nature research | Corresponding author(s): | Yuedong Yang | |----------------------------|--------------| | Last updated by author(s): | Jul 22, 2022 | # **Reporting Summary** Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist. | o. | | | | |----|----|------|------------| | St | at | ıstı | $1 \cap S$ | | For | all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section. | |-------------|--| | n/a | Confirmed | | | The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement | | | A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly | | | The statistical test(s) used AND whether they are one- or two-sided Only common tests should be described solely by name; describe more complex techniques in the Methods section. | | \boxtimes | A description of all covariates tested | | \boxtimes | A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons | | | A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals) | | | For null hypothesis testing, the test statistic (e.g. <i>F</i> , <i>t</i> , <i>r</i>) with confidence intervals, effect sizes, degrees of freedom and <i>P</i> value noted <i>Give P values as exact values whenever suitable.</i> | | \boxtimes | For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings | | \boxtimes | For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes | | \boxtimes | Estimates of effect sizes (e.g. Cohen's <i>d</i> , Pearson's <i>r</i>), indicating how they were calculated | | | Our web collection on statistics for high gives contains articles on many of the points above | #### Software and code Policy information about availability of computer code Data collection Rosetta 2019.27.post.dev, PatchDock Beta 1.3 Version, Schrodinger 2021-1, GROMACS 2020.6 were used to implement the MD simulations. Python version 3 and Pytorch 1.8.0 were used to curate the dataset and build the deep learning model. The code is available at https://github.com/biomed-AI/PROTAC-RL. Data analysis Python version 3, Phoenix WinNonlin 6.3 and Maestro Release 2018-3 were used to analyze the results. The code is available at https://github.com/biomed-Al/PROTAC-RL. Microsoft Excel (2016) and Graphpad Prism 8 were used for data analysis. For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information. #### Data Policy information about <u>availability of data</u> $All\ manuscripts\ must\ include\ a\ \underline{data\ availability\ statement}.\ This\ statement\ should\ provide\ the\ following\ information,\ where\ applicable:$ - Accession codes, unique identifiers, or web links for publicly available datasets - A list of figures that have associated raw data - A description of any restrictions on data availability The processed training datasets and AI-related data generated in this study are available at https://github.com/biomed-AI/PROTAC-RL. The raw data can be accessed at http://cadd.zju.edu.cn/protacdb/ for the PROTAC-DB dataset, https://zinc15.docking.org/ for the ZINC dataset, and https://www.rcsb.org for the protein crystal structure. ## Field-specific reporting | Ρ | Please select the one below tha | at is the best fit for your | research. If you are not sur | re, read the appropriate sections | s before making your selection. | |---|---------------------------------|-----------------------------|------------------------------|-----------------------------------|---------------------------------| | | | _ | | | | For a reference copy of the document with all sections, see <u>nature.com/documents/nr-reporting-summary-flat.pdf</u> # Life sciences study design All studies must disclose on these points even when the disclosure is negative. Sample size Histograms, means and standard deviations were estimated on different samples sizes, from 10 to 6,000, to ensure that the results are independent of sample size. The sample sizes used in the experiments are detailed in the manuscript and respective figure captions. Data exclusions No data were excluded Replication Results are verified by independent biological experiments. At least three independent measurements were taken. Randomization For the study, self controlled case series methods were used to the data collection and analysis. Independent datasets consisting of randomly selected Al-generated/screened data were used for estimating the mean and the variance of attributes. Blinding Blinding was not relevant, as this study provides an Al-empowered computational framework for accelerated PROTACs discovery and the evaluation of Al-generated PROTACs. # Behavioural & social sciences study design All studies must disclose on these points even when the disclosure is negative. restates mast alsolose on these points even when the alsolosare is negative. Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional, quantitative experimental, mixed-methods case study). Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For studies involving existing datasets, please describe the dataset and source. Sampling strategy Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and what criteria were used to decide that no further sampling was needed. Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper, computer, eve tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and whether the researcher was blind to experimental condition and/or the study hypothesis during data collection. Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample Study description Data collection Randomization Study description If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the rationale behind them, indicating whether exclusion criteria were pre-established. Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no participants dropped out/declined participation. If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if allocation was not random, describe how covariates were controlled. # Ecological, evolutionary & environmental sciences study design All studies must disclose on these points even when the disclosure is negative. T stadies mast disclose on these points even when the disclosure is negative. Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested, hierarchical), nature and number of experimental units and replicates. Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and | | (any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets, | |-----------------------------|--| | | describe the data and its source. | | Sampling strategy | Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient. | | Data collection | Describe the data collection procedure, including who recorded the data and how. | | Timing and spatial scale | Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which the data are taken | | Data exclusions | If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, indicating whether exclusion criteria were pre-established. | | Reproducibility | Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to repeat the experiment failed OR state that all attempts to repeat the experiment were successful. | | Randomization | Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were controlled. If this is not relevant to your study, explain why. | | Blinding | Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why blinding was not relevant to your study. | | Did the study involve field | d work? Yes No | | Field work, collec | tion and transport | | Field conditions | Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall). | | Location | State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth). | | Access & import/export | Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority, the date of issue, and any identifying information). | | Disturbance | Describe any disturbance caused by the study and how it was minimized. | | | | # Reporting for specific materials, systems and methods We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. | Materials & experimental systems | Methods | | |----------------------------------|---------------------------|--| | n/a Involved in the study | n/a Involved in the study | | | Antibodies | ChIP-seq | | | Eukaryotic cell lines | Flow cytometry | | | Palaeontology and archaeology | MRI-based neuroimaging | | | Animals and other organisms | | | | Human research participants | | | | Clinical data | | | | Dual use research of concern | | | | | | | ### **Antibodies** Antibodies used Antibodies for immunoblotting in this study:poly-clonal rabbit anti-BRD4 (Cat No: D261401, lot: 0025) were purchased from Sangon Inc., Shanghai, China and mono-clonal mouse anti-GAPDH (Cat No: 60004-1-lg, lot:10020246,Clone No: 1E6D9) from Proteintech (USA). Validation The antibodies were validated by the manufacturers for immunoblotting. Reactivity: Human and Mouse. Detailed antibody validation profiles are available on the antibody-provider websites. ### Eukaryotic cell lines Policy information about cell lines Cell line source(s) Molt4 and HEK293T Cell lines were from ATCC (American Type Culture Collection), distributed by Shanghai ChemPartner Co., Authentication The cells were authenticated by STR. Mycoplasma contamination All cell lines used have been tested free of mycoplasma contamination. Commonly misidentified lines (See ICLAC register) None. ### Palaeontology and Archaeology Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the issuing authority, the date of issue, and any identifying information). Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers. Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are provided. Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information. Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance was required and explain why not. Note that full information on the approval of the study protocol must also be provided in the manuscript. ### Animals and other organisms Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research Laboratory animals Male CD-1 Mouse, Fed, 7-9 weeks Wild animals Study did not involve wild animals Field-collected samples Following arrival at WuXi AppTec animals were assessed as to their general health by a member of the veterinary staff or other authorized personnel. Animals were acclimated for at least 3 days (upon arrival at WuXi AppTec) before being placed on study. Animals were group housed during acclimation and individually housed during the study. The animal room environment was controlled (target conditions: temperature 18 to 26°C, relative humidity 30 to 70%, 12 hours artificial light and 12 hours dark). Temperature and relative humidity was monitored daily. The animals were overnight fasted. They had access to Certified Rodent Diet ad libitum 4 hr post dose. The lot number and specifications of each lot used were archived at WuXi AppTec. Water was autoclaved before provided to the animals ad libitum. Periodic analyses of the water was performed and the results archived at WuXi AppTec. Ethics oversight Study was permitted by WuXi AppTec IACUC (Institutional Animal Care and Use Committee). Note that full information on the approval of the study protocol must also be provided in the manuscript. ### Human research participants Policy information about studies involving human research participants Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, gender, genotypic information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study design questions and have nothing to add here, write "See above." Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and how these are likely to impact results. Ethics oversight Identify the organization(s) that approved the study protocol. Note that full information on the approval of the study protocol must also be provided in the manuscript. | Clinical data | | | | |---|--|--|--| | Policy information about <u>c</u> l | inical studies with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions. | | | | Clinical trial registration | Provide the trial registration number from ClinicalTrials.gov or an equivalent agency. | | | | Study protocol | Note where the full trial protocol can be accessed OR if not available, explain why. | | | | Data collection | Describe the settings and locales of data collection, noting the time periods of recruitment and data collection. | | | | Outcomes | Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures. | | | | Dual use research | n of concern | | | | Policy information about <u>d</u> | ual use research of concern | | | | Hazards | | | | | in the manuscript, pose a No Yes Public health National security Crops and/or lives Ecosystems Any other significations | tock
int area | | | | Experiments of conce | rn | | | | 1 | y of these experiments of concern: | | | | No Yes Demonstrate how | No Yes Demonstrate how to render a vaccine ineffective | | | | Confer resistance to therapeutically useful antibiotics or antiviral agents | | | | | | ence of a pathogen or render a nonpathogen virulent | | | | | sibility of a pathogen | | | | Alter the host rang | diagnostic/detection modalities | | | | | nization of a biological agent or toxin | | | | | ally harmful combination of experiments and agents | | | ### ChIP-seq #### Data deposition Confirm that both raw and final processed data have been deposited in a public database such as <u>GEO</u>. Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks. #### Data access links May remain private before publication. For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document, provide a link to the deposited data. Files in database submission Provide a list of all files available in the database submission. Genome browser session (e.g. <u>UCSC</u>) Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to enable peer review. Write "no longer applicable" for "Final submission" documents. #### Methodology Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and | Sequencing depth | whether they were paired- or single-end. | | |---------------------------|--|--| | Antibodies | Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot number. | | | Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files used. | | | Data quality | Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment. | | | Software | Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community repository, provide accession details. | | | Flow Cytometry | | | | Plots | | | | Confirm that: | | | | The axis labels state tl | ne marker and fluorochrome used (e.g. CD4-FITC). | | | The axis scales are cle | arly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers). | | | | | | | | olots with outliers or pseudocolor plots. | | | A numerical value for | number of cells or percentage (with statistics) is provided. | | | Methodology | | | | Sample preparation | Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used. | | | Instrument | Identify the instrument used for data collection, specifying make and model number. | | | Software | Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a community repository, provide accession details. | | | Cell population abundance | Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the samples and how it was determined. | | | Gating strategy | Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell population, indicating where boundaries between "positive" and "negative" staining cell populations are defined. | | | Tick this box to confirm | m that a figure exemplifying the gating strategy is provided in the Supplementary Information. | | | Magnetic resonar | nce imaging | | | Experimental design | | | | Design type | Indicate task or resting state; event-related or block design. | | | Design specifications | Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial or block (if trials are blocked) and interval between trials. | | | Behavioral performance r | State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across subjects). | | | Acquisition | | | | Imaging type(s) | Specify: functional, structural, diffusion, perfusion. | | | Field strength | Specify in Tesla | | | Sequence & imaging para | meters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, slice thickness, orientation and TE/TR/flip angle. | | State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined. Area of acquisition Used ☐ Not used Diffusion MRI #### Preprocessing Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, segmentation, smoothing kernel size, etc.). Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for transformation OR indicate that data were not normalized and explain rationale for lack of normalization. Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized. Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and physiological signals (heart rate, respiration). Define your software and/or method and criteria for volume censoring, and state the extent of such censoring. Volume censoring Statistical modeling & inference Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and second levels (e.g. fixed, random or mixed effects; drift or auto-correlation). Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether ANOVA or factorial designs were used. Specify type of analysis: Whole brain ROI-based Both Statistic type for inference (See Eklund et al. 2016) Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo). ### Models & analysis n/a | Involved in the study Graph analysis Functional and/or effective connectivity | Multivariate modeling or predictive analys | is | |--|---| | Functional and/or effective connectivity | Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation, mutual information). | | Graph analysis | Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, etc.). | Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation metrics.