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1 Supplementary Notes

Table S1: Observational datasets used in this study.

Dataset Abbreviation Resolution Period Reference
ERA5 reanalysis ERA5 0.25° 1950-2021 1

NASA GISTEMP v4 GISTEMP 2° 1950-2021 2

Berkeley Earth BEST 1° 1950-2021 3

HadCRUT.5.0.1.0. HadCRUT5 5° 1950-2021 4
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The three in-situ datasets (GISTEMP, BEST and HadCRUT5) are merged land-ocean indices,

i.e. they use station data on land areas and sea surface temperatures (SSTs) above the oceans.

GISTEMP relies largely on Global Historical Climatology Network Monthly version 45 on land

areas. BEST has its own land surface record6,7, and HadCRUT5 is based on the CRUTEM5

database8. For SSTs, GISTEMP uses Extended Reconstruction Sea Surface Temperature ver-

sion 5 of NOAA9. BEST and HadCRUT5 use the HadSST4 dataset10.

Table S2: Climate model ensembles used in this study. Note that CanESM5 is excluded from
CMIP6 ensemble as CanESM5 was used as a separate large ensemble dataset.

Dataset Forcing Number of models Ensemble size Period Reference
CMIP5 RCP4.5 36 36 1950-2040 Taylor et al.11

CMIP6 SSP2-4.5. 41 194 1950-2040 Eyring et al.12

MPI-GE RCP4.5 1 100 1950-2040 Maher et al.13

CanESM5 SSP2-4.5. 1 50 1950-2040 Swart et al.14

Table S3: CMIP5 models used in this study. Only one realization per model was used.

1. ACCESS1-0 19. GFDL-ESM2M
2. ACCESS1-3 20. GISS-E2-H
3. BCC-CSM1-1 21. GISS-E2-R
4. BNU-ESM 22. HadGEM2-AO
5. CanESM2 23. HadGEM2-CC
6. CCSM4 24. HadGEM2-ES
7. CESM1-BGC 25. INMCN4
8. CESM1-CAM5 26. IPSL-CM5A-LR
9. CMCC-CM 27. IPSL-CM5A-MR
10.CMCC-CMS 28. IPSL-CM5B-LR
11. CNRM-CM5 29. MIROC-ESM
12. CSIRO-Mk3-6-0 30. MIROC-ESM-CHEM
13. EC-Earth 31. MIROC5
14. FGOALS-g2 32. MPI-ESM-LR
15. FGOALS-s2 33. MPI-ESM-MR
16. FIO-ESM 34. MRI-CGCM3
17. GFDL-CM3 35. NorESM1-M
18. GFDL-ESM2G 36. NorESM1-ME
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Table S4: CMIP6 models and the number of realizations per model used in this study.

Model name Members Model name Members

1. ACCESS-CM2 3 22. GFDL-CM4 1
2. ACCESS-ESM1-5 10 23. GFDL-ESM4 3
3. AWI-CM-1-1-MR 1 24. GISS-E2-1-G 19
4. BCC-CSM2-MR 1 25. HadGEM3-GC31-LL 1
5. CAMS-CSM1-0 2 26. IITM-ESM 1
6. CAS-ESM2-0 2 27. INM-CM4-8 1
7. CESM2 3 28. INM-CM5-0 1
8. CESM2-WACCM 3 29. IPSL-CM6A-LR 11
9. CIESM 1 30. KACE-1-0-G 3
10. CMCC-CM2-SR5 1 31. KIOST-ESM 1
11. CMCC-ESM2 1 32. MIROC6 3
12. CNRM-CM6-1 6 33. MIROC-ES2L 30
13. CNRM-CM6-1-HR 1 34. MPI-ESM1-2-HR 2
14. CNRM-ESM2-1 9 35. MPI-ESM1-2-LR 10
15. EC-Earth3 21 36. MRI-ESM2-0 1
16. EC-Earth3-CC 1 37. NESM3 2
17. EC-Earth3-Veg 7 38. NorESM2-LM 3
18. EC-Earth3-Veg-LR 3 39. NorESM2-MM 2
19. FGOALS-f3-L 1 40. TaiESM1 1
20. FGOALS-g3 4 41. UKESM1-0-LL 14
21. FIO-ESM-2-0 3

2 Supplementary Methods

For observations, we define the uncertainty ranges in dT/dtA and dT/dtG as the 90 % statistical

uncertainty range. For the CMIP5 and CMIP6 simulations, the uncertainty ranges reflect the 90

% confidence interval (5th-95th percentile range) derived from multi-model ensemble. For the

MPI-GE and CanESM5 simulations, we use the 90 % confidence interval (5th-95th percentile

range) derived from the ensemble members. The statistical significance of the observed trends

was estimated at the 95 % level (P=0.05) using the nonparametric Mann-Kendall test15,16 with

pyMannKendall python package17.

The uncertainty range in observed AA43 ratios reflects 90 % confidence intervals which
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were estimated using the bootstrap method18. For the CMIP5 and CMIP6 simulations, the

corresponding AA43 uncertainty range is the 90 % confidence interval derived from the multi-

model ensemble, and for MPI-GE and CanESM5, derived from the ensemble members. The

AA43 ratios in the climate models were first calculated separately for each realization and then

averaged across them (i.e. as the mean of ratios, not a ratio of means), thus following the

recommendation by Smith et al19.

Following the methodology in earlier studies20,21, we test whether the observed and simu-

lated AA43 ratios are equal. By assuming exchangeability between models, the representation

of the AA43 ratio is

Mij = um + Eintij + Emodi, i = 1, ..., Nm, j = 1, ..., N i (1)

and

O = uo + Einto (2)

where Mij and O are AA43 ratios calculated from single model runs or the observations, respec-

tively. Similarly, um and uo are the true, unknown, deterministic AA43 ratios due to external

forcing in the model runs and observations. um is common for all models and represents

essentially the multi-model mean AA43. Eintij and Einto are perturbations to Mij and O,

respectively, caused by the internal climate variability, and for the models, Eintij is different

for each realization. Emodi is the perturbation to Mij that is introduced by the model error

in model i. Similarly as in21, we assume that these perturbations are exchangeable. Nm stands

for the number of models, and Ni is the number of realizations per model i.

The null hypothesis H0, formulated as the observed and simulated AA ratios being equal,

H0 : um = uo (3)

is tested by constructing distributions that includes the both sources of uncertainty in Eq. (1)
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and (2). Again, we follow21 and construct the empirical distribution as follows:

(a) Calculate the observed AA43 O over the 43-year period of 1979-2021

(b) Select a sample of Nm models with replacement, and for each model in that sample, select

one realization at random from that model’s available ensemble of realizations, and then

average over those Nm realizations to obtain a version of M..

(c) Select, at random, a single model i from those models with multiple realizations, and then

select, at random, a single run j from that model’s ensemble. Calculate the difference

Mij − Mi. between the AA43 in that single run and the mean of the AA43 ratios from

that model’s ensemble. This difference represents an estimate of the deviation in the j-th

trend for model i that is induced by the internal variability. Due to the small size of the

model i ensemble, the deviations are smaller than would be representative of an infinitely

large ensemble of runs for model i. Thus, to compensate for that loss of variance, multiply

the difference Mij −Mi. by [Ni/(Ni − 1)]0.5.

(d) Calculate a− b+ c, as described above, and repeat many times to build a distribution for

a− b+ c.

As described in20, the step (b) represents the variations in the multi-model mean estimate

of um that arises from the choice of exchangeable models used to compute M.. (term Emodi in

Eq. 1) as well as the internal variability (term Eintij in Eq. 1).

Step (c) demonstrates the uncertainty in O arising from internal variability. Because the

observations (O) represents only a single realization of internal variability, step (c) is constructed

by estimating single realizations of internal variability as they were realized in models. Because

the interval variability is superimposed on the externally forced trends, step (c) is naturally

added to step (b).

In our study, 106 repetitions were used to construct the empirical distributions for a− b+ c,

from which we calculated the p-values for the test of the null hypothesis H0. Smaller proportion
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of negative a− b+ c values (simulated trend is at least as large as observed) in the distribution

implies smaller p-values and consequently stronger evidence against the null hypothesis.

The procedure above was performed for the CMIP6 ensemble. For CMIP5, MPI-GE, and

CanESM5 we performed the procedure otherwise similarly, except that in point (b) there is only

one set of model runs from which to resample. Thus (b) is a random sample with replacement

of Ni CMIP5 models or model realizations (in MPI-GE and CanESM5) and c) is as above

but always selecting, at random, a single run j from the ensembles of CMIP5, MPI-GE, and

CanESM5. See more about the test Fyfe et al.20 and Swart et al.21.
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3 Supplementary figures

Figure S1: The annual warming trend in the Arctic over the 1979-2021 period (a), and the bias
of the trend (b). The shading in a) depicts the observational average across the four datasets
(GISTEMP, HadCRUT5, BEST, ERA5), and the circles indicate the station observations. The
bias in b) is defined as the gridded data minus station observations.
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Figure S2: Annual mean temperature trends for the period 1979-2021 derived from a) NASA
GISTEMP v4, b) Berkeley Earth, c) HadCRUT5, and d) ERA5 reanalysis. Dashed line in-
dicates the Arctic Circle (66.5◦N latitude). Areas without a statistically significant change
(determined using a two-sided Wald t-test, with P < 0.05 indicating a significant difference)
are masked out.

Figure S3: Arctic amplification for the period 1979-2021 derived from a) NASA GISTEMP v4,
b) Berkeley Earth, c) HadCRUT5, and d) ERA5 reanalysis. Dashed line indicates the Arctic
Circle (66.5◦N latitude).
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Figure S4: a) Observed annual-mean temperature trends in 1979-2021 in the Arctic (blue) and
globally (orange). b) Observed 43-year Arctic amplification (AA43) ratio calculated for the
1979-2021 period (blue). The dots represent the central estimate (mean), and the error bars
show the 90 % confidence intervals. See Supplementary Methods for more explanation for the
calculation of the uncertainty estimates.
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Figure S5: a) Simulated annual temperature trends in 1979-2021 in the Arctic (blue) and
globally (orange). b) Simulated 43-year Arctic amplification (AA43) ratio calculated for the
1979-2021 period. The horizontal dashed lines in a) show the observed Arctic (blue) and global
(orange) trends, and in b) the observed AA43. The dots represent the central estimate (mean),
and the error bars show the 90 % confidence intervals. See Supplementary Methods for more
explanation for the calculation of the uncertainty estimates. Note that CanESM5 model is
excluded from CMIP6 ensemble.
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Figure S6: The sensitivity of AA (a) to the time window used in calculating the linear trends (x-
axis) and the southern boundary of the Arctic (y-axis), and (b) the percentile rank of observed
AA in the CMIP5 ensemble distribution. The end year of all linear trends is fixed to 2021.
Thus, for example, 50 years on the x-axis corresponds to the trend calculated for 1972–2021.
The star marks the baseline value used in the study, corresponding to the 43-year linear trend
and the southern boundary of 66.5◦N. The observed AA is derived from the average of the four
observational datasets. Note that panel a) is identical with Fig. 2a in the main text.
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Figure S7: Seasonality of the 43-year (1979-2021) Arctic amplification ratio. The orange lines
indicate the medians of CMIP5 realizations, boxes show the first and third quartiles, and
whiskers extend to the 5-95th percentiles of the realizations. The red circles indicate the
observed AA, as derived from the average of the four observational datasets. The numbers in
the upper row give the percent rank of the observed AA in the CMIP5 ensemble distribution.

Figure S8: Frequency distributions of all possible 43-year AA ratios between 1970 and 2040 in
a) CMIP5 ensemble, b) CMIP6 ensemble, c) MPI-GE ensemble and d) CanESM5 ensemble.
The red line marks the observed AA ratio between 1979 and 2021. In this plot, only one
realization per model in CMIP6 is used: we used the realization indexed as ”r1i1p1” except for
CESM2 for which ”r4i1p1” was used. Note that panels a), c), and d) are identical with Fig. 3
in the main text.
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Figure S9: Arctic warming rate in 1979-2021 as a function of global warming rate in a) CMIP5,
b) CMIP6, c) MPI-GE and d) CanESM5 ensembles. Black markers depict observations and
their 90 % uncertainty ranges. The dashed line correspond to the observed AA as a function
of global warming rate.
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