
Articles
https://doi.org/10.1038/s42256-019-0089-1

In situ training of feed-forward and recurrent
convolutional memristor networks
Zhongrui Wang1,8, Can Li   1,2,8, Peng Lin1,8, Mingyi Rao1, Yongyang Nie1, Wenhao Song1, Qinru Qiu3,
Yunning Li1, Peng Yan   1, John Paul Strachan   2, Ning Ge2, Nathan McDonald4, Qing Wu4, Miao Hu5,
Huaqiang Wu   6, R. Stanley Williams   7, Qiangfei Xia   1* and J. Joshua Yang   1*

1Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, USA. 2Hewlett Packard Labs, Hewlett Packard
Enterprise, Palo Alto, CA, USA. 3Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY, USA. 4Information
Directorate, Air Force Research Laboratory, Rome, NY, USA. 5Department of Electrical and Computer Engineering, Binghamton University, Binghamton,
NY, USA. 6Institute of Microelectronics, Tsinghua University, Beijing, China. 7Department of Electrical and Computer Engineering, Texas A&M University,
College Station, TX, USA. 8These authors contributed equally: Zhongrui Wang, Can Li, Peng Lin. *e-mail: qxia@umass.edu; jjyang@umass.edu

SUPPLEMENTARY INFORMATION

In the format provided by the authors and unedited.

NatuRe MaCHINe INteLLIGeNCe | www.nature.com/natmachintell

http://orcid.org/0000-0003-3795-2008
http://orcid.org/0000-0002-0341-4052
http://orcid.org/0000-0002-1382-3677
http://orcid.org/0000-0001-8359-7997
http://orcid.org/0000-0003-0213-4259
http://orcid.org/0000-0003-1436-8423
http://orcid.org/0000-0003-0671-6010
mailto:qxia@umass.edu
mailto:jjyang@umass.edu
http://www.nature.com/natmachintell

Supplementary Figure 1 | The hybrid analogue-digital computing system. The system
consists of the 3 parts, the 1-transistor 1-memristor (1T1R) analogue memristor array, the
printed circuit boards (PCBs, with on board analogue-to-digital converters or ADCs,
digital-to-analogue converters or DACs, and trans-impedance amplifiers or TIAs), the
general digital processor (microcontroller or MCU, and personal computer or PC). The
1T1R chip provides the hardware synapses and their associated topology. The PCBs
implement part of the neuron functions. (The pre-synaptic DACs apply voltage signals to
the bit lines of the 1T1R array, while the post-synaptic TIAs and ADCs read the summed
currents across the memristor synapses of each column.) The PCBs also implement weight
update and readout. The digital processors apply arbitrary activation functions to the
current outputs of the post-synaptic modules, in addition to error backpropagation with
physically acquired weights and gradients calculation with the RMSprop optimizer.

16-Bit
DAC

16-Bit
DAC

16-Bit
D

AC

16-Bit
D

AC

16
-B

it
D

AC

16
-B

it
A

D
C

Mux

TIA

16
-B

it
D

AC

16
-B

it
A

D
C

Mux

TIA
PC &
MCU

D
at

a
&

C
om

m
un

ic
at

io
n

Bu
s

. .
 .

. . .

. . .

Pr
es

yn
ap

tic
 N

eu
ro

n
M

od
ul

e

Postsynaptic Neuron Module

N
eu

ro
n

Ac
tiv

at
io

n
M

od
ul

e

Supplementary Figure 2 | One-shot blind analogue programming of the 1T1R
memristors. a, Scheme of the one-shot programming. Positive voltages were applied to
the memristor top electrode (TE) lines and the word lines to SET the memristors. Positive
voltages were applied to the bit lines and the word lines to fully RESET the memristors
followed by a SET operation to achieve targeted conductance. (see Method and Table 1) b,
Analogue SET and RESET with linearly varying word line voltages (gate voltages of the
transistors). Statistical distribution of the conductance of the 128 × 64 memristor array after
receiving 15 SET operations (All word line voltages were linearly ramped from 1 V to 2.4
V with a step 0.1 V in 15 cycles.) followed by 15 RESET operations (All word line voltages
were linearly ramped down from 2.4 V to 1 V with a step 0.1 V in 15 cycles.), showing the
linear and symmetric conductance tuning in one-shot without feedback. The red dots
indicate the medians, and the bottom and top edges of the blue boxes indicate the 25th and
75th percentiles, respectively. The dashed lines extend to the most extreme data points.
Notice the gain of the TIA limited the maximum readable conductance to ~1250 µS.

Cycles
0 10 20 30

0

500

1000

1500

C
on

du
ct

an
ce

 (µ
S)

Fully RESET
(RESET only)

SET

Fully RESET
(RESET only)

SET

Fully RESET
(RESET only)

SET

Word Lines

B
it

Li
ne

s

Memristor
TE Lines

a b

Supplementary Figure 3 | Inference statistics of the 5-level convolutional neural
network (CNN). a, Graph illustrating the statistics of the winner neurons of different labels
for all 10,000 MNIST test-set images. The most common misclassification was with the
handwritten digital ‘7’ which was likely to be identified as ‘9’. b, The pie chart of the
classification, showing that the winner neurons have made correct predictions in 92.13%
cases. The neurons of the second largest output matched with the labels in 5.26% cases.

92.13%

5.
26

%

2.
61

%

Winner Neuron
Second Largest Neuron
Other Neurons

0

1

2

3

4

5

6

7

8

9

Labels

Pr
ed

ic
tio

ns

1 2 3 4 5 6

Counts

0 7 8 9
0

200

400

600

800

1000

a b

Supplementary Figure 4 | Representative inference examples of the 5-level CNN.
Examples of the valid classifications of the 10 digits (left 3 columns) and invalid
classifications (right 3 columns). The second and fifth columns illustrate the raw output
currents of the fully connected layer neurons. The corresponding Bayesian probabilities
based on the softmax function are with the third and sixth columns. More data is shown in
Supplementary Video 2.

123456780 9
Neurons

C
ur

re
nt

 (μ
A

)

Pr
ob

ab
ili

ty

Pr
ob

ab
ili

ty

C
ur

re
nt

 (μ
A

)

123456780 9
Neurons

123456780 9
Neurons

123456780 9
Neurons

0

200

0

1

0
100

0

1

0
100

0

1

0
100

0

1

0
100

0

1

0
100

0

1

0
100

0

1

0
100

0

1

0
100

0

1

0
100

0

1

0

200

0

1

0

200

0

1

0

200

0

1

0

200

0

1

0

200

0

1

0

200

0

1

0

200

0

1

0
100

0

1

0

200

0

1

0

200

0

1

Valid Calssifications Invalid Calssifications

Supplementary Figure 5 | Simulated impact of memristor programming noise over
the generalization error. a-c, Training the first 5,000 samples of MNIST with simulated
1T1R crossbars of programming error of 0.4 µS (the standard deviation of normal
distributed noises), 4 µS, and 8 µS, respectively. It clearly shows the programming noise
reduces the difference between the training accuracy (average of all in-batch training
accuracy over the epoch) and the test accuracy.

30

40

50

60

70

80

90

100

train
test

108642
30

40

50

60

70

80

90

100

30

40

50

60

70

80

90

100

108642 108642

train
test

train
test

A
cc

ur
ac

y
(%

)

A
cc

ur
ac

y
(%

)

A
cc

ur
ac

y
(%

)
Epoch Epoch Epoch

a b c

Supplementary Figure 6 | Post-training conductance map and weights of the 5-level
CNN. a, The conductance of the 123 × 59 subarray used to implement the CNN after
training on the 60,000 MNIST images for 2 epochs. b, The corresponding weights of the
15 kernels of size 3 × 3 of the first convolutional layer. Each weight is calculated by

Unit: mS

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Conv1

Conv1

C
on

v2
C

on
v2

D
en

se
 (p

ar
t 1

/2
)

D
en

se
 (p

ar
t 1

/2
)

D
en

se
 (p

ar
t 2

/2
)

D
en

se
 (p

ar
t 2

/2
)

Kernel 1 Kernel 2 Kernel 3 Kernel 4 Kernel 5

Kernel 6 Kernel 7 Kernel 8 Kernel 9 Kernel 10

Kernel 11 Kernel 12 Kernel 13 Kernel 14 Kernel 15

Kernel 1

Kernel 2

Kernel 3

Kernel 4

Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5

Neuron 6 Neuron 7 Neuron 8 Neuron 9 Neuron 10

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Unit: 1

a b

c

d

dividing the averaged conductance differences of the 2 differential pairs by the constant
conductance-to-weight ratio Rgw (see Method). c, The corresponding weights of the 4
kernels of size 2 × 2 (×15) of the second convolutional layer. Each graph is a 2-dimensional
slice of the volumetric kernel along its depth. d, The corresponding weights of the 64 × 10
fully connected layer. Each graph of 8 × 8 pixels represents the 64 × 1 weight vector of a
neuron after reshaping. The conductance and weights evolution during the in situ training
is with Supplementary Video 1.

Supplementary Figure 7 | Inference statistics of the convolutional long-short term
memory (ConvLSTM). a, Graph illustrating the statistics of the winner neurons of
different labels for all 1,010 test-set MNIST-sequences. The most common
misclassification was with the sequence ‘1-3-2’ which was likely to be identified as ‘1-2-
3’. b, The pie chart of the classification, showing that the winner neuron has made correct
predictions in 96.43% cases. The neurons of the second largest output matched with the
labels in 2.97% cases.

96.43%

2.
97

%

0.59%

Winner Neuron
Second Largest Neuron
Other Neurons

Labels

1-2-3

1-3-2

2-1-3

2-3-1

3-1-2

3-2-1

Pr
ed

ic
tio

ns

1-2-3 1-3-2 2-1-3 2-3-1 3-1-2 3-2-1

Counts

0

40

80

120

160

200

a b

Supplementary Figure 8 | Post-training conductance map and weights of the
ConvLSTM. a, The conductance of the 124 × 56 subarray used to implement the
ConvLSTM after training on the 5,958 MNIST-sequences for 2 epochs. b, The
corresponding weights of the 5 input kernels of size 3 × 3 and 5 recurrent input kernels of

0.1

0.2

0.3

0.4

0.5

0.6

Unit: mS

D
en

se

D
en

se

C
on

v
(R

ec
ur

re
nt

 C
el

l)

C
on

v
(R

ec
ur

re
nt

 In
pu

t G
at

e)

C
on

v
(R

ec
ur

re
nt

 F
or

ge
t G

at
e)

C
on

v
(R

ec
ur

re
nt

 O
ut

pu
t G

at
e)

C
on

v
(C

el
l)

C
on

v
(In

pu
t G

at
e)

C
on

v
(F

or
ge

t G
at

e)

C
on

v
(O

ut
pu

t G
at

e)

C
on

v
(R

ec
ur

re
nt

 C
el

l)

C
on

v
(R

ec
ur

re
nt

 In
pu

t G
at

e)

C
on

v
(R

ec
ur

re
nt

 F
or

ge
t G

at
e)

C
on

v
(R

ec
ur

re
nt

 O
ut

pu
t G

at
e)

C
on

v
(C

el
l)

C
on

v
(In

pu
t G

at
e)

C
on

v
(F

or
ge

t G
at

e)

C
on

v
(O

ut
pu

t G
at

e)

In
pu

t g
at

e
Fo

rg
et

 g
at

e
O

ut
pu

t g
at

e

Kernel 1 Kernel 2 Kernel 3 Kernel 4 Kernel 5

Kernel 1 Kernel 2 Kernel 3 Kernel 4 Kernel 5

Kernel 1 Kernel 2 Kernel 3 Kernel 4 Kernel 5

Kernel 1 Kernel 2 Kernel 3 Kernel 4 Kernel 5

C
el

l I
np

ut

In
pu

t
R

ec
ur

re
nt

 In
pu

t
In

pu
t

R
ec

ur
re

nt
 In

pu
t

In
pu

t
R

ec
ur

re
nt

 In
pu

t
In

pu
t

R
ec

ur
re

nt
 In

pu
t

Neuron 1 Neuron 2 Neuron 3

Neuron 4 Neuron 5 Neuron 6

-2

-1

0

1

2

Unit: 1

a b

c

size 2 × 2 (× 5) of the cell input, input gate, forget gate, and output gate of the ConvLSTM
layer. Each weight is calculated by dividing the averaged conductance differences of the 2
differential pairs by the constant conductance-to-weight ratio Rgw (see Method). c, The
corresponding weights of the 45 × 6 fully connected layer. Each graph of 9 × 5 pixels
represents the 45 × 1 weight vector of a neuron after reshaping. The conductance and
weights evolution during the in situ training is with Supplementary Video 3.

Supplementary Figure 9 | Representative inference examples of the ConvLSTM.
Examples of the valid classifications of the 6 sequences (upper 6 rows) and invalid
classifications (lower 6 rows). The middle column illustrates the raw output currents of the
fully connected layer neurons at different time steps (time step 1: blue; time step 2: red,
time step 3: orange). The corresponding Bayesian probabilities (of the last time step) based
on the softmax function are with the right column. More data is shown in Supplementary
Video 4.

0

1

0

100

0

1

0

100

0

1

0

100

0

1

0

100

0

1

0

100

0

1

0

100

0

1

0

100

0

1

0

100

0

1

0

100

0

1

0

100

0

1

0

100

0

1

0

100

1-2-3
1-3-2

2-1-3
2-3-1

3-1-2
3-2-1

Neurons

Pr
ob

ab
ili

ty

C
ur

re
nt

 (μ
A

)

Va
lid

 C
al

ss
ifi

ca
tio

ns
In

va
lid

 C
al

ss
ifi

ca
tio

ns

1-2-3
1-3-2

2-1-3
2-3-1

3-1-2
3-2-1

Neurons

Supplementary Figure 10 | The analogue SET programming, conductance read-out,
and vector-matrix multiplication schemes. a, The analogue SET programming flowchart.
The 1T1R array was programmed row-by-row. For each row, the microcontroller set the
DAC output voltages of all the memristor TE lines (green) to VSET and word lines (red) to
target conductance dependent gate . (see Method) Unselected bit lines (blue) were floated.
b, The conductance readout flowchart. The conductance of the array was read row-by-row.
In each time step, the selected bit line was biased to VRead while the rest bit lines were
grounded. The microcontroller read the ADCs of all memristor TE lines in each time step.
All word lines were set to Vgate = 5 V in all time steps. c, The vector-matrix multiplication
flowchart. The bit line DACs were configured to produce the input vector ⃗ . The
microcontroller read the ADCs of all memristor TE lines. All word lines were set to Vgate
= 5 V.

16-Bit
DAC

16-Bit
D

AC

16-Bit
D

AC

16-Bit
D

AC

16-Bit
D

AC

16-Bit
DAC

16-Bit
DAC

16-Bit
DAC

16
-B

it
A

D
C

TIA

16
-B

it
A

D
C

TIA

16
-B

it
A

D
C

TIA

16
-B

it
A

D
C

TIA

16-Bit
DAC

16-Bit
D

AC

16-Bit
D

AC

16-Bit
D

AC

16-Bit
D

AC

16-Bit
DAC

16-Bit
DAC

16-Bit
DAC

16
-B

it
A

D
C

TIA

16
-B

it
A

D
C

TIA

16
-B

it
A

D
C

TIA

16
-B

it
A

D
C

TIA

16-Bit
DAC

16-Bit
D

AC

16-Bit
D

AC

16
-B

it
D

AC

16-Bit
D

AC

16-Bit
D

AC

16
-B

it
D

AC

16
-B

it
D

AC

16
-B

it
D

AC

a b c

Supplementary Figure 11 | The block diagrams of the forward pass of a, fully
connected layer, b, 2-dimensional convolution layer, c, ConvLSTM layer. For the fully
connected layer, the vector-matrix multiplication and activations are performed by the
1T1R crossbar and the PC, respectively. For the convolution, low level computation (in
proximity to the 1T1R crossbar) by MCU samples the volume for weighted sum with
kernels. For the ConvLSTM layer, additional PC computation updates the cell status and
produces the ConvLSTM output.

MCU/DAC: MCU configures row
DACs to output voltage vector x

PC/MCU: PC sends MCU the
input vector x.

DAC/1T1R/ADC: Vector-matrix
multiplication

ADC/MCU/PC: MCU reads ADCs
output y and sends to PC

PC: PC applies activation to y

MCU: done?

MCU/DAC: MCU configures row
DACs to output voltages xi

PC/MCU: PC sends MCU the
input volume x and strides.

DAC/1T1R/ADC: Vector-matrix
multiplication

ADC/MCU/PC: MCU reads ADCs
output yi and sends to PC

PC: PC combines {yi} to produce
convolution output y

MCU: MCU samples the volume
for weighted sum xi

PC: PC applies activation to y

MCU: done?

MCU/DAC: MCU configures row
DACs to output voltages xi and ri

PC/MCU: PC sends MCU the
input volume x and strides, and

recurrent input volume r

DAC/1T1R/ADC: Vector-matrix
multiplication

ADC/MCU/PC: MCU reads ADCs
output yi and sends to PC

PC: PC combines {yi} to get cell
input, input gate, forget gate,

output gate

MCU: MCU samples the volumes
for weighted sum xi and ri

PC: PC applies activations

PC: PC updates cell using cell
input, input gate, forget gate

PC: PC produces ConvLSTM
output y using cell, output gate

Computing (1T1R)

Computing (MCU)

Computing (PC)

Data Acquisition

Legends

a b c

Supplementary Figure 12 | Architecture and experimental performance of a LeNet-
5-like CNN. a, The exemplary forward pass in the inference. The 8-bit grayscale input of
size 20 × 16 (cropped from original MNIST without down-sampling) was convolved by
the 6 memristor kernels of size 3 × 3 with rectified linear unit (ReLU) activation followed
by the max pooling of size/stride 2 × 2. The feature maps are then convolved by sixteen 3
× 3 kernels, followed by the second 2 × 2 max pooling layer, before being fed to the fully
connected 10-way softmax output layer. b, The smoothed experimental in-batch accuracy
(loss) increased (decreased) over the course of in situ training. The experimental curves are
indistinguishable from the simulation considering the programming noise, tightly
following the noise-free simulation.

100 101 102 103
10-2

10-1

100

101

102

A
ve

ra
ge

d
Lo

ss

Noise Free Simulation
Simulation with Programming Noise
Experimental

Mini-batches
0 200 400 600 800 1000 1200

Mini-batches

0

20

40

60

80

100

A
ve

ra
ge

d
Tr

ai
ni

ng
A

cc
ur

ac
y

(%
)

Noise Free Simulation
Simulation with Programming Noise
Experimental

16 3×3 Kernels

+ Linear

96×10 Fully Connected Layer + Softmax

6 5×5 Kernels
+ ReLU

Input Letter ‘8’

6 16×12 Feature Maps

6 8×6
Feature Maps 16 6×4

Feature Maps
96 Maps

Output

Digit ‘8’ Identified

2×2 Maxpooling

Flatten

16 3×2
Feature Maps

2×2
Maxpooling

0
-1.7
-0.8

0

1.1
2.7
2.7
1

6 16×12, 6 8×6 Feature Maps
16 6×4 Feature Maps

16 3×2 Feature Maps / 96 Maps
Output

0
1

2
3

4
5

6
7

8
9

a

b c

Supplementary Figure 13 | Schematic illustration of the time span of the minibatch
forward pass with the hybrid analogue-digital system for AlexNet1. S1, S2, and S128
refers the first, second, and 128th sample of the minibatch. The forward passes of different
samples are “parallel” because of the sequential structure of the AlexNet.

S1
128 ns

S128
128 ns

S128
128 ns

S1
128 ns

S128
32 ns

Conv 1

Conv 2

Fully Connected 8

...
......

......

S1
32 ns

128 ns × 128

S2
128 ns

S2
128 ns

S2
32 ns96 ns

128 ns × 4 + 32 ns × 3
Time

Supplementary Table 1 | Summary of the network architecture, the number of
operations per cycle, the number of cycles per sample in the forward pass of the CNN
in Fig. 1-2 of the main text.

Layer Dimension Output
Dimension

No. operations per
cycle

No. cycles per
sample

No. operations
per sample

Input layer 0 8×8
Convolution layer 1 (3×3×1) ×15 8×8×15 270 64 17,280
Convolution layer 2 (2×2×15) ×4 8×8×4 480 64 30,720
Max pooling layer 3 2×2 4×4×4
Fully connected
layer 4

64×10 10 1280 1 1,280

Supplementary Table 2 | Summary of the network architecture, the number of
operations per cycle, the number of cycles per sample in the forward pass of the
ConvLSTM network in Fig. 3-4 of the main text.

Layer Dimension Output
Dimension

No. operations per
cycle

No. cycles per
sample

No. operations
per sample

Input layer 0 8×8
Convolutional
LSTM layer 1

(3×3×1) ×20 for
input
(2×2×5) ×20 for
recurrent input

6×6×5 1,160 36×3=108 (3 time
steps)

125,280

Max pooling layer 2 2×2 3×3×5
Fully connected
layer 3

45×6 6 540 1 540

Supplementary Table 3 | Performance comparison of our CNN (Fig. 1-2) and a LeNet-
5-like CNN. Both CNNs show similar accuracy with different training environments,
indicating a larger ratio between the accuracy and the number of weights of our CNN. The
accuracy of different environments also reveals the two key factors that lower down the
accuracy in the experimental runs, the bounded weights and programming noise. (*The
inputs are linearly remapped to [-0.2, 0.2] in the experimental run.).

Training Environments Our CNN (1,015 weights) LeNet-5 like CNN (1,974 weights)
Epoch 1
Accuracy

Epoch 2 Accuracy Epoch 1 Accuracy Epoch 2 Accuracy

Google Keras 95.75% 96.30% 95.75% 97.11%
Our customized framework with
software backend

95.52% 96.58% 96.05% 96.82%

Simu-array (0.04 µS
programming noise)

92.53% 94.57% 94.63% 95.55%

Simu-array (8 µS programming
noise)

91.06% 89.23% 91.29% 89.56%

Experimental run 86.99%* 92.13%* 90.44% 90.84%

Supplementary Table 4 | The impact of down-sampling MNIST dataset on the
training accuracy with fixed dimension of convolution kernels and fully connected
layers. The original MNIST dataset of size 28 × 28 is first cropped to 20 × 20 by keeping
the central region. Bicubic down-sampling is then applied to produce 16 × 16, 12 × 12, and
8 × 8 datasets. The results of Google Keras, our customized framework of software
backend, and the simulated memristor array with 8 µS programming noise show no clear
down-sampling impact on the accuracy.

Input
size

Network architecture Google Keras Software Simulated memristors
Laye
r 1:
Conv
2D

Laye
r 2:
Conv
2D

Layer
3: Max
Poolin
g

Layer
4: FC

Total
Para

Epoch 1
Accurac
y

Epoch 2
Accurac
y

Epoch 1
Accurac
y

Epoch 2
Accurac
y

Epoch 1
Accurac
y

Epoch 2
Accurac
y

20×2
0

3×3
(×15)

2×2
(×4)

5×5

64×1
0

1,01
5

96.31% 97.01% 94.04% 95.10% 90.78% 91.32%

16×1
6 4×4 96.38% 97.26% 95.67% 96.35% 92.23% 90.85%

12×1
2 3×3 96.99% 96.42% 94.80% 96.57% 90.39% 92.16%

8×8 2×2 95.75% 96.30% 95.52% 96.58% 91.06% 89.23%

Supplementary Table 5 | The impact of down-sampling MNIST dataset on the
training accuracy with fixed dimension of convolutional kernels and max pooling
layers. The original MNIST dataset of size 28 × 28 is first cropped to 20 × 20 by keeping
the central region. Bicubic down-sampling is then applied to produce 14 × 14 and 8 × 8
datasets. The relatively large accuracy change of the simulated array with programming
noise is attributed to the change of the total number of trainable parameters that could
compensate the inaccuracy of the programming.

Input
size

Network architecture Google Keras Software Simulated memristors
Laye
r 1:
Conv
2D

Laye
r 2:
Conv
2D

Layer
3: Max
Poolin
g 2D

Layer
4: FC

Total
Para

Epoch 1
Accurac
y

Epoch 2
Accurac
y

Epoch 1
Accurac
y

Epoch 2
Accurac
y

Epoch 1
Accurac
y

Epoch 2
Accurac
y

20×2
0

3×3
(×15)

2×2
(×4) 2×2

400×1
0

4,37
5 97.28% 97.67% 96.66% 97.39% 93.39% 93.63%

14×1
4

196×1
0

2,33
5 97.46% 97.85% 96.58% 97.13% 92.23% 92.76%

8×8 64×10 1,01
5 95.75% 96.30% 95.52% 96.58% 91.06% 89.23%

Supplementary Table 6 | Summary of the implementation of AlexNet1 on a projected
hybrid analogue-digital system. The kernel dimension for the convolution layers
(Conv2d) are 96 11×11×3 kernels, 256 5×5×96 kernels, 384 3×3×256 kernels, 384
3×3×384 kernels, and 256 3×3×384 kernels, respectively. Each kernel is mapped to a
column of the 1T1R crossbar with a bias (e.g. For Conv2D 1, the 1T1R array size is
[11×11×3+1, 96].) The output feature maps of the convolution layers are 55×55×96,
27×27×256, 13×13×384, 13×13×384, and 13×13×256, respectively. The number of strides
(different volumes for weighted sum) is thus 55×55, 27×27, 13×13, 13×13, and 13×13
respectively. Notice more hardware copies of the convolution kernels helps to achieve a
balance between the throughput and the area-energy efficiency. The dimension of the fully
connected layers (FC) are 9216×4096, 4096×4096, and 4096×1000, respectively.

Layer Single 1T1R array
size (2D)

Stri
des

Array
Copies

No. of 1T1Rs No. of ADCs No. of Analogue
Operations

Time
(ns)

Conv2D
1

[364,96] 3,02
5

757 26,452,608 4,542 211,411,200 128

Conv2D
2

[2,401,256] 729 183 112,482,048 2,928 896,168,448 128

Conv2D
3

[2,305,384] 169 43 38,060,160 1,032 299,170,560 128

Conv2D
4

[3,457,384] 169 43 57,081,984 1,032 448,690,944 128

Conv2D
5

[3,457,256] 169 43 38,054,656 688 299,127,296 128

FC 6 [9,216,4,096] 1 1 37,748,736 256 75,497,472 32
FC 7 [4,096,4,096] 1 1 16,777,216 256 33,554,432 32
FC 8 [4,096,1,000] 1 1 4,096,000 63 8,192,000 32
 Total parameters

𝑛𝑛para= 62,369,152
 Total 1T1Rs

𝑛𝑛1T1R=
330,753,408

Total ADCs
𝑛𝑛ADC= 10,797

Total operation 𝑛𝑛OP =
2,271,812,352

Supplementary Note 1: Comparison with another LeNet-5-like CNN

We compare the simple CNN of Fig. 1-2 with a LeNet-5-like network. The LeNet-5-like
network differs from the original LeNet-5 by using a single fully connected layer and
different activations, which allows it to be implemented on the same 128 × 64 1T1R
crossbar array. (See Supplementary Figure 12a) The input to the LeNet-5-like network are
20 × 16 pixels cropped from original MNIST dataset without down-sampling. The inputs
are convolved by six 5 × 5 kernels, followed by the first max pooling layer of size/stride 2
× 2. The feature maps are then convolved by sixteen 3 × 3 kernels, followed by the second
2 × 2 max pooling layer, before being fed to the fully connected 10-way softmax output
layer. Like the training in Fig. 2, the experimental curve in Supplementary Figure 12b
follows a consistent trend with the noise free simulation. It is also nearly indistinguishable
from the simulated curve with the assumed programming noise (standard deviation of 10
µS).
Supplementary Table 3 compares the performance of the two networks. It shall be noted
that our CNN could take cropped MNIST inputs without down-sampling by using a larger
max pooling window/stride. Such change will not decrease the accuracy but rather even
slightly increase it. (see Supplementary Note 2 for the MNIST down-sampling impact).
Both our CNN and the LeNet-5 like CNN show similar accuracy in Google Keras, our
framework with software backend, simulation with programming noise, as well as
experimental runs. Given our CNN uses 1,015 weights while the LeNet-5-like CNN uses
1,974 weights, our CNN architecture thus shows a better ratio between the accuracy and
the number of weights, which better illustrates the advantage of weight sharing.
Supplementary Table 3 also reveals the two key factors that lower down the accuracy in
the experimental runs, which are bounded weights and programming noise. Since we use
a finite range of memristor conductance and a constant factor to convert conductance to
weight (see Table 1), therefore, the span of each weight is numerically bounded. This
possibly leads to the observed accuracy decrement in the simulated array with 0.04 µS
programming noise. On the other hand, the memristor differential pair is equivalent to a
digital weight of ~3.7 bit (under 1σ uncertainty), which is one of the best analogue
properties for emerging memories with a single blind weight update2. The precision of
1T1R synapses could be further improved with material engineering (e.g. epitaxial growth
of the dielectric memristor material stack3) and synapses consisting of multiple 1T1Rs4.

Supplementary Note 2: The MNIST dataset down-sampling impact to the

performance of the CNN

We simulate the down-sampling influence to the performance of the CNN of Fig. 1-2 with
identical dimension of convolution kernels and fully connected layers. Since the input size
varies, therefore different window sizes and strides are used for the max pooling layer. As
shown in Supplementary Table 4, the down-sampling of the input shows no clear effect on
the accuracy with different implementation environments (Google Keras, our customized
framework using software backend, and the simulated memristor arrays with 8 µS
programming noise).
Alternatively, we also investigate the cases where the shape of the convolution kernels and
max pooling layers are fixed, while varying the size of the fully connected layers, as
summarized in Supplementary Table 5. The three implementation environments give
1.37%, 0.81%, and 4.4% accuracy difference (second epoch) between the 20×20 and 8×8
datasets. The relatively large accuracy change of the simulated array with 8 µS standard
distribution of programming noise is attributed to the change of the total number of
trainable parameters that could compensate the inaccuracy of programming.

Supplementary Note 3: The projected system-level area and energy efficiency of the

128 × 64 1T1R memristor crossbar

In a system centric view, a hybrid analogue-digital peripheral circuit may further benefit
overall area and energy efficiency with the currently available technologies, although our
proof-of-concept measurement system employed the fully analogue approach. Various
signal representations (analogue voltages5,6, analogue pulse width modulation7-11, and
digital12-14) and the corresponding signal generation/acquisition circuits are still under
studies for memristor crossbars. The optimal signal representation should be application-
specific and depending on the available technology. For instance, the high-resolution
DACs could be replaced by pulse width modulators for the representation of the analogue
signals.15 Such digital signal representation could also work with larger resistance non-
Ohmic memristors, at the expense of speed overhead compared to the fully analogue
approach.
With the digital signal representation, the output electric currents of the memristor crossbar
are integrated by integrator amplifiers, and then sampled and hold by a sequential readout
with the analogue-digital converters (ADCs) shared among output terminals. The number
of shared ADCs is determined by the trade-off between the baud rate of input signals,
latency of the crossbar array / integrator amplifier, and the sampling rate of the ADC. A
state-of-art 6-bit (which is good enough for most of the neural network scenario) ADC
design of 40 nm technology node could achieve 1G samples/s while consuming 1.26 mW
energy16. Assume the settling time for the memristor crossbar (with 64 column outputs)
and the integrator amplifier is 16 ns, the same amount of time to represent 6-bit input data
at a 2G baud rate. Then each ADC samples 16 columns would achieve the maximum
throughput by enabling the pipelined operation. Alternatively, the digitization of the
analogue output currents could be implemented on energy-area efficient current sense
amplifiers with input-dependent reference currents13,14.
Mathematically, for the 𝑁𝑁 × 𝑀𝑀 sized 1T1R memristor crossbar, the throughput is 𝑇𝑇chip =
𝑁𝑁×𝑀𝑀×2
𝑡𝑡period

, since the array performs 𝑁𝑁 × 𝑀𝑀 additions and the same number of multiplications

per analog operation. Given 𝑁𝑁 = 128 , 𝑀𝑀 = 64 , 𝑡𝑡period = 32 ns , the throughput is
𝑇𝑇chip = 5.12 × 1011 OPS for 6-bit operations (the memristor used here could show 6-bit
or 64 levels17).
The chip area is mainly determined by the size of the 1T1R cells (𝐴𝐴1T1R) and the ADCs
(𝐴𝐴ADC = 0.00058 mm2)18, which could be estimated as 𝐴𝐴chip = 𝑁𝑁 × 𝑀𝑀 × 𝐴𝐴1T1R +
�𝑀𝑀
16
� × 𝐴𝐴ADC. Assume the each 1T1R cell is of a footprint 100𝐹𝐹2 (where 𝐹𝐹 = 40 nm, the

technology node of the ADC), the chip area is estimated to be 𝐴𝐴chip = 0.0036 mm2.
For power consumption, the major portion would be power of the 1T1R cell (𝑃𝑃1T1R) and
the ADC (𝑃𝑃ADC = 1.26 mW), and others are negligible according to our previous work18,
which is 𝑃𝑃chip = 0.5 × �𝑁𝑁 × 𝑀𝑀 × 𝑃𝑃1T1R + �𝑀𝑀

16
� × 𝑃𝑃ADC� as 1T1R cells and ADCs only

operate in half of the 𝑡𝑡period. Assuming an averaged memristor biasing voltage 0.1V (half

of the peak biasing voltage 0.2V), the cell power is 𝑃𝑃1T1R = 0.1V2

104𝛺𝛺
= 10−6𝑊𝑊 and the system

power is 𝑃𝑃chip = 6.62 mW , which could be further improved by employing lower
conductance memristor cells.

This simple estimation indicates an area efficiency 𝑇𝑇chip
𝐴𝐴chip

≅ 141 TOPS mm2⁄ , and an

energy efficiency 𝑇𝑇chip
𝑃𝑃chip

≅ 77.4 TOPS/W for 6-bit operations. Furthermore, the memristor-

based processing-in-memory computing system could get rid of the off-chip dynamic
random-access memory (DRAM) because the memristor crossbar serves dual roles, the
main memory and the multiply accumulator. On the contrary, most ASIC accelerators rely
on off-chip DRAM chips to host the parameters of the neural network, which incurs extra
area and power consumption.

Supplementary Note 4: The projected system-level area and energy efficiency of a

large-scale 1T1R-based computing system

Here we present a simple system performance estimation of a large-scale hybrid analogue-
digital computing system using 1T1Rs. The memristor-based computing system could
feature advantages in both area and energy efficiencies over conventional digital systems
(see Supplementary Note 3). This is not only valid for the small-scale proof-of-concept
problem studied here, but it can also be applied to a real-world problem, for instance the
AlexNet1 while retaining the advantages on efficiencies, which has also been revealed by
similar proposed memristor-based platforms such as Prime19, ISAAC18, Atomlayer20, and
PUMA20.
Supplementary Table 6 summarizes the proposed implementation of the AlexNet on a
memristor-based hybrid analogue-digital computing system. Please note that typical ASIC
systems need off-chip DRAM to store the 𝑛𝑛para = 62,369,152 parameters of the AlexNet.
Assume each parameter is 6-bit (same with the representation capability of our
memristors17), 𝑛𝑛para × 6 = 374,214,912 DRAM cells are needed. On the other hand, we
propose to use less 1T1R cells 𝑛𝑛1T1R = 330,753,408 with the hybrid analogue-digital
system. Since DRAM and 1T1R cells share identical capacitor structures, so the footprint
of the DRAM cell is roughly identical with that of the 1T1R cell. As each 1T1R could in
principle represent 6-bit17, more copies of the hardware kernels could be deployed for
specific layers, which helps to achieve a balance between the throughput and the area-
energy efficiency. (See Supplementary Table 6)
To compute the throughput, we first estimate the average forward pass time per sample.
Please note the forward pass could be “pipelined” because of the sequential architecture of
AlexNet. (Supplementary Figure 13) Therefore, the average forward pass time per sample
is 𝑡𝑡sample = max

1≤𝑖𝑖≤8
𝑡𝑡𝑖𝑖 +

∑ 𝑡𝑡𝑗𝑗𝑗𝑗≠𝑖𝑖

𝑛𝑛batch
, where 𝑡𝑡𝑗𝑗 refers to the forward pass time of 𝑖𝑖-th layer. Given

the minibatch size 𝑛𝑛batch = 128 for AlexNet1, 𝑡𝑡sample = 132.75 ns. The throughput of
the memristor-based system is thus 𝑇𝑇chip = 𝑛𝑛OP

𝑡𝑡sample
= 2,271,812,352

132.75 ns
≅ 17.1 POPS. Note extra

time and energy could be incurred by the inter-array communication fabric, but usually less
dominating compared to those of in-array signal generation/acquisition18-21.
In terms of the area efficiency, since 1T1R cells and DRAM cells are of the same structure, we
assume they have the same footprint 𝐴𝐴1T1R = 𝐴𝐴DRAM. For the memristor-based system, the
10,797 ADCs16 cost 𝑛𝑛ADC × 𝐴𝐴ADC ≅ 6.26 mm2 (𝐴𝐴ADC = 0.00058 mm2 , see
Supplementary Note 3). If the overall area-efficiency is defined as the ratio between the
throughput and the total chip area (including the DRAM), then the memristor-based system
has the area efficiency 𝑇𝑇chip

𝑛𝑛1T1R×𝐴𝐴1T1R+𝑛𝑛ADC×𝐴𝐴ADC
≅ 289 TOPS/mm2 (𝐴𝐴1T1R = 100𝐹𝐹2

where 𝐹𝐹 = 40 nm, see Supplementary Note 3).
In terms of the energy efficiency, note that the total power (mean value per sample) of the
system is 1

𝑡𝑡sample
× ∑ �0.5 × �𝑃𝑃1T1R × 𝑛𝑛1T1R,𝑖𝑖 + 𝑃𝑃ADC × 𝑛𝑛ADC,𝑖𝑖� × 𝑡𝑡𝑖𝑖�8

𝑖𝑖=1 ≅ 145 W where

𝑛𝑛1T1R,𝑖𝑖 and 𝑛𝑛ADC,𝑖𝑖 are the number of 1T1Rs and ADCs of the 𝑖𝑖-th layer (The factor 0.5 is
due to the fact that 1T1R cells and ADCs only operate in half of the 𝑡𝑡period , see
Supplementary Note 3). Therefore, the power/energy efficiency of the memristor-based

system is 𝑇𝑇chip
1

𝑡𝑡sample
×∑ �0.5×�𝑃𝑃1T1R×𝑛𝑛1T1R,𝑖𝑖+𝑃𝑃ADC×𝑛𝑛ADC,𝑖𝑖�×𝑡𝑡𝑖𝑖�8

𝑖𝑖=1
≅ 118 TOPS/W , for 6-bit

operations.
In addition to forward pass, the memristor-based hybrid analogue-digital system also
benefits the weight update in terms of energy and time. This is because the off-chip DRAM
writing energy is relatively large, ~1.3 nJ per byte22 (or interpolated write energy 𝐸𝐸DRAM ≅
163 pJ per bit), and the DRAM bandwidth is usually small (e.g. the DRAM bandwidth of
Google tensor processing unit23 (TPU) generation 1 is 𝐵𝐵TPU = 34 GByte ∙ s−1 ≅
2.92 × 1011 bit ∙ s−1). On the other hand, 1T1R cells of the crossbar could be programmed
column by column (or row-by-row). Therefore, the time overhead is the array of the largest
number of columns, which is max

1≤𝑖𝑖≤8
𝑛𝑛col,𝑖𝑖 = 4,096 here. Since each memristor could be

completely programmed by a 𝑡𝑡program = 5 ns pulse at 2.2 V,24 the total programming time
could be around �max

1≤𝑖𝑖≤8
𝑛𝑛col,𝑖𝑖� × 𝑡𝑡program ≅ 20.5 μs, significantly smaller than the time to

update all parameters of AlexNet in a Google TPU (𝑛𝑛para × 6 𝐵𝐵TPU⁄ ≅ 1.28 ms. Only
memory bandwidth lag is counted while DRAM writing time is ignored). In addition, for
memristor-based system, the maximum energy for programming a single 1T1R cell is
𝐸𝐸program = 2.2V2

10kΩ
× 𝑡𝑡program = 2.42 pJ. Thus the maximum total programming energy to

update all parameters of AlexNet is 𝐸𝐸progrm × 𝑛𝑛1T1R ≅ 800 μJ, which is also significantly
smaller than the energy to update all parameters in DRAM with a digital system
(𝐸𝐸DRAM × 𝑛𝑛para × 6 ≅ 60.8 mJ). The rest training processes, including the calculation of
errors and gradients of trainable parameters, are implemented on conventional transistor-
based digital logics.
In summary, the memristors not only replace DRAM for storing trainable parameters but
also perform vector-matrix multiplications at where the data are stored, which breaks the
von Neumann bottleneck. On the contrary, the throughput of transistor-based neural
network accelerators is not scaling with the size of the network (or the number of trainable
parameters, the size of the memory), while the energy efficiency is constrained by the off-
chip DRAM accessing. Thus, our finding reveals that the real-world large-scale neural
networks could be significantly benefited by the memristor-based hybrid analogue-digital
system in terms of both area and energy efficiencies.

Supplementary References

1 Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep

convolutional neural networks. in Advances in neural information processing
systems. 1097-1105 (2012).

2 Kim, G. H. et al. Four-Bits-Per-Cell Operation in an HfO2-Based Resistive
Switching Device. Small 13, 1701781, (2017).

3 Choi, S. et al. SiGe epitaxial memory for neuromorphic computing with
reproducible high performance based on engineered dislocations. Nat. Mater. 17,
335-340, (2018).

4 Boybat, I. et al. Neuromorphic computing with multi-memristive synapses. Nat.
Commun. 9, 2514, (2018).

5 Prezioso, M. et al. Training and operation of an integrated neuromorphic network
based on metal-oxide memristors. Nature 521, 61-64, (2015).

6 Bayat, F. M. et al. Implementation of multilayer perceptron network with highly
uniform passive memristive crossbar circuits. Nat. Commun. 9, 2331, (2018).

7 Sheridan, P. M. et al. Sparse coding with memristor networks. Nat. Nanotechnol.
12, 784-789, (2017).

8 Yao, P. et al. Face classification using electronic synapses. Nat. Commun. 8, 15199,
(2017).

9 Lin, Y. et al. Demonstration of Generative Adversarial Network by Intrinsic
Random Noises of Analog RRAM Devices. in 2018 IEEE International Electron
Devices Meeting (IEDM). 3.4. 1-3.4. 4 (IEEE, 2018).

10 Zhou, Y. et al. Associative Memory for Image Recovery with a High‐Performance
Memristor Array. Adv. Funct. Mater., 1900155, (2019).

11 Ambrogio, S. et al. Equivalent-accuracy accelerated neural-network training using
analogue memory. Nature 558, 60-67, (2018).

12 Mochida, R. et al. A 4M synapses integrated analog ReRAM based 66.5 TOPS/W
neural-network processor with cell current controlled writing and flexible network
architecture. in 2018 IEEE Symposium on VLSI Technology. 175-176 (IEEE, 2018).

13 Chen, W.-H. et al. A 65nm 1Mb nonvolatile computing-in-memory ReRAM macro
with sub-16ns multiply-and-accumulate for binary DNN AI edge processors. in
Solid-State Circuits Conference-(ISSCC), 2018 IEEE International. 494-496
(IEEE, 2018).

14 Xue, C.-X. et al. A 1Mb Multibit ReRAM Computing-In-Memory Macro with 14.6
ns Parallel MAC Computing Time for CNN Based AI Edge Processors. in 2019
IEEE International Solid-State Circuits Conference-(ISSCC). 388-390 (IEEE,
2019).

15 Jiang, H. et al. Pulse-Width Modulation based Dot-Product Engine for
Neuromorphic Computing System using Memristor Crossbar Array. in 2018 IEEE
International Symposium on Circuits and Systems (ISCAS). 1-4 (IEEE, 2018).

16 Choo, K. D., Bell, J. & Flynn, M. P. Area-efficient 1GS/s 6b SAR ADC with
charge-injection-cell-based DAC. in Solid-State Circuits Conference (ISSCC),
2016 IEEE International. 460-461 (IEEE, 2016).

17 Li, C. et al. Analogue signal and image processing with large memristor crossbars.
Nat. Electron. 1, 52-59, (2018).

18 Shafiee, A. et al. ISAAC: a convolutional neural network accelerator with in-situ
analog arithmetic in crossbars. SIGARCH Comput. Archit. News 44, 14-26, (2016).

19 Chi, P. et al. Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory. in Proceedings of the 43rd
International Symposium on Computer Architecture. 27-39 (IEEE Press, 2016).

20 Qiao, X., Cao, X., Yang, H., Song, L. & Li, H. Atomlayer: a universal reRAM-
based CNN accelerator with atomic layer computation. in Proceedings of the 55th
Annual Design Automation Conference. 1-6 (ACM, 2018).

21 Ankit, A. et al. PUMA: A programmable ultra-efficient memristor-based
accelerator for machine learning inference. in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages
and Operating Systems. 715-731 (ACM, 2019).

22 Horowitz, M. Computing's energy problem (and what we can do about it). in Solid-
State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE
International. 10-14 (IEEE, 2014).

23 Jouppi, N. P. et al. In-datacenter performance analysis of a tensor processing unit.
in Proceedings of the 44th Annual International Symposium on Computer
Architecture. 1-12 (ACM, 2017).

24 Jiang, H. et al. Sub-10 nm Ta Channel Responsible for Superior Performance of a
HfO2 Memristor. Sci. Rep. 6, 28525, (2016).

	SpringerNature_NatMachIntell_89_ESM.pdf
	Supplementary Note 1: Comparison with another LeNet-5-like CNN
	Supplementary Note 2: The MNIST dataset down-sampling impact to the performance of the CNN
	Supplementary Note 3: The projected system-level area and energy efficiency of the 128 × 64 1T1R memristor crossbar
	Supplementary Note 4: The projected system-level area and energy efficiency of a large-scale 1T1R-based computing system

