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Supplementary Figure 1: Sampling plans. Two-dimensional example of building sampling
plans with one-dimensional quadrature rules of di�erent orders. Left shows a standard
method, where for both inputs a 2nd-order quadrature rule is selected, leading to a dense
sampling plan. Right displays a dimension-adaptive example at the 4-th iteration. The
�rst iteration always contains the 0-th order rule for all inputs, i.e. Λ = {(0, 0)} in this
two-dimensional case. A possible sequence which results in the setup shown above could be
(0, 0)→ (1, 0)→ (0, 1)→ (0, 2), and the 5-th multi index to be added to Λ must be selected
from one of the admissible forward neighbors. Note that (1, 2) is not an admissible forward
neighbour, since its backward neighbour (1, 1) is not in Λ (the gray squares). The displayed
sampling plan is built from a linear combination of tensor products, using the quadrature
orders in Λ.

1 Introduction

The Supplementary Information contains results which provides further information on as-
pects of the uncertainty in the CovidSim code, along with details on the parameter re�nement
we performed.

2 Parameter re�nement

The dimension-adaptive method iteratively builds a sampling plan, using a linear combina-
tion of points from quadrature rules of di�erent order, as the locations on which to evaluate
CovidSim. All parameters are initialized with quadrature order zero, and re�nement is
achieved by anisotropically increasing the quadrature order of (combinations of) parameters
within a given iteration of the algorithm, based on a suitable error metric, see Supplementary
Figure 1 for an illustration.

Consider Supplementary Figure 2, which shows the colour-coded re�nement per iteration.
Speci�cally, each column shows the quadrature orders that were used to re�ne the sampling
plan. The �rst column is fully white, as all parameters are initialised to a zero-order rule.
In the second column one parameter is re�ned to �rst order, and from there on di�erent
(combinations) of parameters are re�ned. Clearly, during roughly the �rst 50 iterations, the
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Supplementary Figure 2: Iterative re�nement of sampling. Colour-coded re�nements
per iteration of the dimension-adaptive algorithm. For the sake of clarity, not all iterations
are shown. These results were obtained for S1.

algorithm re�nes many combinations of important parameters to a �rst-order quadrature
rule, before the �rst parameter is re�ned to second order. That is, it focuses on interaction
e�ects between di�erent parameters, and in doing so it creates a relatively dense sampling
plan in the hypercube spanned by the important parameters.

3 Parameter distributions

Table 1 contains the 19 parameters which were included in the �nal UQ campaign. All were
prescribed with uniform distributions with ranges displayed in Table 1, along with their
default values as found in the Report 9 parameter input �les [1].

The `Relative spatial contact rates by age power' is not a direct input parameter to
CovidSim. It is part of a parametrization for the `Relative spatial contact rates by age
array' input, which is de�ned for a number of age groups with the default values of [0.6,
0.7, 0.75, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.75, 0.5]. There is a clear structure to this array, and it
does not make sense to vary each entry independently form the others. Therefore, since these
values lie between 0 and 1, we apply a simple power law to the default values, where `Relative
spatial contact rates by age power' is the exponent that we vary. This is implemented via a
custom EasyVVUQ encoder, see [2] for the software.

4 Tuning ICU triggers

In this section we present the results for a third UQ campaign, at R0 = 2.6, and ICU trigger
values which are �tted to data. We use two data sources, the �rst detailing the 7 day rolling
average of the the new ICU admissions as a percentage of new hospital admissions [3]. With
data for the 7 day rolling average of new hospital admissions from [4], we can therefore obtain
an estimate for the number of weekly new ICU admissions, which are the required values for
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Parameter name default min max group

Relative household contact rate after closure 1.50 1.20 1.80 I

Household level compliance with quarantine 0.50 0.50 0.90 I

Relative spatial contact rate given social distancing 0.25 0.15 0.35 I

Delay to start household quarantine 1.00 0.50 3.50 I

Length of time households are quarantined 14.00 11.50 16.50 I

Delay to start case isolation 1.00 0.50 3.50 I

Duration of case isolation 7.00 4.50 9.50 I

Symptomatic infectiousness relative to asymptomatic 1.50 1.00 2.00 D

Proportion symptomatic 0.66 0.40 0.80 D

Latent period 4.59 3.00 6.00 D

Household attack rate 0.14 0.10 0.19 D

Relative spatial contact rates by age power 1.00 0.25 4.00 D

Residual place contacts after household quarantine 0.25 0.20 0.30 SG

Relative place contact rate given social distancing by place type2 0.75 0.60 0.90 SG

Relative place contact rate given social distancing by place type3 0.75 0.60 0.90 SG

Relative rate of random contacts if symptomatic 0.50 0.40 0.60 SG

Relative level of place attendance if symptomatic1 0.25 0.20 0.30 SG

Relative level of place attendance if symptomatic2 0.50 0.40 0.60 SG

Relative level of place attendance if symptomatic3 0.50 0.40 0.60 SG

Supplementary Table 1: The parameters, with their default values and uncertain range,
which were included in the �nal UQ campaign. Variables ending with a number are part
of a vector with the same name. The `group' column indicates the group from which the
parameter was selected, namely the intervention (I), disease (D) of spatial/geographic (SG)
group. A description of these parameters can be found in our `parameter list' folder in [2].

the ICU triggers.
Next we try to match CovidSim's `on' and 'o�' events to reality. By March 25, all NPIs

were in place in the UK. We then extract the rolling average of new hospital admissions
(1987) and the percentage which moves to the ICU from the data at that date (12%), such
that our estimate for the `on' trigger is 1987 × 0.12 ≈ 238. It is not possible to match
CovidSim's `o�' event to actual events. The model relaxation of NPIs consists of turning o�
both place closure of schools and universities (PC) and general social distancing (SD) [5].
A simultaneous relaxation of PC and SD did not occur in the UK. The stay-at-home order
ended on May 13, which we will use instead, giving an `o�' trigger of 928 × 0.05 ≈ 46 new
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Supplementary Figure 3: Cumulative death predictions with tuned ICU triggers.

The mean cumulative death prediction for the scenario with tuned ICU triggers, plus con�-
dence intervals (CI), and at the right of the �gure, the pdf of the total death count after 800
days. These results were obtained using a computational budget of 3000 CovidSim evalua-
tions per scenario. Day 0 corresponds to January 1st, 2020. In addition, we plot the observed
cumulative death count data for the UK (green squares), obtained from [7]. The �rst data
point is at March 6th 2020, which corresponds to day 66. The striped line is a single sample
from CovidSim (current release), run with the baseline parameter values of Report 9.

weekly ICU cases.
The con�dence intervals obtained in this way are shown in Supplementary Figure 3. Note

that these do not deviate from the Results section of the main manuscript in any signi�cant
(qualitative) way. We therefore conclude that tuning other scenario parameters, such as R0

and the initial condition as done in [6], is more e�ective if one wishes to remove the bias of
the mean prediction with respect to the validation data.

5 Random seeds

CovidSim is stochastic, with 4 random seeds, speci�ed via the command line. Two random
seeds are used in the creation of the network of individuals mentioned in the Introduction.
The remaining seeds a�ect the interactions between individuals, controlling how they be-
come infected and propagate infection. The role of the random seeds in the code is of some
signi�cance, but they do not play as large a role as the dominant parameters shown in the
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preceding section. Speci�cally, we varied the 4 random seeds, keeping all other parame-
ters �xed, and compared the amount of output variance we obtain compared to varying
the parameters with �xed seeds. The uncertainty due to the seeds is signi�cantly smaller,
see Supplementary Figure 4. In light of these results, we do not vary the random seeds in
our parametric uncertainty analysis. We do note however, that the large number of infec-
tions in the population could damp the e�ect of stochastic dynamics. For diseases with low
prevalence, like measles, stochastic dynamics may well prove to be an important source of un-
certainty. In this case one may use recently developed uncertainty-quanti�cation techniques,
designed speci�cally for stochastic simulators [8].
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Supplementary Figure 4: Cumulative death predictions with varying random seeds.

The con�dence intervals (CI) for the predicted cumulative deaths under scenario S1, varying
the random seeds only. The seeds were sampled on a standard tensor grid sampling plan of
81 points. The variance is signi�cantly smaller than in Figure 1 of the main article, in which
19 input parameters were varied.

6 Model structure uncertainty

We also reiterate that there is uncertainty in the model structure M, as a di�erent model
might have given a better �t to the data, while still conditioned on the same scenario of
the preceding section. For instance, during the pandemic it has become apparent that the
COVID-19 spread in hospitals and care homes constituted a signi�cant fraction of the overall
spread, particularly in the UK [1]. The spread in these locations, which is not explicitly
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modelled in CovidSim, may also be a reason why the number of cases initially forecast with
CovidSim was lower than the number that occurred in reality. Although precautions have
been taken to reduce this spread, and the availability of personal protective equipment has
improved, incorporating these factors will still be important for those models that need to
be validated against data from the start of the pandemic.

Other missing epidemiological processes which might become important for future pre-
dictions are face masks and contact tracing. In March 2020, the bene�cial e�ects of wearing
face masks was still heavily contested [9]. However, research is now available that suggests
that wearing a face mask reduces viral spread when coughing [10], and that it correlates on
the population level with a reduced case incidence [11].

In many countries with low case prevalence, contact tracing is used to reduce the spread
of COVID-19. Contact tracing capability was very limited in the UK during March 2020,
but it has now improved and could be incorporated in future models. Here, the quality and
extent of contact tracing are important, as imperfect contact tracing has a strongly reduced
bene�t [12].

One might also think of a ban on public events, i.e. limiting gatherings to below a speci�ed
number of people, as a missing process. This is often one of the �rst NPIs to be implemented;
see [13] for a time line. However, the argument can be made that general social distancing
implicitly takes this into account.

Some practical issues may arise in regard to validating new model components. One
would need hard data on the e�ect of face masks or contact tracing in order to directly
validate the new model components. Alternatively, indirect data might be used, e.g. to see
if the inclusion of these new model structures reduces the bias between the mean cumulative
death prediction and the validation data. Another sensible recourse would be to treat new
components as probabilistic, and perform a UQ study on the model structure uncertainty
[14, 15].

7 Other quantities of interest

We have thus far only focused on cumulative death predictions. Here we will brie�y show
the con�dence intervals for Rt, i.e. the e�ective reproduction number as a function of time
t. We will focus on the scenario with the tuned ICU triggers from Section 4. The results
are depicted in Supplementary Figure 5. After an initial transient part, the 95% con�dence
intervals are bounded between an Rt value of 2.0 and 0.7. These bounds are generated by the
sawtooth pattern of individual model outputs, of which we show a random example as well.
Interestingly, the actual R value has not fallen below 0.7 in the UK [16], so it seems that
CovidSim predicts this quite well. The straight dotted line marks Rt = 1, which practically
overlaps with the mean prediction after the initial transient part.
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Supplementary Figure 5: The mean and 95% con�dence interval for Rt. A single
sample is also shown, whose sawtooth pattern clearly indicates the e�ect of the on/o� ICU
triggers. After the initial transient part, the upper and lower 95% con�dence intervals are
located at approximately 2.0 and 0.7. The dotted line indicates Rt = 1.
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8 Other Sobol indices

The main article only showed the Sobol indices for the three most in�uential inputs for
scenario S1 and S2. Instead, Supplementary Figure 6 displays the �rst-order Sobol indices
for all 19 input parameters and both scenarios. The results for S1 and S2 are fairly similar,
as for instance the three most dominant parameters are the same. For the less in�uential
parameters the ranking starts to di�er between S1 and S2.

By de�nition, the contribution of the least in�uential parameters are clumped together
near zero, making it poorly visible. Consider therefore Supplementary Figure 7 as well,
which shows a bar chart depicting their time-averaged values. For this set, `Relative place
contact rate given social distancing by place type3', `Proportion symptomatic', `Delay to
start household quarantine' and `Household level compliance with quarantine' are dominant
for both S1 and S2, although the order does di�er.
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Supplementary Figure 6: Sobol indices for all parameters within the two scenarios.

The �rst-order Sobol indices for all parameters and two scenarios (a: S1, b: S2), plotted
against time at one month intervals. It shows the fraction of the variance that each parameter
is responsible for, over time. In addition, we show the sum of all 19 �rst-order indices (blue
stars). The sum of the 3 most dominant parameters is also shown (red diamonds).
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Supplementary Figure 7: Time-averaged sobol indices for least in�uential param-

eters within the two scenarios. The time-averaged �rst-order Sobol indices for the 16
least in�uential parameters, for both scenarios (a: S1, b: S2). Parameters which were never
re�ned do not contribute to the variance.
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