Review article

Check for updates

Environmental impact of direct lithium extraction from brines

In the format provided by the authors and unedited

SUPPORTING INFORMATION for

Environmental impact of direct lithium extraction from brines

María L. Vera¹, Walter R. Torres¹, Claudia I. Galli², Alexandre Chagnes³, Victoria Flexer^{1,*}

¹CIDMEJu (CONICET-Universidad Nacional de Jujuy), Jujuy, Argentina.
²CEGA-INSUGEO (CONICET-Universidad Nacional de Salta), Salta, Argentina
³CNRS, GeoRessources, Université de Lorraine, 54000 Nancy, France

[§] These authors contributed equally to this work

*Corresponding author: vflexer@unju.edu.ar

Deposit (country)	Ca ²⁺	Mg ²⁺	Na ⁺	K ⁺	Li ⁺	Cl	SO ₄ ²⁻	B	TDS	References
			L		g L ⁻¹					
Uyuni (Bolivia)	0.46	7.68	98.40	7.92	0.32	177.6	12.96	0.19	305.5	1
Atacama (Chile)	0.45	9.65	91.0	23.6	1.57	189.5	15.9	0.44	332.3 ^A	1
Olaroz (Argentina)	1.10	2.00	111.50	5.30	0.57	177.50	9.80	NR	309.20 ^B	2
Hombre Muerto (Argentina)	0.12	0.14	103.00	9.70	0.90	168.00	11.40	0.54	294.00	1
Zabuye Lake (China)	0.00	0.00	127.90	45.96	0.66	147.6	26.29	1.58	434.47	1
Clayton Valley (USA)	0.45	0.23	63.70	8.00	0.36	100.00	6.60	0.09	180.10	1
Taijinar Salt Lake brine (China)	0.30	13.50	102.30	NR	0.21	188.10	24.00	0.31	328.70 ^C	3
Southern Tibet geothermal (China)	0.05	0.02	1.70	NR	0.13	2.00	1.70	ND	212.00	3
Chott Djerid (Tunisia)	1.60	3.40	80.00	5.60	0.06	144.10	6.70	NR	400.00	4
Cerro prieto (USA)	30.80	3.20	60.00	23.50	0.25	175.50	46.00	0.50	339.70 [°]	1
Salton Sea (USA)	25.70	0.11	49.20	14.50	0.20	142.00	0.10	0.30	236.00	5
Rincon (Argentina)	0.60	3.00	97.90	6.60	0.30	158.00	0.00	0.40	266.80	1
Soultz-sous-Forêts (France)	7.20	0.13	28.10	3.20	0.17	58.60	0.16	0.04	99.0	6
Buhl geothermal well (Germany)	11.60	1.93	64.00	0.49	0.04	120.30	1.60	0.00	201.00	6
Landau geothermal well (Germany)	7.70	0.08	28.20	4.00	0.18	64.20	0.10	0.00	106.00	6
Dieng geothermal power plant (Indonesia)	0.40	0.003	0.039	2.20	0.04	13.60	0.003	0.30	23.70	7
Coipasa (Bolivia)	0.16	13.60	75.10	11.00	0.35	151.00	24.60	0.80	323.30	8
Cauchari (Argentina)	0.30	1.45	93.30	4.20	0.51	148.60	15.70	1.10	265.90	8

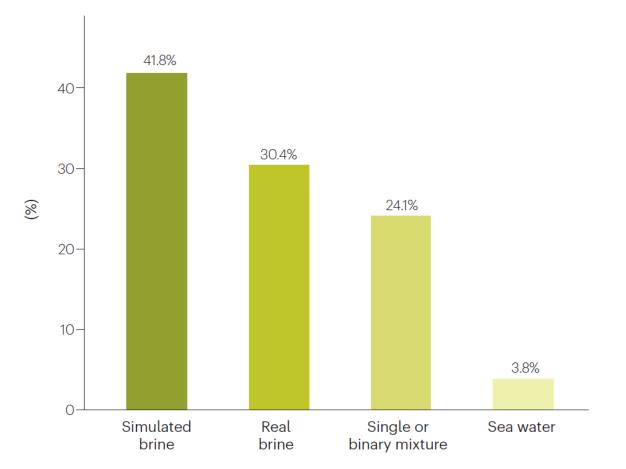
Supplementary Table 1: Composition of selected lithium rich brines. ^A: TDS as reported in the reference. Value not in agreement with the addition of reported concentrations. ^B all values correspond to the average of 4 samples from the same reference. Selected samples correspond to same depths, pH, and sampling date (Oct 2016). ^C: TDS not reported in cited reference. Value listed here correspond to addition of reported concentrations.

Technique	Novelty	Brine	Cycling test	Efficiency	[Mg]/[Li](0)	[Mg]/[Li](f)	[Na]/[Li](0)	[Na]/[Li](f)	Li+ recovery	Estimation of energy or water consumption - Analysis of scalability - Circular production	
Ion pumping	Improve electrode performance	Simulated	5	Reported as ion exchange capacity= 35.2 mg/g	NR	NR	1	0.02	29%	NR	9
Ion pumping	Improve energy consumption	Simulated	30	Reported as ion exchange capacity= 34.8mg/g	NR	NR	NR	NR	NR	Distilled water is used for washing step	10
Ion pumping	A compressive study on the competitive effect of other ions on lithium adsorption	Simulated	50	Reported as ion exchange capacity= 13.88 mg/g	1	0.008	1	0.03	20%	Distilled water is used for washing step	11
Ion pumping	MOFs is tested as a new ION PUMPING film for Li uptake from dilute solutions	Simulated	NR	Reported as ion exchange capacity= 37.55 mg/g	1	0.006	1	0.01	NR	NR	12
Ion pumping	Self-electrical energy recuperation (almost the system is not self- sufficiency)	Simulated	100	Reported as Li ⁺ uptake capacity = 10.88 mg/g	NR	NR	50	0.01	44%	Reported energy consumption= 1.007 Wh/mol.	13
Ion pumping	N-doping carbon encapsulated LMO film electrode for efficient Li electrosorption	Simulated	10	Reported as Li ⁺ uptake capacity = 37.14 mg/g. With a charge capacity of 79.58% and discharge of 82.38% after 50 cycles	3.75	NR	36.72	NR	NR	NR	14
Ion pumping	An electrochemical flow reactor for the extraction of LiCl was designed and tested (part II)	Real brine from Olaroz, Argentina	NR	Extraction efficiencies achieved up to 36 mg/g	0.65	NR	27.94	NR	NR	For washing, 2.5- 3L of fresh water is needed for 0.03L of brine	15
Ion pumping	A flow-by sustainable electrochemical reactor was assessed for extraction of Li from brine	Real brine, from Hombre Muerto, Argentina	NR	Maximum extraction capacity= 38.2mg/g	0.66	NR	26.08	NR	4.9% (limited by the mass of the Li ₁ - xMn ₂ O ₄ cathode)	Current efficiency= 85%. Specific energy consumption= 2.16 Wh/mol Li. 1L of fresh water is needed for each 1L of brine	16
Ion pumping	Redox-mediated lithium recovery system is	Simulated	NR	Li uptake capacity= 3.1 mg/g	1.82	0.25	15.3	14.22	NR	1.05L of fresh water is needed for each 1L of brine. Charge	17

	proposed for continuous lithium recovery									efficiencies of approximately 83– 100%, and energy consumption of 133– 141 kJ/mol	
Ion pumping	A fast, energy-saving, and environment-friendly process is proposed	Simulated	20	Reported as the LiCl production rates= 50-60 mmol Li/ m ² h	0.42	0.01	20	0.04	Final Li concentrat ion= 23.3mM with a purity= 95%	Average freshwater production rate can reach around 12.6 kg/ m ² h. Average energy consumption= 4.83 Wh/mol Li. Current efficiency >90%	18
Electromembrane	A new liquid carrier with high Li ⁺ selectivity for an ED process	West Taijinair salt lake brine	NR	A reduction equal to 99.5% is reached for Mg/Li ratio	3.09	0.054	0.14	0.136	NR	Current efficiency= 65%. Specific energy consumption= 16 Wh/g	19
Electromembrane	A new methodology for greatly reduce the Na/Li ratio from real brines precipitating a pure Na salt	Real, from the north of Argentina	3000 h	Coulombic efficiency= 95%	0	0	NR	NR	NR	Energy consumption= 331.3 kWh for the lowest I applied. High purity by-product and desalinated water are obtained	20
Electromembrane	Membrane electrolysis is used for the removal of Ca ⁺² and Mg ⁺² from brines	Real, from the north of Argentina	500 h	Coulombic efficiency= 95.5%	6.96/ 13.03/ 19.7	0	NA	NA	100%	62 kWh.m ⁻³ for brine with 3090 ppm of Mg ²⁺ . High purity by- products are obtained. No waste is generated	21
Electromembrane	An EM process is proposed as a new technology to crystallize Li ₂ CO ₃ without water evaporation	Simulated	300 h	Coulombic efficiency= 99.7%. Purity of obtained Li ₂ CO ₃ = 97.5%	NA	NA	1.2	0.0004	90%	Energy consumption= 70.6 kWh.m ⁻³ . Low salinity water is recovered	22
Electromembrane	Prototype of a solar- powered electrodialyser	Seawater	NR	NR	NR	NR	NR	NR	NR	For lithium release a washing step is needed	23
Electromembrane	Propose a clean production process for the utilization of concentrated seawater/salt lake brine	Seawater concentrate	NR	Reductions equal to 88.9%; 83.2% and 76.7% are reached for Mg/Li ratio for different brines	35.18/ 54.3/ 72.72	3.91/ 9.13/ 16.97	NR	NR	76.5%	Optimal condition for Tajinar Brine: 0.66 kWh/(mol Li). Circular production schematized, target product: Li ₂ CO ₃ , by products will be NaCl, KCl, MgCl ₂ and Mg ₂ SO ₄	24
Electromembrane	A study on Li ⁺ /Mg ²⁺ separation performance	Simulated	NR	Mg/Li ratio decreased 21.8 times	43.81	≤5	NR	NR	90%	Reported energy consumption= 0.0019 KWh/gL, at 5.9 A/m ²	25
					17	2	NR	NR			

Electromembrane	An study on Li ⁺ /Mg ²⁺ separation performance for simulated real brines by a selective ED process	Simulated	NR	Li ⁺ is concentrated by a factor of 1.4 with a reduction equal to 88.3% on Mg/Li ratio	NR	NR	NR	NR	72.4%	At optimal voltage of 5 V, reported current efficient= 8.68%	26
Electromembrane	Simultaneously recovery of lithium and boron	Single or binary mixture	NR	99.6% for Li separation and 72.3% for boron	NR	NR	NR	NR	83.6%	NR	27
Electromembrane	Reduction of heat requirements to obtain LiOH from brines with high LiCl concentration	Simulated	NR	Produced LiOH with a purity between 96.0–95.4%	NR	NR	NR	NR	NR	Specific electricity consumption: 7.57 and 9.45 kWh per kilogram of LiOH	
Electromembrane	A novel method based on electro-electrodialysis to produce LiOH	Single or Binary mixture	NR	Li ⁺ is concentrated by a factor of 3.9 times and LiOH is produced with a purity of 95.3%	NR	NR	NR	NR	NR	\$USD 2.56/ Kg LiOH	29
Electromembrane	S-ED is employed to desorb lithium from LMO sieves, instead of acid treatment	Simulated	NR	Desorption time is reduced by 180 minutes compared to conventional treatment	NR	NR	NR	NR	70%	NR	30
Electromembrane	Focus on competitive effect of K ⁺ and Na ⁺ respect to Li ⁺ migration	Simulated	NR	The efficiency of Mg- Li separation decreases by 79% with increasing Na ⁺ /Li ⁺ and by 74.4% with increasing K ⁺ /Li ⁺	NR	NR	NR	NR	67.6%	Energy consumption at optimized voltage (6V): 0.17 – 0.23 KWh/mol Li	31
Electromembrane	An ED process is validated with real brine. Focus is on improvement of efficiency and reduce energy cost	Real brine	NR	A reduction of 90% on Mg/Li ratio	20	2.07	0.36	0.56	90.5%	Reported energy consumption 0.0045 KwH/g Li (20 V)	32
Electromembrane	separation of B and Li simultaneously	Single or Binary mixture	NR	62-69% for B removal and 93% for Li removal from feed solution	NR	NR	NR	NR	60-70%	NR	33
Membrane development	A new synthesis strategy to obtain a selective membrane with enhance properties	Single or Binary mixture	4	Reported as Li ⁺ uptake capacity= 50.87 mg/g; 43.94 mg/g after 4 cycles	NR	NR	NR	NR	NR	NR	34
Membrane development	Synthesis of an ion imprinted membrane with enhanced hydrophilicity and stability	Single or Binary mixture	10	Reported as Li ⁺ uptake capacity= 21.55 mg/g	NR	NR	NR	NR	70%	NR	35

Electromembrane -Ion pumping	Monovalent cation exchange membrane integrated with MCDI system to enhance the separation of Li from Mg	Single or Binary mixture	NR	38.4% for Li removal and 19.2% for Mg removal in large module	1	0.39	NR	NR	NR	Energy consumption of large module= 0.0018 kWh mol-1. Freshwater is used for Li recovery	36
Electromembrane -Ion pumping	LMO is employed as electrode for MCD system, improving adsorption capacity	Single or Binary mixture	5	NR	NR	NR	NR	NR	NR	Freshwater is used for washing and desorption steps	37
Electromembrane -Ion pumping	An electro-enhanced lithium ion recovery system is proposed	Simulated	5	NR	0.1/ 1	0.057/ 0.1	0.1/ 1/ 48.6	0.27/ 0.04/ 4.6	NR	Energy consumption: Wads and Wdes were 4.4 Wh/g-Li and 23.3 Wh/g-Li. Freshwater used for washing and desorption steps.	38
Electromembrane -Ion pumping	LMO is coated with a thin film of carbon to improve material capacity and process time	Single or Binary mixture	8	Reported as electrode capacity for Li uptake= 61%	NR	NR	NR	NR	NR	Freshwater used for washing and desorption steps	39
Nanofiltration	A higher separation factor for LiCl/MgCl ₂ was gotten after membrane modification with EDTA	Simulated	8	A reduction of 89.1% is reached for Mg/Li ratio	6.8	0.74	NR	NR	NR	NR	40
Nanofiltration	Evaluation of NF process over different operational parameters	Simulated	NR	A reduction of 99.2% is reached for Mg/Li ratio; negatively affect by monovalent cations and negatively by divalent ones	9.91	0.031	NR	NR	95%	NR	41
Nanofiltration	Exceedingly high permselectivity	Single or Binary mixture	NR	Reported as Mg-Li separation factor= 71; decreases to 47 with increasing TDS of feed solution. Na-Li separation is deficient	5.57/ 14.44/ 17.17	0.079/ 0.18/ 0.23	NR	NR	NR	NR	42
Nanofiltration	High Li rejection due to the coupling strategy, NF + reverse electric field	Single or Binary mixture	A long experiment for 168 h	Reported as Li ⁺ rejection of 97.01%	NR	NR	NR	NR	92.5%	The energy consumption of the RENF process only has a 0.17% increase as compared with the NF process, an order of magnitude lower than that of the RO process	43


Nanofiltration	Different polymers were studied to enhance Li recovery	Single or Binary mixture	4	Reported as Li removal efficiency= 80%; decreases to 40% with the addition of for Na ⁺ or K ⁺ and to 20% with the addition of Mg ²⁺	NR	NR	NR	NR	NR	A washing step is needed for Li recovery	44
Nanofiltration	Enhancement in salt permeation and selectivity by NF membrane functionalization	Single or Binary mixture	A long experiment for 192 h	A reduction of 97.5% is reached for Mg/Li ratio	20.82	0.53	NR	NR	NR	NR	45
Membrane distillation + Nanofiltration	An hybrid system for lithium concentration	Simulated	NR	Li+ is concentrated by a factor of 12	0.28	0.014	NR	NR	NR	The membrane process represents about 14% of the capital cost of solar evaporation. On the other hand, the operating costs are higher due to thermal energy and membrane replacement costs	46
Nanofiltration + electromembrane	Combine: NF (to separate magnesium from salt lake brine) + RO-CED (to enrich NF permeates) + BMED (to produce Lithium hydroxide)	North-Western of Qinghai province, China	NR	LiOH·H ₂ O is produced with a purity of 99.6% was produced	0.06	0.001	NR	NR	92%	Under optimized conditions, current efficiency and energy consumption were 36.05% and 6.20 kWh/kg LiOH, respectively. Employs freshwater for BMED test	47
Ion exchange resins	A superior Li ⁺ adsorption is reached	Simulated	6	Reported as ion adsorption capacity= 59.1 mg/g	NR	NR	NR	NR	NR	0.76 L of fresh water is needed for each 1 L of bine	48
Ion exchange resins	The process of Li ⁺ uptake from a real brine is studied	Real, Qinghai West Taijinar Salt Lake	5	Reported as ion adsorption capacity= 19.22 mg/g	NR	NR	NR	NR	NR	1.04 L of fresh water is needed for each 1 L of bine	49
Ion exchange resins	Synthesis of an aluminium- doped ion-sieve with enhanced adsorption performance	Single or Binary mixture	4	Reported as ion adsorption capacity= 32.6 mg/g	NA	NA	NA	NA	37.6%	2.5 L of fresh water is needed for each 1 L of brine	50
Ion exchange resins	Porous fiber-supported HTO was prepared to improve Li recovery	Real, from a Geothermal Power Plant, Tibet	6	Reported as ion adsorption capacity= 24.67 mg/g	NR	NR	7.94	NR	96.6%	0.1L of fresh water is needed for each 1 L of brine	51
Ion exchange resins	Spherical PVB-HTO composites having excellent Li extraction	Simulated	15	Reported as ion adsorption capacity= 12 mg/g	1	0	1	0	85.5%	1L of fresh water is needed for each 1 L of brine	52

	performance were synthetized										
Ion exchange resins	A novel hierarchical cubic Li _x TiO ₂ -based hollow Li- ion sieve is constructed	Real brine, from Qinghai Province, China	5	Reported as ion adsorption capacity= 6.9 mg/g	56	NR	NR	NR	NR	NR	53
Ion exchange resins	α-A ₁₂ O ₃ supported membranes are prepared for Li extraction	Single or Binary mixture	5	Reported as ion adsorption capacity=9.74 mg/g	NA	NA	NA	NA	38.6%	0.62L of fresh water is needed for each 1 L of brine	54
Ion exchange resins	A novel lithium-ion sieve is synthetized	Real brine from Qaidam Basin	4	Reported as ion adsorption capacity=13.32 mg/g	225	15	145	25	99.98%	1.4L of fresh water is needed for each 1 L of brine	55
Ion exchange resins	A Cr-Doped Lithium Ion Sieve is synthetized and characterized	Real brine	20	Reported as ion adsorption capacity=28.35 mg/g	135.7	NR	6.78	NR	81.7%	0.3L of fresh water is needed for each 1 L of brine	56
Ion exchange resins	A Fe3O4-doped magnetic lithium ion-sieve is prepared for Li extraction	Simulated	5	Reported as ion adsorption capacity=29.33 mg/g	NA	NA	NA	NA	NR	0.07L of fresh water is needed for each 1 L of brine	57
Ion exchange resins	Different TiO ₂ precursors are employed to control the ion sieve wettability	Simulated	8	Reported as ion adsorption capacity=30.11 mg/g	NA	NA	0.3	0.003	NR	0.1L of fresh water is needed for each 1 L of brine	58
Ion exchange resins	A novel composite lithium ion-sieve is synthetized and proved	Geothermal water from Tibet	5	Reported as ion adsorption capacity=11.35 mg/g	NA	NA	7.94	NR	79.13%	0.01L of fresh water is needed for each 1 L of brine	59
Ion exchange resins	A superior lithium adsorption capacity is reached	Simulated	20	Reported as ion adsorption capacity= 15.5 mg/g	0.2	0	0.097	0	NR	NR	60
Ion exchange resins	A novel synthetic method is employed to improve Li recovery	Geothermal water from Tibet	4	Reported as ion adsorption capacity= 11.4 mg/g	NA	NA	0.21	0	88.42%	0.2L of fresh water is needed for each 1 L of brine	61
Selective precipitation	A new precipitation method is proposed to extract Li from salt lake brines	Real brine from West Taijinar	NR	A reduction of 98.5% is reached for Mg/Li ratio	14.04	0.05	NR	NR	93.2%	Precipitating reagents can be recycled	62
Selective precipitation	Significant reduction of precipitation temperature by using seed induction process	Simulated	NR	Li ₃ PO ₄ is obtained with a purity of 99.15%.	NR	NR	NR	NR	84%.	Freshwater for wash the obtained Li ₃ PO ₄	63
Selective precipitation	High Li+ enrichment from a complex brine, Dead Sea	Real brine from Dead sea	NR	Lithium enrichment from 30 -40 mg/L in the EB to 1000-1700 mg/kg in the obtained solid precipitate	NR	NR	NR	NR	40%	Fresh water for washing step	64

Selective precipitation	Enhance divalent separation and Li recovery as Li2CO3, by a co- precipitation process	Industrial refined brine from Albemarle industrial plant "La Negra"	NR	Li ₂ CO ₃ with Mg concentrations from 1% to 3% was obtained with yields >85%	0.35	0.16	NR	NR	NR	Employs hot water, for wash	65
Selective precipitation	A closed loop process is proposed to prepare Li ₂ CO ₃ battery grade	Arizzaro Salt Lake, Argentina	A long experiment for 24 h	Almost 90% for each step	0.93	0	11.37	0	74.9%	Cost estimation= 1700 \$/ton(Li ₂ CO ₃); employs freshwater for anolyte	66
Liquid-liquid extraction	Li was recovered by centrifugal extraction	Simulated	NR	NR	NR	NR	NR	NR	NR	No freshwater needed	67
Ion pumping	A novel redox reagent is employed for fast lithium sequestration reactions	Simulated	NR	Reported as Li uptake capacity of host material= 45 mg/g	5/ 6.5	0.01/ 0.01	77/ 15	0.006/ 0.002	NR	NR	68
Ion pumping	A chemical redox method to direct lithium extraction	Simulated	5	Absorption 90%, desorption 90%.	73.71	0.007	248.61	0.48	91.11%	NR	69
Ion pumping	Improve the cell design in order to solve the problem of mass transfer in diluted lithium solutions	Simulated	9; (200 were simulated for an optimal long test)	60%	NR	NR	NR	NR	37%	6.1 Wh/mol, 30% pumping; 5ml freshwater/1.35L brine; No circular production	70
Ion pumping	A pilot scale demonstration	Seawater concentrate	NR	An enrichment in Li concentration of 1800 times	2028	0.048	18000	0.04	NR	A 1m ³ tank is proposed at pilot scale for the distilled water needed for the process.	71
Immobilized solvent for Li ⁺ extraction	Focus on Na/Li ratio, from a composite lithium membrane	Single or Binary mixture	5	NR	NR	NR	NR	NR	22.1%, after 27 days	Freshwater for membrane rinse.	72
Electrocoagulation	An alternative for chemical precipitation	Single or Binary mixture	NR	95%	NR	NR	NR	NR	95%, by continuou s mode	Operating cost per gram of Li= 0.023 US\$	73
Liquid-liquid extraction	Enhancement in Li ⁺ stripping with HCl	Single or Binary mixture	6	70%	40	1.79	NR	NR	63%	Water consumption = 3/10 of brine volume	74
Liquid-liquid extraction	A novel ionic liquid as co- extractant in a green process	Simulated	10	99.47% after a 4 stages of a cross flow process	274	0	NR	NR	100%	Water consumption = 7/6 of brine volume	75
Liquid-liquid extraction	A new co-extractant (NaBPh4) to enhance Li ⁺ recovery	Simulated	10	99.84% after 5 stages of a cross flow process	80	0	NR	NR	87%	Water consumption = 6/5 of brine volume	76

Liquid-liquid extraction	A mixed ternary solvent extraction system is validated with real brine	Real brine, East Tajinar Salt Lake	10	87%	21.5	1.06	NR	NR	54%	Water consumption = 9/10 of brine volume	77
Liquid-liquid extraction	A functionalized ionic liquid is employed to improve Li extraction efficiency	Single or Binary mixture	NR	83.3%	NR	NR	15/7.5	NR	83.3%	Water consumption = brine volume	61
Liquid-liquid extraction	A new separation process to extract lithium ions from salt lake brines is developed	Simulated	10	58.9%	77.88	NR	1.57	NR	58.9%	Water consumption = 0.2 brine volume	78
Liquid-liquid extraction	Li recovery from South America salt lakes by LLE is first proposed	Salt lake brine from South America	10	99.6%	1.05	0.001	24.63	0	99.6%	Water consumption = 0.17 brine volume	79
Liquid-liquid extraction	A novel synergistic extraction with hydrophobic deep eutectic solvents is proposed	Simulated	5	95.7%	NR	NR	33.23	0	95.7%	Water consumption = brine volume	80
Liquid-liquid extraction	A more stable and efficient extraction system is proposed	Real brine from West Taijinar	NR	96.7%	18.17	0	0.39	0.002	96.7	Water consumption = 0.25 brine volume	81
Liquid-liquid extraction	A novel application of HBTA-TOPO-kerosene extraction system is proposed	Real, from lithium carbonate precipitation	NR	96%	0	0	7.98	0.008	96%	Water consumption = 0.9 brine volume	82
Liquid-liquid extraction	A novel ternary synergistic solvent extraction system is proposed	Single or Binary mixture	NR	48.4%	NR	NR	NR	NR	48.4%	Water consumption = 0.08 brine volume	83
Liquid-liquid extraction	A novel fluoride-free ionic liquid is synthesized and used as co-extractant	Simulated	10	99.2% after 5 stages of a cross flow process	NR	NR	NR	NR	99%	Water consumption = 7/24 of brine volume	84

Supplementary Table 2: Summary of reported data for selected articles in the period 2017-2022. The selection criteria for compiled articles are: it should have been published in English, in a SCOPUS listed journal, and it should include enough experimental data to plot no less than 3 of the performance indicators plotted in Figure 4.

Supplementary Figure 1: Feed solutions used for testing the proposed DLE technologies. Compilation of different performance indicators for a selection of articles in the period 2017-2022 (analysed articles are those listed in Supplementary Table 2).

Fechnology	Freshwater requirements (m ³ of water per tonne of Li ₂ CO ₃)	Final Li ⁺ concentration after DLE processing (g l ⁻¹)	Reference
	0.06	4.40	74
	2591	0.09	75
	756.5	0.30	76
	0.81	1.25	85
	29.60	20.92	77
Liquid-liquid	2.11	1.27	78
xtraction	188.62	20.00	79
	1.99	0.99	80
	0.08	1.18	81
	1.12	15.05	82
	0.18	8.25	83
	60.25	3.43	86
	N/R	N/R	48
	N/R	N/R	49
	9.09	0.620	87
	32.88	0.240	88
	2684	0.014	89
	188	0.050	50
	7994	0.005	90
	226.2	0.041	91
	8.20	0.229	51
on Exchange	462	0.061	52
esins	462 N/R	0.001 N/R	53
			54
	60604	0.003	55
	18787	0.001	56
	20.35	0.277	57
	18.1	0.347	58
	2.74	0.342	59
	0.11	1.74	60
	N/R	N/R	61
	82.4	0.114	10
	N/R	N/R	10
	229.6	0.09	
	N/R	0.49	13
	N/R	N/R	12
	N/R	N/R	14
	4169.3	0.14	92
	90.3	0.21	93
	41.4	13.8	15
on numning	757.5	0.06	16
on-pumping	2119.8	0.19	17
	N/R	N/R	94
	N/R	0.16	18
	N/R	N/R	95
	N/R	N/R	96
	857.7	0.05	97
	773.5	0.24	98
	N/R	1.32	99
	137.7	0.07	100

Image: 101 cm1102 cm137.70.07100<td cm</td

many cases calculated from reported data in the corresponding data, and is not directly given by the original authors of the articles. NR: not reported, or not enough experimental data reported to perform calculation.

Solubility	CaSO ₄	Na ₂ CO ₃	NaHCO ₃	MgCO ₃	K ₂ CO ₃	Li ₂ CO ₃	CaCO ₃	NaOH	Mg(OH) ₂	кон	LiOH	Ca(OH) ₂	Ca(BO ₂) ₂	Na ₂ B ₄ O ₇
g _{salt} /kg _{water}	2.05	307	103	1.8	1110	13.0	0.0066	1000	0.0069	1210	125	1.6	1.3	31.7
Molal	0.02	2.90	1.23		8.04	0.18		25.0		21.61	5.22			
Ksp				6.82x10 ⁻⁶			3.36x10 ⁻⁹		5.61x10 ⁻¹²			5.02x10 ⁻⁶		

Supplementary Table 4: Solubility values in pure water at 25°C for compounds that could potentially crystallize during brine processing. First and second rows in units of $g_{salt} kg_{water}^{-1}$ and molal, respectively. For compounds with low solubility values, the K_{SP} value is listed instead of solubility value in molal units. Values taken from reference 1.

Solubility	NaCl	MgCl ₂	KCl	LiCl	CaCl ₂	Na ₂ SO ₄	MgSO4	K2SO4	Li2SO4
g _{salt} /kg _{water}	360	560	355	845	813	281	357	120	342
Molal	6.15	5.88	4.77	19.9	7.32	1.98	2.97	0.69	3.11

Supplementary Table 4 (CONTINUATION).

Supplementary References

THIS REFERENCE NUMBERS ARE NOT THE SAME AS IN THE MAIN MANUSCRIPT

- Garrett, D. E. Handbook of Lithium and Natural Calcium Chloride. Handbook of Lithium and Natural Calcium Chloride (2004). doi:10.1016/B978-0-12-276152-2.X5035-X.
- 2. Franco, M. G. *et al.* Chemical and isotopic features of Li-rich brines from the Salar de Olaroz, Central Andes of NW Argentina. *J. South Am. Earth Sci.* **103**, 102742 (2020).
- 3. Xu, S. *et al.* Extraction of lithium from Chinese salt-lake brines by membranes: Design and practice. *J. Memb. Sci.* **635**, 119441 (2021).
- Somrani, A., Hamzaoui, A. H. & Pontie, M. Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO). *Desalination* 317, 184–192 (2013).
- 5. Stringfellow, W. T. & Dobson, P. F. Technology for the Recovery of Lithium from Geothermal Brines. *Energies* 14, (2021).
- 6. Sanjuan, B. *et al.* Major geochemical characteristics of geothermal brines from the Upper Rhine Graben granitic basement with constraints on temperature and circulation. *Chem. Geol.* **428**, 27–47 (2016).
- 7. Setiawan, F. A., Rahayuningsih, E., Petrus, H. T. B. M., Nurpratama, M. I. & Perdana, I. Kinetics of silica precipitation in geothermal brine with seeds addition: minimizing silica scaling in a cold re-injection system. *Geotherm. Energy* **7**, 22 (2019).
- 8. Baspineiro, C. F., Franco, J. & Flexer, V. Potential water recovery during lithium mining from high salinity brines. *Sci. Total Environ.* **720**, 137523 (2020).
- Du, X. *et al.* A novel electroactive λ-MnO2/PPy/PSS core–shell nanorod coated electrode for selective recovery of lithium ions at low concentration. *J. Mater. Chem. A* 4, 13989–13996 (2016).
- 10. Liu, D.-F., Sun, S.-Y. & Yu, J.-G. A new high-efficiency process for Li+ recovery from solutions based on LiMn2O4/λ-MnO2 materials. *Chem. Eng. J.* **377**, 119825 (2019).
- Liu, D.-F., Sun, S.-Y. & Yu, J.-G. Electrochemical and adsorption behaviour of Li+, Na+, K+, Ca2+, and Mg2+ in LiMn2O4/λ-MnO2 structures. *Can. J. Chem. Eng.* 97, 1589–1595 (2019).
- 12. Wang, P. *et al.* A novel electroactive PPy/HKUST-1 composite film-coated electrode for the selective recovery of lithium ions with low concentrations in aqueous solutions. *Electrochim. Acta* **306**, 35–44 (2019).
- 13. Niu, J. *et al.* An electrically switched ion exchange system with self-electrical-energy recuperation for efficient and selective LiCl separation from brine lakes. *Sep. Purif. Technol.* **274**, 118995 (2021).
- 14. Fang, J.-W. *et al.* Establishment of PPy-derived carbon encapsulated LiMn2O4 film electrode and its performance for efficient Li+ electrosorption. *Sep. Purif. Technol.* **280**, 119726 (2022).
- 15. Romero, V. C. E., Putrino, D. S., Tagliazucchi, M., Flexer, V. & Calvo, E. J. Sustainable Electrochemical Extraction of Lithium from Natural Brine: Part II. Flow Reactor. *J. Electrochem. Soc.* **168**, 020518 (2021).
- 16. Romero, V. C. E., Llano, K. & Calvo, E. J. Electrochemical extraction of lithium by ion

insertion from natural brine using a flow-by reactor: Possibilities and limitations. *Electrochem. commun.* **125**, 106980 (2021).

- 17. Kim, N., Su, X. & Kim, C. Electrochemical lithium recovery system through the simultaneous lithium enrichment via sustainable redox reaction. *Chem. Eng. J.* **420**, 127715 (2021).
- 18. Yuan, Z. *et al.* Thermo-osmosis-Coupled Thermally Regenerative Electrochemical Cycle for Efficient Lithium Extraction. *ACS Appl. Mater. Interfaces* **13**, 6276–6285 (2021).
- 19. Liu, G., Zhao, Z. & He, L. Highly selective lithium recovery from high Mg/Li ratio brines. *Desalination* **474**, 114185 (2020).
- 20. Diaz Nieto, C. H., Rabaey, K. & Flexer, V. Membrane electrolysis for the removal of Na+ from brines for the subsequent recovery of lithium salts. *Sep. Purif. Technol.* **252**, 117410 (2020).
- 21. Díaz Nieto, C. H. *et al.* Membrane electrolysis for the removal of Mg2+ and Ca2+ from lithium rich brines. *Water Res.* **154**, 117–124 (2019).
- 22. Torres, W. R., Díaz Nieto, C. H., Prévoteau, A., Rabaey, K. & Flexer, V. Lithium carbonate recovery from brines using membrane electrolysis. *J. Memb. Sci.* **615**, 118416 (2020).
- 23. Yang, S., Zhang, F., Ding, H., He, P. & Zhou, H. Lithium metal extraction from seawater. *Joule* **2**, 1648–1651 (2018).
- 24. Guo, Z.-Y. *et al.* Prefractionation of LiCl from concentrated seawater/salt lake brines by electrodialysis with monovalent selective ion exchange membranes. *J. Clean. Prod.* **193**, 338–350 (2018).
- Nie, X.-Y., Sun, S.-Y., Sun, Z., Song, X. & Yu, J.-G. Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes. *Desalination* 403, 128–135 (2017).
- 26. Ji, Z. *et al.* Preliminary study on recovering lithium from high Mg2+/Li+ ratio brines by electrodialysis. *Sep. Purif. Technol.* **172**, 168–177 (2017).
- 27. Tian, H. *et al.* Effect of process conditions on generation of hydrochloric acid and lithium hydroxide from simulated lithium chloride solution using bipolar membrane electrodialysis. *SN Appl. Sci.* **4**, 47 (2022).
- 28. González, A. *et al.* Application and Analysis of Bipolar Membrane Electrodialysis for LiOH Production at High Electrolyte Concentrations: Current Scope and Challenges. *Membranes (Basel).* **11**, 575 (2021).
- 29. Jiang, C., Wang, Y., Wang, Q., Feng, H. & Xu, T. Production of lithium hydroxide from lake brines through electro–electrodialysis with bipolar membranes (EEDBM). *Ind. Eng. Chem. Res.* **53**, 6103–6112 (2014).
- 30. Hwang, C. W. *et al.* Process design for lithium recovery using bipolar membrane electrodialysis system. *Sep. Purif. Technol.* **166**, 34–40 (2016).
- 31. Ji, P.-Y. *et al.* Effect of coexisting ions on recovering lithium from high Mg2+/Li+ ratio brines by selective-electrodialysis. *Sep. Purif. Technol.* **207**, 1–11 (2018).
- Nie, X.-Y., Sun, S.-Y., Song, X. & Yu, J.-G. Further investigation into lithium recovery from salt lake brines with different feed characteristics by electrodialysis. *J. Memb. Sci.* 530, 185–191 (2017).
- 33. Jarma, Y. A., Çermikli, E., İpekçi, D., Altıok, E. & Kabay, N. Comparison of two

electrodialysis stacks having different ion exchange and bipolar membranes for simultaneous separation of boron and lithium from aqueous solution. *Desalination* **500**, 114850 (2021).

- 34. Yu, C. *et al.* Bio-inspired fabrication of Ester-functionalized imprinted composite membrane for rapid and high-efficient recovery of lithium ion from seawater. *J. Colloid Interface Sci.* **572**, 340–353 (2020).
- 35. Lu, J. *et al.* Multilayered ion-imprinted membranes with high selectivity towards Li+ based on the synergistic effect of 12-crown-4 and polyether sulfone. *Appl. Surf. Sci.* **427**, 931–941 (2018).
- Shi, W. *et al.* Efficient lithium extraction by membrane capacitive deionization incorporated with monovalent selective cation exchange membrane. *Sep. Purif. Technol.* 210, 885–890 (2019).
- 37. Ryu, T. *et al.* Lithium recovery system using electrostatic field assistance. *Hydrometallurgy* **151**, 78–83 (2015).
- 38. Lee, D.-H. *et al.* Selective lithium recovery from aqueous solution using a modified membrane capacitive deionization system. *Hydrometallurgy* **173**, 283–288 (2017).
- 39. Sun, Y., Wang, Y., Liu, Y. & Xiang, X. Highly Efficient Lithium Extraction from Brine with a High Sodium Content by Adsorption-Coupled Electrochemical Technology. *ACS Sustain. Chem. Eng.* **9**, 11022–11031 (2021).
- 40. Li, W. *et al.* A positively charged composite nanofiltration membrane modified by EDTA for LiCl/MgCl2 separation. *Sep. Purif. Technol.* **186**, 233–242 (2017).
- 41. Li, Y., Zhao, Y. J., Wang, H. & Wang, M. The application of nanofiltration membrane for recovering lithium from salt lake brine. *Desalination* **468**, 114081 (2019).
- 42. He, R. *et al.* Unprecedented Mg2+/Li+ separation using layer-by-layer based nanofiltration hollow fiber membranes. *Desalination* **525**, 115492 (2022).
- 43. Li, Q. *et al.* Efficiently rejecting and concentrating Li+ by nanofiltration membrane under a reversed electric field. *Desalination* **535**, 115825 (2022).
- 44. Oyarce, E., Roa, K., Boulett, A., Salazar-Marconi, P. & Sánchez, J. Removal of lithium ions from aqueous solutions by an ultrafiltration membrane coupled to soluble functional polymer. *Sep. Purif. Technol.* **288**, 120715 (2022).
- 45. Bi, Q., Zhang, C., Liu, J., Liu, X. & Xu, S. Positively charged zwitterion-carbon nitride functionalized nanofiltration membranes with excellent separation performance of Mg2+/Li+ and good antifouling properties. *Sep. Purif. Technol.* **257**, 117959 (2021).
- 46. Park, S. H. *et al.* Lithium recovery from artificial brine using energy-efficient membrane distillation and nanofiltration. *J. Memb. Sci.* **598**, 117683 (2020).
- 47. Zhao, Y., Wang, H., Li, Y., Wang, M. & Xiang, X. An integrated membrane process for preparation of lithium hydroxide from high Mg/Li ratio salt lake brine. *Desalination* **493**, 114620 (2020).
- 48. Wei, S., Wei, Y., Chen, T., Liu, C. & Tang, Y. Porous lithium ion sieves nanofibers: General synthesis strategy and highly selective recovery of lithium from brine water. *Chem. Eng. J.* **379**, 122407 (2020).
- 49. Zhu, X. *et al.* Study on adsorption extraction process of lithium ion from West Taijinar brine by shaped titanium-based lithium ion sieves. *Sep. Purif. Technol.* **274**, 119099 (2021).

- 50. Zhang, G. *et al.* Synthesis of aluminum-doped ion-sieve manganese oxides powders with enhanced adsorption performance. *Colloids Surfaces A Physicochem. Eng. Asp.* **583**, 123950 (2019).
- 51. Zhao, K. *et al.* Synthesis of porous fiber-supported lithium ion-sieve adsorbent for lithium recovery from geothermal water. *Chem. Eng. J.* **430**, 131423 (2022).
- 52. Zhang, Y., Liu, J., Yang, Y., Lin, S. & Li, P. Preparation of granular titanium-type lithium-ion sieves and recyclability assessment for lithium recovery from brines with different pH value. *Sep. Purif. Technol.* **267**, 118613 (2021).
- 53. Li, H. *et al.* Prelithiation-derived hierarchical TiO2 sieve with metal-organic framework gate for selective lithium recovery. *Chem. Eng. J.* **451**, 138662 (2023).
- 54. Xue, F. *et al.* Preparation and evaluation of α-Al2O3 supported lithium ion sieve membranes for Li+ extraction. *Chinese J. Chem. Eng.* **28**, 2312–2318 (2020).
- 55. Wang, J. *et al.* Hierarchically Porous Polyacrylonitrile (PAN) 3D Architectures with Anchored Lattice-Expanded λ-MnO2 Nanodots as Freestanding Adsorbents for Superior Lithium Separation. *Ind. Eng. Chem. Res.* **59**, 13239–13245 (2020).
- 56. Cao, G. *et al.* Synthesis, Adsorption Properties and Stability of Cr-Doped Lithium Ion Sieve in Salt Lake Brine. *Bull. Chem. Soc. Jpn.* **92**, 1205–1210 (2019).
- 57. Xue, F. *et al.* Fe3O4-doped lithium ion-sieves for lithium adsorption and magnetic separation. *Sep. Purif. Technol.* **228**, 115750 (2019).
- 58. Li, X. *et al.* Taming wettability of lithium ion sieve via different TiO2 precursors for effective Li recovery from aqueous lithium resources. *Chem. Eng. J.* **392**, 123731 (2020).
- 59. Lin, H. *et al.* Synthesis of Polyporous Ion-Sieve and Its Application for Selective Recovery of Lithium from Geothermal Water. *ACS Appl. Mater. Interfaces* **11**, 26364–26372 (2019).
- 60. Li, X. *et al.* Highly selective separation of lithium with hierarchical porous lithium-ion sieve microsphere derived from MXene. *Desalination* **537**, 115847 (2022).
- 61. Ding, W. *et al.* Synthesis of granulated H4Mn5O12/chitosan with improved stability by a novel cross-linking strategy for lithium adsorption from aqueous solutions. *Chem. Eng. J.* **426**, 131689 (2021).
- 62. Lai, X., Xiong, P. & Zhong, H. Extraction of lithium from brines with high Mg/Li ratio by the crystallization-precipitation method. *Hydrometallurgy* **192**, 105252 (2020).
- 63. Liu, D., Li, Z., He, L. & Zhao, Z. Facet engineered Li3PO4 for lithium recovery from brines. *Desalination* **514**, 115186 (2021).
- 64. Alsabbagh, A., Aljarrah, S. & Almahasneh, M. Lithium enrichment optimization from Dead Sea end brine by chemical precipitation technique. *Miner. Eng.* **170**, 107038 (2021).
- 65. Quintero, C. *et al.* Development of a co-precipitation process for the preparation of magnesium hydroxide containing lithium carbonate from Li-enriched brines. *Hydrometallurgy* **198**, 105515 (2020).
- 66. Liu, D., Zhao, Z., Xu, W., Xiong, J. & He, L. A closed-loop process for selective lithium recovery from brines via electrochemical and precipitation. *Desalination* **519**, 115302 (2021).
- 67. Yu, X., Fan, X., Guo, Y. & Deng, T. Recovery of lithium from underground brine by

multistage centrifugal extraction using tri-isobutyl phosphate. *Sep. Purif. Technol.* **211**, 790–798 (2019).

- 68. Pérez-Rodríguez, S., Milton, J. A. & Garcia-Araez, N. Novel Method of Lithium Production from Brines Combining a Battery Material and Sodium Sulfite as a Cheap and Environmentally Friendly Reducing Agent. *ACS Sustain. Chem. Eng.* **8**, 6243–6251 (2020).
- 69. Xiong, J., Zhao, Z., Liu, D. & He, L. Direct lithium extraction from raw brine by chemical redox method with LiFePO4/FePO4 materials. *Sep. Purif. Technol.* **290**, 120789 (2022).
- Palagonia, M. S., Brogioli, D. & La Mantia, F. Lithium recovery from diluted brine by means of electrochemical ion exchange in a flow-through-electrodes cell. *Desalination* 475, (2020).
- 71. Joo, H. *et al.* Pilot-scale demonstration of an electrochemical system for lithium recovery from the desalination concentrate. *Environ. Sci. Water Res. Technol.* **6**, 290–295 (2020).
- 72. Xu, L. *et al.* Stable ionic liquid-based polymer inclusion membranes for lithium and magnesium separation. *Sep. Purif. Technol.* **288**, 120626 (2022).
- 73. Zhang, Y., Xu, R., Sun, W., Wang, L. & Tang, H. Li extraction from model brine via electrocoagulation: Processing, kinetics, and mechanism. *Sep. Purif. Technol.* **250**, 117234 (2020).
- 74. Bai, R., Wang, J., Wang, D., Zhang, Y. & Cui, J. Selective separation of lithium from the high magnesium brine by the extraction system containing phosphate-based ionic liquids. *Sep. Purif. Technol.* **274**, 119051 (2021).
- 75. Li, R. *et al.* Novel ionic liquid as co-extractant for selective extraction of lithium ions from salt lake brines with high Mg/Li ratio. *Sep. Purif. Technol.* **277**, 119471 (2021).
- 76. Ren, Z. *et al.* Highly selective extraction of lithium ions from salt lake brines with sodium tetraphenylborate as co-extractant. *Sep. Purif. Technol.* **269**, 118756 (2021).
- 77. Su, H. *et al.* Recovery of lithium from salt lake brine using a mixed ternary solvent extraction system consisting of TBP, FeCl3 and P507. *Hydrometallurgy* **197**, 105487 (2020).
- 78. Zhou, Z. *et al.* Recovery of lithium from salt-lake brines using solvent extraction with TBP as extractant and FeCl3 as co-extraction agent. *Hydrometallurgy* **191**, 105244 (2020).
- 79. Zhang, L. *et al.* Recovery of lithium from salt lake brine with high Na/Li ratio using solvent extraction. *J. Mol. Liq.* **362**, 119667 (2022).
- 80. Hanada, T. & Goto, M. Synergistic Deep Eutectic Solvents for Lithium Extraction. *ACS Sustain. Chem. Eng.* **9**, 2152–2160 (2021).
- 81. Ji, L. *et al.* Mechanism and process for the extraction of lithium from the high magnesium brine with N,N-bis(2-ethylhexyl)-2-methoxyacetamide in kerosene and FeC13. *J. Ind. Eng. Chem.* **113**, 254–263 (2022).
- 82. Zhang, L. *et al.* Recovery of lithium from alkaline brine by solvent extraction with β-diketone. *Hydrometallurgy* **175**, 35–42 (2018).
- 83. Su, H. *et al.* Combining Selective Extraction and Easy Stripping of Lithium Using a Ternary Synergistic Solvent Extraction System through Regulation of Fe3+ Coordination. *ACS Sustain. Chem. Eng.* **8**, 1971–1979 (2020).

- 84. Wang, Y. *et al.* Recovery of lithium ions from salt lake brine with a high magnesium/lithium ratio using heteropolyacid ionic liquid. *ACS Sustain. Chem. Eng.* **7**, 3062–3072 (2018).
- 85. Yang, S., Liu, G., Wang, J., Cui, L. & Chen, Y. Recovery of lithium from alkaline brine by solvent extraction with functionalized ionic liquid. *Fluid Phase Equilib.* **493**, 129–136 (2019).
- Xiang, W., Liang, S., Zhou, Z., Qin, W. & Fei, W. Extraction of lithium from salt lake brine containing borate anion and high concentration of magnesium. *Hydrometallurgy* 166, 9–15 (2016).
- 87. Luo, Q. *et al.* Extraction of lithium from salt lake brines by granulated adsorbents. *Colloids Surfaces A Physicochem. Eng. Asp.* **628**, 127256 (2021).
- Zhong, J., Lin, S. & Yu, J. Li+ adsorption performance and mechanism using lithium/aluminum layered double hydroxides in low grade brines. *Desalination* 505, 114983 (2021).
- Marthi, R. & Smith, Y. R. Application and limitations of a H2TiO3 Diatomaceous earth composite synthesized from titania slag as a selective lithium adsorbent. *Sep. Purif. Technol.* 254, 117580 (2021).
- Marthi, R. & Smith, Y. R. Selective recovery of lithium from the Great Salt Lake using lithium manganese oxide-diatomaceous earth composite. *Hydrometallurgy* 186, 115–125 (2019).
- 91. Meng, Z. *et al.* Highly flexible interconnected Li+ ion-sieve porous hydrogels with self-regulating nanonetwork structure for marine lithium recovery. *Chem. Eng. J.* **445**, 136780 (2022).
- 92. Romero, V. C. E., Tagliazucchi, M., Flexer, V. & Calvo, E. J. Sustainable electrochemical extraction of lithium from natural brine for renewable energy storage. *J. Electrochem. Soc.* **165**, A2294–A2302 (2018).
- Romero, V. C. E., Putrino, D. S., Tagliazucchi, M., Flexer, V. & Calvo, E. J. Electrochemical Flow Reactor for Selective Extraction of Lithium Chloride from Natural Brines. J. Electrochem. Soc. 167, 120522 (2020).
- 94. Wang, L. *et al.* Electrochemical lithium recovery with lithium iron phosphate: what causes performance degradation and how can we improve the stability? *Sustain. Energy Fuels* **5**, 3124–3133 (2021).
- 95. Fu, L. *et al.* Electrochemical ion-pumping-assisted transfer system featuring a heterogeneous membrane for lithium recovery. *Chem. Eng. J.* **435**, 134955 (2022).
- 96. Zhang, Z. *et al.* A scalable three-dimensional porous λ-MnO2/rGO/Ca-alginate composite electroactive film with potential-responsive ion-pumping effect for selective recovery of lithium ions. *Sep. Purif. Technol.* **259**, 118111 (2021).
- 97. Luo, G. *et al.* Electrochemical lithium ions pump for lithium recovery from brine by using a surface stability Al2O3–ZrO2 coated LiMn2O4 electrode. *J. Energy Chem.* **69**, 244–252 (2022).
- Zhao, X., Zheng, L., Hou, Y., Wang, Y. & Zhu, L. Pulsed electric field controlled lithium extraction process by LMO/MXene composite electrode from brines. *Chem. Eng. J.* 450, 138454 (2022).
- 99. Kim, S., Joo, H., Moon, T., Kim, S.-H. & Yoon, J. Rapid and selective lithium recovery from desalination brine using an electrochemical system. *Environ. Sci. Process. Impacts*

, 667–676 (2019).

100. Zhao, X., Yang, H., Wang, Y., Yang, L. & Zhu, L. Lithium extraction from brine by an asymmetric hybrid capacitor composed of heterostructured lithium-rich cathode and nano-bismuth anode. *Sep. Purif. Technol.* **274**, 119078 (2021).