
Articles
https://doi.org/10.1038/s42256-019-0089-1

In situ training of feed-forward and recurrent 
convolutional memristor networks
Zhongrui Wang1,8, Can Li   1,2,8, Peng Lin1,8, Mingyi Rao1, Yongyang Nie1, Wenhao Song1, Qinru Qiu3, 
Yunning Li1, Peng Yan   1, John Paul Strachan   2, Ning Ge2, Nathan McDonald4, Qing Wu4, Miao Hu5, 
Huaqiang Wu   6, R. Stanley Williams   7, Qiangfei Xia   1* and J. Joshua Yang   1*

1Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, USA. 2Hewlett Packard Labs, Hewlett Packard 
Enterprise, Palo Alto, CA, USA. 3Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY, USA. 4Information 
Directorate, Air Force Research Laboratory, Rome, NY, USA. 5Department of Electrical and Computer Engineering, Binghamton University, Binghamton, 
NY, USA. 6Institute of Microelectronics, Tsinghua University, Beijing, China. 7Department of Electrical and Computer Engineering, Texas A&M University, 
College Station, TX, USA. 8These authors contributed equally: Zhongrui Wang, Can Li, Peng Lin. *e-mail: qxia@umass.edu; jjyang@umass.edu

SUPPLEMENTARY INFORMATION

In the format provided by the authors and unedited.

NatuRe MaCHINe INteLLIGeNCe | www.nature.com/natmachintell

http://orcid.org/0000-0003-3795-2008
http://orcid.org/0000-0002-0341-4052
http://orcid.org/0000-0002-1382-3677
http://orcid.org/0000-0001-8359-7997
http://orcid.org/0000-0003-0213-4259
http://orcid.org/0000-0003-1436-8423
http://orcid.org/0000-0003-0671-6010
mailto:qxia@umass.edu
mailto:jjyang@umass.edu
http://www.nature.com/natmachintell


Supplementary Figure 1 | The hybrid analogue-digital computing system. The system 
consists of the 3 parts, the 1-transistor 1-memristor (1T1R) analogue memristor array, the 
printed circuit boards (PCBs, with on board analogue-to-digital converters or ADCs,
digital-to-analogue converters or DACs, and trans-impedance amplifiers or TIAs), the 
general digital processor (microcontroller or MCU, and personal computer or PC). The 
1T1R chip provides the hardware synapses and their associated topology. The PCBs 
implement part of the neuron functions. (The pre-synaptic DACs apply voltage signals to 
the bit lines of the 1T1R array, while the post-synaptic TIAs and ADCs read the summed 
currents across the memristor synapses of each column.) The PCBs also implement weight 
update and readout. The digital processors apply arbitrary activation functions to the 
current outputs of the post-synaptic modules, in addition to error backpropagation with 
physically acquired weights and gradients calculation with the RMSprop optimizer.
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Supplementary Figure 2 | One-shot blind analogue programming of the 1T1R 
memristors. a, Scheme of the one-shot programming. Positive voltages were applied to 
the memristor top electrode (TE) lines and the word lines to SET the memristors. Positive 
voltages were applied to the bit lines and the word lines to fully RESET the memristors
followed by a SET operation to achieve targeted conductance. (see Method and Table 1) b,
Analogue SET and RESET with linearly varying word line voltages (gate voltages of the 
transistors). Statistical distribution of the conductance of the 128 × 64 memristor array after 
receiving 15 SET operations (All word line voltages were linearly ramped from 1 V to 2.4
V with a step 0.1 V in 15 cycles.) followed by 15 RESET operations (All word line voltages
were linearly ramped down from 2.4 V to 1 V with a step 0.1 V in 15 cycles.), showing the
linear and symmetric conductance tuning in one-shot without feedback. The red dots 
indicate the medians, and the bottom and top edges of the blue boxes indicate the 25th and 
75th percentiles, respectively. The dashed lines extend to the most extreme data points.
Notice the gain of the TIA limited the maximum readable conductance to ~1250 µS.
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Supplementary Figure 3 | Inference statistics of the 5-level convolutional neural 
network (CNN). a, Graph illustrating the statistics of the winner neurons of different labels 
for all 10,000 MNIST test-set images. The most common misclassification was with the 
handwritten digital ‘7’ which was likely to be identified as ‘9’. b, The pie chart of the 
classification, showing that the winner neurons have made correct predictions in 92.13%
cases. The neurons of the second largest output matched with the labels in 5.26% cases.
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Supplementary Figure 4 | Representative inference examples of the 5-level CNN.
Examples of the valid classifications of the 10 digits (left 3 columns) and invalid 
classifications (right 3 columns). The second and fifth columns illustrate the raw output 
currents of the fully connected layer neurons. The corresponding Bayesian probabilities 
based on the softmax function are with the third and sixth columns. More data is shown in 
Supplementary Video 2.
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Supplementary Figure 5 | Simulated impact of memristor programming noise over 
the generalization error. a-c, Training the first 5,000 samples of MNIST with simulated 
1T1R crossbars of programming error of 0.4 µS (the standard deviation of normal 
distributed noises), 4 µS, and 8 µS, respectively. It clearly shows the programming noise 
reduces the difference between the training accuracy (average of all in-batch training 
accuracy over the epoch) and the test accuracy.
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Supplementary Figure 6 | Post-training conductance map and weights of the 5-level 
CNN. a, The conductance of the 123 × 59 subarray used to implement the CNN after 
training on the 60,000 MNIST images for 2 epochs. b, The corresponding weights of the 
15 kernels of size 3 × 3 of the first convolutional layer. Each weight is calculated by 
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dividing the averaged conductance differences of the 2 differential pairs by the constant 
conductance-to-weight ratio Rgw  (see Method). c, The corresponding weights of the 4 
kernels of size 2 × 2 (×15) of the second convolutional layer. Each graph is a 2-dimensional 
slice of the volumetric kernel along its depth. d, The corresponding weights of the 64 × 10 
fully connected layer. Each graph of 8 × 8 pixels represents the 64 × 1 weight vector of a 
neuron after reshaping. The conductance and weights evolution during the in situ training 
is with Supplementary Video 1. 
  



Supplementary Figure 7 | Inference statistics of the convolutional long-short term 
memory (ConvLSTM). a, Graph illustrating the statistics of the winner neurons of 
different labels for all 1,010 test-set MNIST-sequences. The most common 
misclassification was with the sequence ‘1-3-2’ which was likely to be identified as ‘1-2-
3’. b, The pie chart of the classification, showing that the winner neuron has made correct 
predictions in 96.43% cases. The neurons of the second largest output matched with the
labels in 2.97% cases.
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Supplementary Figure 8 | Post-training conductance map and weights of the 
ConvLSTM. a, The conductance of the 124 × 56 subarray used to implement the 
ConvLSTM after training on the 5,958 MNIST-sequences for 2 epochs. b, The 
corresponding weights of the 5 input kernels of size 3 × 3 and 5 recurrent input kernels of 
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size 2 × 2 (× 5) of the cell input, input gate, forget gate, and output gate of the ConvLSTM 
layer. Each weight is calculated by dividing the averaged conductance differences of the 2 
differential pairs by the constant conductance-to-weight ratio Rgw (see Method). c, The 
corresponding weights of the 45 × 6 fully connected layer. Each graph of 9 × 5 pixels 
represents the 45 × 1 weight vector of a neuron after reshaping. The conductance and 
weights evolution during the in situ training is with Supplementary Video 3. 
  



Supplementary Figure 9 | Representative inference examples of the ConvLSTM.
Examples of the valid classifications of the 6 sequences (upper 6 rows) and invalid 
classifications (lower 6 rows). The middle column illustrates the raw output currents of the 
fully connected layer neurons at different time steps (time step 1: blue; time step 2: red, 
time step 3: orange). The corresponding Bayesian probabilities (of the last time step) based 
on the softmax function are with the right column. More data is shown in Supplementary 
Video 4.
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Supplementary Figure 10 | The analogue SET programming, conductance read-out, 
and vector-matrix multiplication schemes. a, The analogue SET programming flowchart. 
The 1T1R array was programmed row-by-row. For each row, the microcontroller set the 
DAC output voltages of all the memristor TE lines (green) to VSET and word lines (red) to 
target conductance dependent gate . (see Method) Unselected bit lines (blue) were floated. 
b, The conductance readout flowchart. The conductance of the array was read row-by-row. 
In each time step, the selected bit line was biased to VRead while the rest bit lines were 
grounded. The microcontroller read the ADCs of all memristor TE lines in each time step. 
All word lines were set to Vgate = 5 V in all time steps. c, The vector-matrix multiplication 
flowchart. The bit line DACs were configured to produce the input vector ⃗ . The 
microcontroller read the ADCs of all memristor TE lines. All word lines were set to Vgate
= 5 V.
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Supplementary Figure 11 | The block diagrams of the forward pass of a, fully 
connected layer, b, 2-dimensional convolution layer, c, ConvLSTM layer. For the fully 
connected layer, the vector-matrix multiplication and activations are performed by the 
1T1R crossbar and the PC, respectively. For the convolution, low level computation (in 
proximity to the 1T1R crossbar) by MCU samples the volume for weighted sum with 
kernels. For the ConvLSTM layer, additional PC computation updates the cell status and 
produces the ConvLSTM output.
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Supplementary Figure 12 | Architecture and experimental performance of a LeNet-
5-like CNN. a, The exemplary forward pass in the inference. The 8-bit grayscale input of 
size 20 × 16 (cropped from original MNIST without down-sampling) was convolved by 
the 6 memristor kernels of size 3 × 3 with rectified linear unit (ReLU) activation followed 
by the max pooling of size/stride 2 × 2. The feature maps are then convolved by sixteen 3 
× 3 kernels, followed by the second 2 × 2 max pooling layer, before being fed to the fully 
connected 10-way softmax output layer. b, The smoothed experimental in-batch accuracy 
(loss) increased (decreased) over the course of in situ training. The experimental curves are 
indistinguishable from the simulation considering the programming noise, tightly 
following the noise-free simulation.
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Supplementary Figure 13 | Schematic illustration of the time span of the minibatch 
forward pass with the hybrid analogue-digital system for AlexNet1. S1, S2, and S128 
refers the first, second, and 128th sample of the minibatch. The forward passes of different 
samples are “parallel” because of the sequential structure of the AlexNet.
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Supplementary Table 1 | Summary of the network architecture, the number of 
operations per cycle, the number of cycles per sample in the forward pass of the CNN 
in Fig. 1-2 of the main text. 
 

Layer Dimension Output 
Dimension 

No. operations per 
cycle 

No. cycles per 
sample 

No. operations 
per sample 

Input layer 0  8×8    
Convolution layer 1 (3×3×1) ×15 8×8×15 270 64 17,280 
Convolution layer 2 (2×2×15) ×4 8×8×4 480 64 30,720 
Max pooling layer 3 2×2 4×4×4    
Fully connected 
layer 4 

64×10 10 1280 1 1,280 

  



Supplementary Table 2 | Summary of the network architecture, the number of 
operations per cycle, the number of cycles per sample in the forward pass of the 
ConvLSTM network in Fig. 3-4 of the main text. 
 

Layer Dimension Output 
Dimension 

No. operations per 
cycle 

No. cycles per 
sample 

No. operations 
per sample 

Input layer 0  8×8    
Convolutional 
LSTM layer 1 

(3×3×1) ×20 for 
input 
(2×2×5) ×20 for 
recurrent input 

6×6×5 1,160 36×3=108 (3 time 
steps) 

125,280 

Max pooling layer 2 2×2 3×3×5    
Fully connected 
layer 3 

45×6 6 540 1 540 

  



Supplementary Table 3 | Performance comparison of our CNN (Fig. 1-2) and a LeNet-
5-like CNN. Both CNNs show similar accuracy with different training environments, 
indicating a larger ratio between the accuracy and the number of weights of our CNN. The 
accuracy of different environments also reveals the two key factors that lower down the 
accuracy in the experimental runs, the bounded weights and programming noise. (*The 
inputs are linearly remapped to [-0.2, 0.2] in the experimental run.). 
 

Training Environments Our CNN (1,015 weights) LeNet-5 like CNN (1,974 weights) 
Epoch 1 
Accuracy 

Epoch 2 Accuracy Epoch 1 Accuracy Epoch 2 Accuracy 

Google Keras 95.75% 96.30% 95.75% 97.11% 
Our customized framework with 
software backend 

95.52% 96.58% 96.05% 96.82% 

Simu-array (0.04 µS 
programming noise) 

92.53% 94.57% 94.63% 95.55% 

Simu-array (8 µS programming 
noise) 

91.06% 89.23% 91.29% 89.56% 

Experimental run 86.99%* 92.13%* 90.44% 90.84% 

  



Supplementary Table 4 | The impact of down-sampling MNIST dataset on the 
training accuracy with fixed dimension of convolution kernels and fully connected 
layers. The original MNIST dataset of size 28 × 28 is first cropped to 20 × 20 by keeping 
the central region. Bicubic down-sampling is then applied to produce 16 × 16, 12 × 12, and 
8 × 8 datasets. The results of Google Keras, our customized framework of software 
backend, and the simulated memristor array with 8 µS programming noise show no clear 
down-sampling impact on the accuracy. 
 

Input 
size 

Network architecture Google Keras Software Simulated memristors 
Laye
r 1: 
Conv 
2D 

Laye
r 2: 
Conv 
2D 

Layer 
3: Max 
Poolin
g 

Layer 
4: FC 

Total 
Para 

Epoch 1 
Accurac
y 

Epoch 2 
Accurac
y 

Epoch 1 
Accurac
y 

Epoch 2 
Accurac
y 

Epoch 1 
Accurac
y 

Epoch 2 
Accurac
y 

20×2
0  

3×3 
(×15) 

2×2 
(×4) 

5×5 

64×1
0 

1,01
5 

96.31% 97.01% 94.04% 95.10% 90.78% 91.32% 

16×1
6 4×4 96.38% 97.26% 95.67% 96.35% 92.23% 90.85% 

12×1
2 3×3 96.99% 96.42% 94.80% 96.57% 90.39% 92.16% 

8×8 2×2 95.75% 96.30% 95.52% 96.58% 91.06% 89.23% 

  



Supplementary Table 5 | The impact of down-sampling MNIST dataset on the 
training accuracy with fixed dimension of convolutional kernels and max pooling 
layers. The original MNIST dataset of size 28 × 28 is first cropped to 20 × 20 by keeping 
the central region. Bicubic down-sampling is then applied to produce 14 × 14 and 8 × 8 
datasets. The relatively large accuracy change of the simulated array with programming 
noise is attributed to the change of the total number of trainable parameters that could 
compensate the inaccuracy of the programming. 
 

Input 
size 

Network architecture Google Keras Software Simulated memristors 
Laye
r 1: 
Conv 
2D 

Laye
r 2: 
Conv 
2D 

Layer 
3: Max 
Poolin
g 2D 

Layer 
4: FC 

Total 
Para 

Epoch 1 
Accurac
y 

Epoch 2 
Accurac
y 

Epoch 1 
Accurac
y 

Epoch 2 
Accurac
y 

Epoch 1 
Accurac
y 

Epoch 2 
Accurac
y 

20×2
0 

3×3 
(×15) 

2×2 
(×4) 2×2 

400×1
0 

4,37
5 97.28% 97.67% 96.66% 97.39% 93.39% 93.63% 

14×1
4 

196×1
0 

2,33
5 97.46% 97.85% 96.58% 97.13% 92.23% 92.76% 

8×8 64×10 1,01
5 95.75% 96.30% 95.52% 96.58% 91.06% 89.23% 

  



Supplementary Table 6 | Summary of the implementation of AlexNet1 on a projected 
hybrid analogue-digital system. The kernel dimension for the convolution layers 
(Conv2d) are 96 11×11×3 kernels, 256 5×5×96 kernels, 384 3×3×256 kernels, 384 
3×3×384 kernels, and 256 3×3×384 kernels, respectively. Each kernel is mapped to a 
column of the 1T1R crossbar with a bias (e.g. For Conv2D 1, the 1T1R array size is 
[11×11×3+1, 96].) The output feature maps of the convolution layers are 55×55×96, 
27×27×256, 13×13×384, 13×13×384, and 13×13×256, respectively. The number of strides 
(different volumes for weighted sum) is thus 55×55, 27×27, 13×13, 13×13, and 13×13 
respectively. Notice more hardware copies of the convolution kernels helps to achieve a 
balance between the throughput and the area-energy efficiency. The dimension of the fully 
connected layers (FC) are 9216×4096, 4096×4096, and 4096×1000, respectively. 
 

Layer Single 1T1R array 
size (2D) 

Stri
des 

Array 
Copies 

No. of 1T1Rs No. of ADCs No. of Analogue 
Operations 

Time 
(ns) 

Conv2D 
1 

[364,96] 3,02
5 

757 26,452,608 4,542 211,411,200 128 

Conv2D 
2 

[2,401,256] 729 183 112,482,048 2,928 896,168,448 128 

Conv2D 
3 

[2,305,384] 169 43 38,060,160 1,032 299,170,560 128 

Conv2D 
4 

[3,457,384] 169 43 57,081,984 1,032 448,690,944 128 

Conv2D 
5 

[3,457,256] 169 43 38,054,656 688 299,127,296 128 

FC 6 [9,216,4,096] 1 1 37,748,736 256 75,497,472 32 
FC 7 [4,096,4,096] 1 1 16,777,216 256 33,554,432 32 
FC 8 [4,096,1,000] 1 1 4,096,000 63 8,192,000 32 
 Total parameters 

𝑛𝑛para= 62,369,152 
  Total 1T1Rs 

𝑛𝑛1T1R= 
330,753,408 

Total ADCs 
𝑛𝑛ADC= 10,797 

Total operation 𝑛𝑛OP = 
2,271,812,352 

 

  



Supplementary Note 1: Comparison with another LeNet-5-like CNN 

We compare the simple CNN of Fig. 1-2 with a LeNet-5-like network. The LeNet-5-like 
network differs from the original LeNet-5 by using a single fully connected layer and 
different activations, which allows it to be implemented on the same 128 × 64 1T1R 
crossbar array. (See Supplementary Figure 12a) The input to the LeNet-5-like network are 
20 × 16 pixels cropped from original MNIST dataset without down-sampling. The inputs 
are convolved by six 5 × 5 kernels, followed by the first max pooling layer of size/stride 2 
× 2. The feature maps are then convolved by sixteen 3 × 3 kernels, followed by the second 
2 × 2 max pooling layer, before being fed to the fully connected 10-way softmax output 
layer. Like the training in Fig. 2, the experimental curve in Supplementary Figure 12b 
follows a consistent trend with the noise free simulation. It is also nearly indistinguishable 
from the simulated curve with the assumed programming noise (standard deviation of 10 
µS). 
Supplementary Table 3 compares the performance of the two networks. It shall be noted 
that our CNN could take cropped MNIST inputs without down-sampling by using a larger 
max pooling window/stride. Such change will not decrease the accuracy but rather even 
slightly increase it. (see Supplementary Note 2 for the MNIST down-sampling impact). 
Both our CNN and the LeNet-5 like CNN show similar accuracy in Google Keras, our 
framework with software backend, simulation with programming noise, as well as 
experimental runs. Given our CNN uses 1,015 weights while the LeNet-5-like CNN uses 
1,974 weights, our CNN architecture thus shows a better ratio between the accuracy and 
the number of weights, which better illustrates the advantage of weight sharing. 
Supplementary Table 3 also reveals the two key factors that lower down the accuracy in 
the experimental runs, which are bounded weights and programming noise. Since we use 
a finite range of memristor conductance and a constant factor to convert conductance to 
weight (see Table 1), therefore, the span of each weight is numerically bounded. This 
possibly leads to the observed accuracy decrement in the simulated array with 0.04 µS 
programming noise. On the other hand, the memristor differential pair is equivalent to a 
digital weight of ~3.7 bit (under 1σ uncertainty), which is one of the best analogue 
properties for emerging memories with a single blind weight update2. The precision of 
1T1R synapses could be further improved with material engineering (e.g. epitaxial growth 
of the dielectric memristor material stack3) and synapses consisting of multiple 1T1Rs4. 
  



Supplementary Note 2: The MNIST dataset down-sampling impact to the 

performance of the CNN 

We simulate the down-sampling influence to the performance of the CNN of Fig. 1-2 with 
identical dimension of convolution kernels and fully connected layers. Since the input size 
varies, therefore different window sizes and strides are used for the max pooling layer. As 
shown in Supplementary Table 4, the down-sampling of the input shows no clear effect on 
the accuracy with different implementation environments (Google Keras, our customized 
framework using software backend, and the simulated memristor arrays with 8 µS 
programming noise). 
Alternatively, we also investigate the cases where the shape of the convolution kernels and 
max pooling layers are fixed, while varying the size of the fully connected layers, as 
summarized in Supplementary Table 5. The three implementation environments give 
1.37%, 0.81%, and 4.4% accuracy difference (second epoch) between the 20×20 and 8×8 
datasets. The relatively large accuracy change of the simulated array with 8 µS standard 
distribution of programming noise is attributed to the change of the total number of 
trainable parameters that could compensate the inaccuracy of programming. 
  



Supplementary Note 3: The projected system-level area and energy efficiency of the 

128 × 64 1T1R memristor crossbar 

In a system centric view, a hybrid analogue-digital peripheral circuit may further benefit 
overall area and energy efficiency with the currently available technologies, although our 
proof-of-concept measurement system employed the fully analogue approach. Various 
signal representations (analogue voltages5,6, analogue pulse width modulation7-11, and 
digital12-14) and the corresponding signal generation/acquisition circuits are still under 
studies for memristor crossbars. The optimal signal representation should be application-
specific and depending on the available technology. For instance, the high-resolution 
DACs could be replaced by pulse width modulators for the representation of the analogue 
signals.15 Such digital signal representation could also work with larger resistance non-
Ohmic memristors, at the expense of speed overhead compared to the fully analogue 
approach. 
With the digital signal representation, the output electric currents of the memristor crossbar 
are integrated by integrator amplifiers, and then sampled and hold by a sequential readout 
with the analogue-digital converters (ADCs) shared among output terminals. The number 
of shared ADCs is determined by the trade-off between the baud rate of input signals, 
latency of the crossbar array / integrator amplifier, and the sampling rate of the ADC. A 
state-of-art 6-bit (which is good enough for most of the neural network scenario) ADC 
design of 40 nm technology node could achieve 1G samples/s while consuming 1.26 mW 
energy16. Assume the settling time for the memristor crossbar (with 64 column outputs) 
and the integrator amplifier is 16 ns, the same amount of time to represent 6-bit input data 
at a 2G baud rate. Then each ADC samples 16 columns would achieve the maximum 
throughput by enabling the pipelined operation. Alternatively, the digitization of the 
analogue output currents could be implemented on energy-area efficient current sense 
amplifiers with input-dependent reference currents13,14.  
Mathematically, for the 𝑁𝑁 × 𝑀𝑀 sized 1T1R memristor crossbar, the throughput is 𝑇𝑇chip =
𝑁𝑁×𝑀𝑀×2
𝑡𝑡period

, since the array performs 𝑁𝑁 × 𝑀𝑀 additions and the same number of multiplications 

per analog operation. Given 𝑁𝑁 = 128 , 𝑀𝑀 = 64 , 𝑡𝑡period =  32 ns , the throughput is 
𝑇𝑇chip = 5.12 × 1011 OPS for 6-bit operations (the memristor used here could show 6-bit 
or 64 levels17). 
The chip area is mainly determined by the size of the 1T1R cells (𝐴𝐴1T1R) and the ADCs 
( 𝐴𝐴ADC = 0.00058 mm2 )18, which could be estimated as 𝐴𝐴chip = 𝑁𝑁 × 𝑀𝑀 × 𝐴𝐴1T1R +
�𝑀𝑀
16
� × 𝐴𝐴ADC. Assume the each 1T1R cell is of a footprint 100𝐹𝐹2 (where 𝐹𝐹 = 40 nm, the 

technology node of the ADC), the chip area is estimated to be 𝐴𝐴chip = 0.0036 mm2. 
For power consumption, the major portion would be power of the 1T1R cell (𝑃𝑃1T1R) and 
the ADC (𝑃𝑃ADC = 1.26 mW), and others are negligible according to our previous work18, 
which is 𝑃𝑃chip = 0.5 × �𝑁𝑁 × 𝑀𝑀 × 𝑃𝑃1T1R + �𝑀𝑀

16
� × 𝑃𝑃ADC� as 1T1R cells and ADCs only 

operate in half of the 𝑡𝑡period. Assuming an averaged memristor biasing voltage 0.1V (half 

of the peak biasing voltage 0.2V), the cell power is 𝑃𝑃1T1R = 0.1V2

104𝛺𝛺
= 10−6𝑊𝑊 and the system 

power is 𝑃𝑃chip = 6.62 mW , which could be further improved by employing lower 
conductance memristor cells. 



This simple estimation indicates an area efficiency 𝑇𝑇chip
𝐴𝐴chip

≅ 141 TOPS mm2⁄ , and an 

energy efficiency 𝑇𝑇chip
𝑃𝑃chip

≅ 77.4 TOPS/W for 6-bit operations. Furthermore, the memristor-

based processing-in-memory computing system could get rid of the off-chip dynamic 
random-access memory (DRAM) because the memristor crossbar serves dual roles, the 
main memory and the multiply accumulator. On the contrary, most ASIC accelerators rely 
on off-chip DRAM chips to host the parameters of the neural network, which incurs extra 
area and power consumption. 
  



Supplementary Note 4: The projected system-level area and energy efficiency of a 

large-scale 1T1R-based computing system 

Here we present a simple system performance estimation of a large-scale hybrid analogue-
digital computing system using 1T1Rs. The memristor-based computing system could 
feature advantages in both area and energy efficiencies over conventional digital systems 
(see Supplementary Note 3). This is not only valid for the small-scale proof-of-concept 
problem studied here, but it can also be applied to a real-world problem, for instance the 
AlexNet1 while retaining the advantages on efficiencies, which has also been revealed by 
similar proposed memristor-based platforms such as Prime19, ISAAC18, Atomlayer20, and 
PUMA20. 
Supplementary Table 6 summarizes the proposed implementation of the AlexNet on a 
memristor-based hybrid analogue-digital computing system. Please note that typical ASIC 
systems need off-chip DRAM to store the 𝑛𝑛para = 62,369,152 parameters of the AlexNet. 
Assume each parameter is 6-bit (same with the representation capability of our 
memristors17), 𝑛𝑛para × 6 = 374,214,912 DRAM cells are needed. On the other hand, we 
propose to use less 1T1R cells 𝑛𝑛1T1R = 330,753,408 with the hybrid analogue-digital 
system. Since DRAM and 1T1R cells share identical capacitor structures, so the footprint 
of the DRAM cell is roughly identical with that of the 1T1R cell. As each 1T1R could in 
principle represent 6-bit17, more copies of the hardware kernels could be deployed for 
specific layers, which helps to achieve a balance between the throughput and the area-
energy efficiency. (See Supplementary Table 6) 
To compute the throughput, we first estimate the average forward pass time per sample. 
Please note the forward pass could be “pipelined” because of the sequential architecture of 
AlexNet. (Supplementary Figure 13) Therefore, the average forward pass time per sample 
is 𝑡𝑡sample = max

1≤𝑖𝑖≤8
𝑡𝑡𝑖𝑖 +

∑ 𝑡𝑡𝑗𝑗𝑗𝑗≠𝑖𝑖

𝑛𝑛batch
, where 𝑡𝑡𝑗𝑗 refers to the forward pass time of 𝑖𝑖-th layer. Given 

the minibatch size 𝑛𝑛batch  =  128 for AlexNet1, 𝑡𝑡sample = 132.75 ns. The throughput of 
the memristor-based system is thus 𝑇𝑇chip = 𝑛𝑛OP

𝑡𝑡sample
= 2,271,812,352

132.75 ns
≅ 17.1 POPS. Note extra 

time and energy could be incurred by the inter-array communication fabric, but usually less 
dominating compared to those of in-array signal generation/acquisition18-21. 
In terms of the area efficiency, since 1T1R cells and DRAM cells are of the same structure, we 
assume they have the same footprint 𝐴𝐴1T1R = 𝐴𝐴DRAM. For the memristor-based system, the 
10,797  ADCs16 cost 𝑛𝑛ADC × 𝐴𝐴ADC ≅ 6.26 mm2  ( 𝐴𝐴ADC = 0.00058 mm2 , see 
Supplementary Note 3). If the overall area-efficiency is defined as the ratio between the 
throughput and the total chip area (including the DRAM), then the memristor-based system 
has the area efficiency 𝑇𝑇chip

𝑛𝑛1T1R×𝐴𝐴1T1R+𝑛𝑛ADC×𝐴𝐴ADC
≅ 289 TOPS/mm2  ( 𝐴𝐴1T1R = 100𝐹𝐹2 

where 𝐹𝐹 = 40 nm, see Supplementary Note 3). 
In terms of the energy efficiency, note that the total power (mean value per sample) of the 
system is 1

𝑡𝑡sample
× ∑ �0.5 × �𝑃𝑃1T1R × 𝑛𝑛1T1R,𝑖𝑖 + 𝑃𝑃ADC × 𝑛𝑛ADC,𝑖𝑖� × 𝑡𝑡𝑖𝑖�8

𝑖𝑖=1 ≅ 145 W  where 

𝑛𝑛1T1R,𝑖𝑖 and 𝑛𝑛ADC,𝑖𝑖 are the number of 1T1Rs and ADCs of the 𝑖𝑖-th layer (The factor 0.5 is 
due to the fact that 1T1R cells and ADCs only operate in half of the 𝑡𝑡period , see 
Supplementary Note 3). Therefore, the power/energy efficiency of the memristor-based 



system is 𝑇𝑇chip
1

𝑡𝑡sample
×∑ �0.5×�𝑃𝑃1T1R×𝑛𝑛1T1R,𝑖𝑖+𝑃𝑃ADC×𝑛𝑛ADC,𝑖𝑖�×𝑡𝑡𝑖𝑖�8

𝑖𝑖=1
≅ 118 TOPS/W , for 6-bit 

operations. 
In addition to forward pass, the memristor-based hybrid analogue-digital system also 
benefits the weight update in terms of energy and time. This is because the off-chip DRAM 
writing energy is relatively large, ~1.3 nJ per byte22 (or interpolated write energy 𝐸𝐸DRAM  ≅
163 pJ per bit), and the DRAM bandwidth is usually small (e.g. the DRAM bandwidth of 
Google tensor processing unit23 (TPU) generation 1 is 𝐵𝐵TPU = 34 GByte ∙ s−1 ≅
2.92 × 1011 bit ∙ s−1). On the other hand, 1T1R cells of the crossbar could be programmed 
column by column (or row-by-row). Therefore, the time overhead is the array of the largest 
number of columns, which is max

1≤𝑖𝑖≤8
𝑛𝑛col,𝑖𝑖 = 4,096 here. Since each memristor could be 

completely programmed by a 𝑡𝑡program = 5 ns pulse at 2.2 V,24 the total programming time 
could be around �max

1≤𝑖𝑖≤8
𝑛𝑛col,𝑖𝑖� × 𝑡𝑡program ≅ 20.5 μs, significantly smaller than the time to 

update all parameters of AlexNet in a Google TPU (𝑛𝑛para × 6 𝐵𝐵TPU⁄ ≅ 1.28 ms. Only 
memory bandwidth lag is counted while DRAM writing time is ignored). In addition, for 
memristor-based system, the maximum energy for programming a single 1T1R cell is 
𝐸𝐸program = 2.2V2

10kΩ
× 𝑡𝑡program = 2.42 pJ. Thus the maximum total programming energy to 

update all parameters of AlexNet is 𝐸𝐸progrm × 𝑛𝑛1T1R ≅ 800 μJ, which is also significantly 
smaller than the energy to update all parameters in DRAM with a digital system 
(𝐸𝐸DRAM × 𝑛𝑛para × 6 ≅ 60.8 mJ). The rest training processes, including the calculation of 
errors and gradients of trainable parameters, are implemented on conventional transistor-
based digital logics. 
In summary, the memristors not only replace DRAM for storing trainable parameters but 
also perform vector-matrix multiplications at where the data are stored, which breaks the 
von Neumann bottleneck. On the contrary, the throughput of transistor-based neural 
network accelerators is not scaling with the size of the network (or the number of trainable 
parameters, the size of the memory), while the energy efficiency is constrained by the off-
chip DRAM accessing. Thus, our finding reveals that the real-world large-scale neural 
networks could be significantly benefited by the memristor-based hybrid analogue-digital 
system in terms of both area and energy efficiencies. 
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