lymphoblasts
Lymphoma Burkitts Raji
Leuk Chronic Myel k562)
PB-CD8+T cells

PB-CD4+T cells

PB-CD19+B cells

PB-BDCA4+ Dentritic cells
PB-CD56+NK cells
PB-CD14+Monocytes
BM-CD33+Myeloid
Cardiac Myocytes

Smooth Muscle

Bronchial Epithelial cells
Colorectal Adenocarcinoma
BM-CD105+Endothelial
Fetal Lung

Lung

proB-specific peaks

£

0

2 3 4
-log1oP

Placenta

Heart

Liver

Pancreatic Islets
Pancreas

Spinal Cord
Caudate Nucleus

Lymph Node
Tonsil

Thymus

PB-CD8+T cells
PB-CD4+T cells
BM-CD34+

PB-CD56+NK cells
PB-CD19+B cells
PB-BDCA4+Dentritic cells
721 B Lymphoblasts
Lymphoma Burkitts Raji
BM-CD33+Myeloid
PBE-CD14+Monocytes
Whole Blood

Prostate

Thyroid

Lung

Fetal Lung

Colorectal Adenocarcinoma
Adrenal Gland

CD4-specific peaks

0

1

2 3 4 5
-log1oP

Pituitary

Placenta

Olfactory Bulb

Adrenal Cortex

‘Whole Brain
BM-CD71+Early Erythroid
Heart

Pancreas

Pancreatic Islets

Uterus

Prostate

Thyroid

Lung

Smooth Muscle
Bronchial Epithelial cells
Whole Blood

Fetal Thyroid

Fetal Lung
BM-CD105+Endothelial
Lymph Node

Thymus

PB-BDCA4+Dentritic cells
PB-CD19+B cells
PB-CD56+NK cells
PB-CD8+T cells

PB-CD4+T cells

Lymphoma Burkitts Raji

721 B Lymphoblasts
Leukemia Promyelocytic(hl60)
L ia Chronic Myelog,

k562)

Supplementary Figure 49 (continue). SNP enrichment analysis for cell type-specific peaks with the feature-to-peak

ratio of 75% on the Stimulated Droplet dataset. a-o, Top 30 significantly enriched tissues in SNPsea analysis on the

background peaks (a), pDC-specific peaks (b), B-specific peaks (¢), Mono-specific peaks (d), Ery-late-specific peaks (e),

Ery-early-specific peaks (f), HSPC-ery-specific peaks (g), HSPC-specific peaks (h), CLP-specific peaks (i), proB-specific

peaks (j), preB-specific peaks (k), CD4-specific peaks (1), CD8-specific peaks (m), NK-specific peaks (n) and Collision-
specific peaks (0) identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level,
while the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical

clustering with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered.

The Pearson correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.
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Supplementary Figure 49 (continue). SNP enrichment analysis for cell type-specific peaks with the feature-to-peak
ratio of 75% on the Stimulated Droplet dataset. a-o, Top 30 significantly enriched tissues in SNPsea analysis on the
background peaks (a), pDC-specific peaks (b), B-specific peaks (¢), Mono-specific peaks (d), Ery-late-specific peaks (e),
Ery-early-specific peaks (f), HSPC-ery-specific peaks (g), HSPC-specific peaks (h), CLP-specific peaks (i), proB-specific
peaks (j), preB-specific peaks (k), CD4-specific peaks (1), CD8-specific peaks (m), NK-specific peaks (n) and Collision-
specific peaks (0) identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level,
while the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical
clustering with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered.
The Pearson correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.
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Supplementary Figure 50. SNP enrichment analysis for cell type-specific peaks with the feature-to-peak ratio of
100% on the Stimulated Droplet dataset. a-o, Top 30 significantly enriched tissues in SNPsea analysis on the background
peaks (a), pDC-specific peaks (b), B-specific peaks (¢), Mono-specific peaks (d), Ery-late-specific peaks (e), Ery-early-
specific peaks (f), HSPC-ery-specific peaks (g), HSPC-specific peaks (h), CLP-specific peaks (i), proB-specific peaks (j),
preB-specific peaks (k), CD4-specific peaks (1), CD8-specific peaks (m), NK-specific peaks (n) and Collision-specific
peaks (o) identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level, while
the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical
clustering with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered.
The Pearson correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.
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Supplementary Figure 50 (continue). SNP enrichment analysis for cell type-specific peaks with the feature-to-peak
ratio of 100% on the Stimulated Droplet dataset. a-o, Top 30 significantly enriched tissues in SNPsea analysis on the
background peaks (a), pDC-specific peaks (b), B-specific peaks (¢), Mono-specific peaks (d), Ery-late-specific peaks (e),
Ery-early-specific peaks (f), HSPC-ery-specific peaks (g), HSPC-specific peaks (h), CLP-specific peaks (i), proB-specific
peaks (j), preB-specific peaks (k), CD4-specific peaks (1), CD8-specific peaks (m), NK-specific peaks (n) and Collision-
specific peaks (0) identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level,
while the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical
clustering with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered.
The Pearson correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.
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Supplementary Figure 50 (continue). SNP enrichment analysis for cell type-specific peaks with the feature-to-peak
ratio of 100% on the Stimulated Droplet dataset. a-o, Top 30 significantly enriched tissues in SNPsea analysis on the
background peaks (a), pDC-specific peaks (b), B-specific peaks (¢), Mono-specific peaks (d), Ery-late-specific peaks (e),
Ery-early-specific peaks (f), HSPC-ery-specific peaks (g), HSPC-specific peaks (h), CLP-specific peaks (i), proB-specific
peaks (j), preB-specific peaks (k), CD4-specific peaks (1), CD8-specific peaks (m), NK-specific peaks (n) and Collision-
specific peaks (0) identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level,
while the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical
clustering with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered.
The Pearson correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.
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Supplementary Figure 51. Heritability enrichment analysis for cell type-specific peaks with the feature-to-peak
ratio of 25% on the Stimulated Droplet dataset. a-j, Heritability enrichments estimated by LDSC within cell type-
specific peaks identified by CASTLE and the background peaks for blood-related traits including albumin (a), lymphocyte
count (b), coronary artery disease (¢), alanine amino transferase (d), creatinine (e), cystatinC (f), phosphate (g), urate (h),
mean corpuscular hemogolobin (i) and monocyte count (j). The error bars denote jackknife standard errors over 200 equally
sized blocks of adjacent SNPs about the estimates of enrichment, and the centers of error bars represent the average value.
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Supplementary Figure 52. Heritability enrichment analysis for cell type-specific peaks with the feature-to-peak
ratio of 75% on the Stimulated Droplet dataset. a-j, Heritability enrichments estimated by LDSC within cell type-
specific peaks identified by CASTLE and the background peaks for blood-related traits including albumin (a), lymphocyte
count (b), coronary artery disease (¢), alanine amino transferase (d), creatinine (e), cystatinC (f), phosphate (g), urate (h),
mean corpuscular hemogolobin (i) and monocyte count (j). The error bars denote jackknife standard errors over 200 equally
sized blocks of adjacent SNPs about the estimates of enrichment, and the centers of error bars represent the average value.
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Supplementary Figure 53. Heritability enrichment analysis for cell type-specific peaks with the feature-to-peak
ratio of 100% on the Stimulated Droplet dataset. a-j, Heritability enrichments estimated by LDSC within cell type-
specific peaks identified by CASTLE and the background peaks for blood-related traits including albumin (a), lymphocyte
count (b), coronary artery disease (¢), alanine amino transferase (d), creatinine (e), cystatinC (f), phosphate (g), urate (h),
mean corpuscular hemogolobin (i) and monocyte count (j). The error bars denote jackknife standard errors over 200 equally
sized blocks of adjacent SNPs about the estimates of enrichment, and the centers of error bars represent the average value.
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SNP enrichment fold of the number of enriched tissues on cell type-specific peaks versus background peaks

SNP enrichment fold of the number of enriched blood-related tissues on cell type-specific peaks versus background peaks
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Supplementary Figure 54. SNP enrichment and heritability enrichment fold changes between the cell type-specific

peaks and background peaks with different feature-to-peak ratios on the Resting Droplet dataset. a-b, SNP

enrichment fold between the number of significantly enriched tissues (a) and significantly enriched dataset-related tissues

(b) on the cell type-specific peaks versus background peaks with the feature-to-peak ratio of 25%, 50%, 75% and 100%.

c-f, Fold changes between the heritability enrichments of cell type-specific peaks and background peaks for dataset-related
traits including HbAlc (¢), Red blood cell distribution width (d), SHBG (e) and Total Bilirubin (f) with the feature-to-peak

ratio of 25%, 50%, 75% and 100%.
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Supplementary Figure 55. SNP enrichment analysis for cell type-specific peaks with the feature-to-peak ratio of 50%

on the Resting Droplet dataset. a-o, Top 30 significantly enriched tissues in SNPsea analysis on the background peaks

(a), pDC-specific peaks (b), B-specific peaks (¢), Mono-specific peaks (d), Ery-late-specific peaks (e), Ery-early-specific

peaks (f), HSPC-ery-specific peaks (g), HSPC-specific peaks (h), CLP-specific peaks (i), proB-specific peaks (j), preB-

specific peaks (k), CD4-specific peaks (1), CD8-specific peaks (m), NK-specific peaks (n) and Collision-specific peaks (0)
identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level, while the solid
lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical clustering

with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered. The Pearson

correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.
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Supplementary Figure 55 (continue). SNP enrichment analysis for cell type-specific peaks with the feature-to-peak
ratio of 50% on the Resting Droplet dataset. a-o, Top 30 significantly enriched tissues in SNPsea analysis on the
background peaks (a), pDC-specific peaks (b), B-specific peaks (¢), Mono-specific peaks (d), Ery-late-specific peaks (e),
Ery-early-specific peaks (f), HSPC-ery-specific peaks (g), HSPC-specific peaks (h), CLP-specific peaks (i), proB-specific
peaks (j), preB-specific peaks (k), CD4-specific peaks (1), CD8-specific peaks (m), NK-specific peaks (n) and Collision-
specific peaks (0) identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level,
while the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical
clustering with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered.
The Pearson correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.
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Supplementary Figure 55 (continue). SNP enrichment analysis for cell type-specific peaks with the feature-to-peak

ratio of 50% on the Resting Droplet dataset. a-o, Top 30 significantly enriched tissues in SNPsea analysis on the

background peaks (a), pDC-specific peaks (b), B-specific peaks (¢), Mono-specific peaks (d), Ery-late-specific peaks (e),

Ery-early-specific peaks (f), HSPC-ery-specific peaks (g), HSPC-specific peaks (h), CLP-specific peaks (i), proB-specific

peaks (j), preB-specific peaks (k), CD4-specific peaks (1), CD8-specific peaks (m), NK-specific peaks (n) and Collision-

specific peaks (0) identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level,

while the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical

clustering with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered.

The Pearson correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.
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Supplementary Figure 56. Heritability enrichment analysis for cell type-specific peaks with the feature-to-peak
ratio of 50% on the Resting Droplet dataset. a-d, Heritability enrichments estimated by LDSC within cell type-specific
peaks identified by CASTLE and the background peaks for dataset-related traits including HbAlc (a), Red blood cell
distribution width (b), SHBG (c¢) and Total Bilirubin (d). The error bars denote jackknife standard errors over 200 equally
sized blocks of adjacent SNPs about the estimates of enrichment, and the centers of error bars represent the average value.
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Supplementary Figure 57. SNP enrichment and heritability enrichment fold changes between the cell type-specific
peaks and background peaks with different feature-to-peak ratios on the Immune dataset. a-b, SNP enrichment fold
between the number of significantly enriched tissues (a) and significantly enriched dataset-related tissues (b) on the cell
type-specific peaks versus background peaks with the feature-to-peak ratio of 25%, 50%, 75% and 100%. c-f, Fold changes
between the heritability enrichments of cell type-specific peaks and background peaks for dataset-related traits including

HbAlc (¢), Triglycerides (d), Large artery stroke (e) and Monocyte count (f) with the feature-to-peak ratio of 25%, 50%,
75% and 100%. “inf” indicates infinity.
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Supplementary Figure 58. SNP enrichment analysis for cell type-specific peaks with the feature-to-peak ratio of 50%

on the Immune dataset. a-k, Top 30 significantly enriched tissues in SNPsea analysis on the background peaks (a), CLP-
specific peaks (b), CMP/BMP-specific peaks (¢), GMP-specific peaks (d), HSC/MPP-specific peaks (e), LMPP-specific
peaks (f), MDP-specific peaks (g), MEP-specific peaks (h), Pro-B-specific peaks (i), cDC-specific peaks (j) and pDC-
specific peaks (k) identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level,
while the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical

clustering with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered.

The Pearson correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.
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Supplementary Figure 58 (continue). SNP enrichment analysis for cell type-specific peaks with the feature-to-peak
ratio of 50% on the Immune dataset. a-k, Top 30 significantly enriched tissues in SNPsea analysis on the background
peaks (a), CLP-specific peaks (b), CMP/BMP-specific peaks (c¢), GMP-specific peaks (d), HSC/MPP-specific peaks (e),
LMPP-specific peaks (f), MDP-specific peaks (g), MEP-specific peaks (h), Pro-B-specific peaks (i), cDC-specific peaks
(j) and pDC-specific peaks (k) identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at
the 0.05 level, while the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction.
Using hierarchical clustering with unweighted pair-group method with arithmetic means (UPGMA), the expression
profiles were ordered. The Pearson correlation coefficients, denoting the correlation between expression profiles, were
displayed in the heatmaps.
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Supplementary Figure 59. Heritability enrichment analysis for cell type-specific peaks with the feature-to-peak
ratio of 50% on the Immune dataset. a-d, Heritability enrichments estimated by LDSC within cell type-specific peaks
identified by CASTLE and the background peaks for dataset-related traits including HbA1c (a), Triglycerides (b), Large
artery stroke (c¢) and Monocyte count (d). The error bars denote jackknife standard errors over 200 equally sized blocks of
adjacent SNPs about the estimates of enrichment, and the centers of error bars represent the average value.
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Supplementary Figure 60. SNP enrichment and heritability enrichment fold changes between the cell type-specific
peaks and background peaks with different feature-to-peak ratios on the Fetal Lung dataset. a-b, SNP enrichment
fold between the number of significantly enriched tissues (a) and significantly enriched dataset-related tissues (b) on the
cell type-specific peaks versus background peaks with the feature-to-peak ratio of 25%, 50%, 75% and 100%. c-f, Fold
changes between the heritability enrichments of cell type-specific peaks and background peaks for dataset-related traits
including Lung FVC smoke (¢), Cardiovascular (d), Hypertension (e) and Mean platelet volume (f) with the feature-to-
peak ratio of 25%, 50%, 75% and 100%. “inf” indicates infinity.
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Supplementary Figure 61. SNP enrichment analysis for cell type-specific peaks with the feature-to-peak ratio of 50%

on the Fetal Lung dataset. a-j, Top 30 significantly enriched tissues in SNPsea analysis on the background peaks (a),

Bronchiolar and alveolar epithelial cells-specific peaks (b), Ciliated epithelial cells-specific peaks (¢), Lymphatic

endothelial cells-specific peaks (d), Lymphoid cells-specific peaks (e), Megakaryocytes-specific peaks (f), Myeloid cells-

specific peaks (g), Neuroendocrine cells-specific peaks (h), Stromal cells-specific peaks (i) and Vascular endothelial cells-
specific peaks (j) identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level,
while the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical

clustering with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered.

The Pearson correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.
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Supplementary Figure 61 (continue). SNP enrichment analysis for cell type-specific peaks with the feature-to-peak

ratio of 50% on the Fetal Lung dataset. a-j, Top 30 significantly enriched tissues in SNPsea analysis on the background

peaks (a), Bronchiolar and alveolar epithelial cells-specific peaks (b), Ciliated epithelial cells-specific peaks (¢), Lymphatic

endothelial cells-specific peaks (d), Lymphoid cells-specific peaks (e), Megakaryocytes-specific peaks (f), Myeloid cells-

specific peaks (g), Neuroendocrine cells-specific peaks (h), Stromal cells-specific peaks (i) and Vascular endothelial cells-
specific peaks (j) identified by CASTLE. The vertical dashed line represents the one-sided p-value cutoff at the 0.05 level,
while the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with Bonferroni correction. Using hierarchical

clustering with unweighted pair-group method with arithmetic means (UPGMA), the expression profiles were ordered.

The Pearson correlation coefficients, denoting the correlation between expression profiles, were displayed in the heatmaps.
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Supplementary Figure 62. Heritability enrichment analysis for cell type-specific peaks with the feature-to-peak
ratio of 50% on the Fetal Lung dataset. a-d, Heritability enrichments estimated by LDSC within cell type-specific peaks
identified by CASTLE and the background peaks for dataset-related traits including Lung FVC smoke (a), Cardiovascular
(b), Hypertension (c¢) and Mean platelet volume (d). The error bars denote jackknife standard errors over 200 equally sized

blocks of adjacent SNPs about the estimates of enrichment, and the centers of error bars represent the average value.
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Supplementary Figure 63. SNP enrichment and heritability enrichment fold changes between the cell type-specific
peaks and background peaks with different feature-to-peak ratios on the Fetal Liver dataset. a-b, SNP enrichment
fold between the number of significantly enriched tissues (a) and significantly enriched dataset-related tissues (b) on the
cell type-specific peaks versus background peaks with the feature-to-peak ratio of 25%, 50%, 75% and 100%. c-f, Fold
changes between the heritability enrichments of cell type-specific peaks and background peaks for dataset-related traits
including Cholesterol (¢), HDL Cholesterol (d), Triglycerides (e) and Monocyte count (f) with the feature-to-peak ratio of
25%, 50%, 75% and 100%.
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Supplementary Figure 64. SNP enrichment analysis for cell type-specific peaks with the feature-to-peak ratio of 50%

on the Fetal Liver dataset. a-i, Top 30 significantly enriched tissues in SNPsea analysis on the background peaks (a),

Erythroblasts-specific peaks (b), Hematopoietic stem cells-specific peaks (¢), Hepatoblasts-specific peaks (d), Lymphoid

cells-specific peaks (e), Megakaryocytes-specific peaks (f), Myeloid cells-specific peaks (g), Stellate cells-specific peaks
(h) and Vascular endothelial cells-specific peaks (i) identified by CASTLE. The vertical dashed line represents the one-
sided p-value cutoff at the 0.05 level, while the solid lines denotes the cutoff at 0.05 level for the one-sided p-value with

Bonferroni correction. Using hierarchical clustering with unweighted pair-group method with arithmetic means (UPGMA),

the expression profiles were ordered. The Pearson correlation coefficients, denoting the correlation between expression

profiles, were displayed in the heatmaps.

96



Myeloid cells-specific peaks

———
10 05 00 05 10
Pearson's r

T e—
10 D5 00 05 10
Pearson’'s r

———
01234567

$

0

-Iong

1

2 3
-Iogqu

4

Heart

Bone Marrow

Placenta

Liver

Adrenal Cortex

Adrenal Gland

Kidney

Fetal Thyroid

Fetal Lung

Lung

Pancreatic Islets

Prostate

Uterus

Uterus Corpus

Thymus

Colorectal Adenocarcinoma
Bronchial Epithelial cells
Smooth Muscle

Cardiac Myocytes
PB-BDCA4+Dentritic cells
PB-CD19+B cells
PB-CD56+NK cells

721 B Lymphoblasts
Lymphoma Burkitts Raji
Leukemia Promyelocytic(hl60)
Lymphoma Burkitts Daudi
BM-CD34+
PB-CD14+Monocytes
BM-CD33+Myeloid
Whole Blood

Vascular endothelial cells-specific peaks

Skeletal Muscle

Heart

Placenta

Liver

Pancreas

Prostate

Lun,

Fetal Lung

Thymus

Bronchial Epithelial cells
Colorectal Adenocarcinoma
Smooth Muscle

Cardiac Myocytes
Adipocyte

PB-CD19+B cells
PB-BDCA4+Dentritic cells
PB-CD56+NK cells
Lymphoma Burkitts Raji
Tonsil

BM-CD33+Myeloid
PB-CD14+Monocytes
Whole Blood
Trachea

Bone Marrow
Adrenal Gland
Adrenal Cortex
Olfactory Bulb
Kidn

Caudate Nucleus
Cerebellum

Stellate cells-specific peaks

——

—
-10 05 00 05 10
Pearson’'s r

0 1

2 3 4 5
-Iong’

Uterus

Prostate

Thymus

Thyroid

Lung

Smooth Muscle

Cardiac Myocytes
Bronchial Epithelial cells
Colorectal Adenocarcinoma
Adipocyte

Fetal Thyroid

Fetal Lung

Adrenal Gland
PB-CD8+T cells
PB-CD4+T cells
PB-CD19+B cells
PB-CD56+NK cells
PB-BDCA4+Dentritic cells
Lymphoma Burkitts Raji
PB-CD14+Monocytes
BM-CD33+Myeloid
Whaole Blood

Spinal Cord

Caudate Nucleus
Medulla Oblongata
Temporal Lobe
Thalamus

Placenta

Heart

Pancreas

Supplementary Figure 64 (continue). SNP enrichment analysis for cell type-specific peaks with the feature-to-peak

ratio of 50% on the Fetal Liver dataset. a-i, Top 30 significantly enriched tissues in SNPsea analysis on the background

peaks (a), Erythroblasts-specific peaks (b), Hematopoietic stem cells-specific peaks (¢), Hepatoblasts-specific peaks (d),

Lymphoid cells-specific peaks (e), Megakaryocytes-specific peaks (f), Myeloid cells-specific peaks (g), Stellate cells-
specific peaks (h) and Vascular endothelial cells-specific peaks (i) identified by CASTLE. The vertical dashed line
represents the one-sided p-value cutoff at the 0.05 level, while the solid lines denotes the cutoff at 0.05 level for the one-

sided p-value with Bonferroni correction. Using hierarchical clustering with unweighted pair-group method with arithmetic

means (UPGMA), the expression profiles were ordered. The Pearson correlation coefficients, denoting the correlation

between expression profiles, were displayed in the heatmaps.
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Supplementary Figure 65. Heritability enrichment analysis for cell type-specific peaks with the feature-to-peak
ratio of 50% on the Fetal Liver dataset. a-d, Heritability enrichments estimated by LDSC within cell type-specific peaks
identified by CASTLE and the background peaks for dataset-related traits including Cholesterol (a), HDL Cholesterol (b),
Triglycerides (¢) and Monocyte count (d). The error bars denote jackknife standard errors over 200 equally sized blocks
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of adjacent SNPs about the estimates of enrichment, and the centers of error bars represent the average value.
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Supplementary Tables

Supplementary Table 1. Summary of datasets used in this study.

Dataset Species | No. of cells | No. of peaks | No. of cell types | Sparsity (%)
InSilico®* Human 1377 68,069 6 96.849%
Stimulated Droplet21 Human 75,968 156,311 14 99.330%
Resting Droplet?! Human 60,495 156,311 14 99.458%
Fetal Lung®! Human 72,662 1,050,819 9 99.658%
Fetal Liver*! Human 183,175 1,050,819 8 99.823%
Immune?® Human 18,489 571,400 10 98.453%
Splenocyte! Mouse 3166 77,453 12 83.386%
Bone Marrow A+ Mouse 4033 436,206 15 99.095%
Bone Marrow B¥ Mouse 4370 436,206 18 99.207%
Lung A% Mouse 5122 436,206 22 99.174%
Lung B¥ Mouse 4874 436,206 25 99.174%
Whole Brain A*? Mouse 5494 436,206 21 98.537%
Whole Brain B* Mouse 3272 436,206 20 98.325%
Cerebellum*? Mouse 2278 436,206 20 99.178%
Testes*? Mouse 2723 436,206 10 98.936%
Brain®! Mouse 13,671 479,127 20 98.923%
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