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Supplementary Figure 1: Document length distribution (left) and label number distribution (right) in CSU,
PP and PSVG dataset.
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Supplementary Figure 2: Species distribution in CSU dataset (left) and PP dataset (right).
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Supplementary Tables

CSU PP

FF P R EM| F P R EM
DeepTag | 73.9 80.3 69.4 43.6 | 44.2 547 427 133

VetTag 73.6 798 69.1 493 | 538 61.2 51.0 23.2

Supplementary Table 1: Result comparison between DeepTag and VetTag on 41 top-level diagnosis cate-
gories.

Diagnosis Words
Disorder of ear, otitis, ears, therapy, yeast,
auditory system allergy, assessment, infection, weeks, malassezia,

allergic, dermatology, this, disease, medications,
dermatitis, left, has, avalanche, not,
topical, drops,

Disorder of eosinophilic, then, problem, todays, hypocalcemia,

immune function cornea, dose, skin, alt, weeks,

prednisolone, not, ofloxacin, eosinophilia, old,

rhinitis, duration, currently, medicine, cam,

cephalexin, molly, pancytopenia, hyperglobulinemia, herpes,

Metabolic disease diabetes, nph, hypercalcemia, glargine, vetsulin,
weeks, home, insulin, amlodipine, dose,
dehydration, culture, eye, last, visit,
assessment, time, oncology, cll, vet,

azotemia, units, ionized, lymphoma, carprofen,
consistent, surgery,

Autoimmune disease | pemphigus, itp, lupus, mycophenolate, azathioprine,

not, weeks, bear, dle, planum,

diagnosed, due, assessment, thrombocytopenia, administration,
tramadol, home, platelet, mediated,

Disorder of lymphoma, multicentric, chop, doxorubicin, assessment,
hematopoietic cell trial, continued, lsa, chemotherapy, cbc,
proliferation lymph, protocol, oncology, diagnosed, treatment,

home, well, ccnu, weeks, remission,

Neoplasm and/or oncology, lymphoma, osteosarcoma, sarcoma, mass,
hamartoma home, carcinoma, assessment, metastatic, adenocarcinoma,
chemotherapy, multicentric, tumor, trial, has,

surgery, disease, time, diagnosed, carboplatin,

well, weeks, pulmonary, melanoma, treatment,

metastasis, palladia,

Disorder of cardiology, hypertension, vasculitis, disease, current,
cardiovascular system | home, at, assessment, valve, amlodipine,

atenolol, infection, pimobendan, sildenafil, thrombus,
pressure, heart, blood, weeks, not,

arrhythmia, ventricular, pulmonary, internal, failure,
echocardiogram, time, iliac, hours,

Infectious disease pyoderma, assessment, infection, bacterial, therapy,
uti, urinary, culture, superficial, this,

dermatitis, treat, today, secondary, infections,

well, problem, time, urine, upper,

chloramphenicol, allergies, but, weeks, site,

home,




Diagnosis

Words

Disorder of
integument

assessment, otitis, therapy, pyoderma, mct,
vinblastine, dermatology, weeks, trial, home,
has, malassezia, ear, problem, metastatic,
allergic, this, atopic, not, eyelid,
medications, mass,

Traumatic AND/OR
non-traumatic injury

fracture, wound, laceration, due, assessment,
trauma, this, bandage, time, owner,
fractured, eye, surgery, fractures, she,

days, dog, may, joint, abrasion,

home, radiographs, likely, change,

Disorder of
cellular component
of blood

thrombocytopenia, pancytopenia, itp, time, mycophenolate,
count, azathioprine, prednisone, tramadol, dose,

hemolytic, weeks, anemia, disease, leflunomide,

steroids, eye, white, assessment, injury,

future, problem, history, cbc,

Disorder of
respiratory system

pneumonia, pulmonary, lung, nasal, epistaxis,

adenocarcinoma, thoracocentesis, diagnosed, rhinitis, laryngeal,
oncology, carcinoma, metastatic, paralysis, respiratory,
assessment, home, mass, upper, revealed,

necropsy, liver, consistent, chemotherapy, aspiration,

srt, this, may, pneumothorax,

Vomiting

vomiting, ultrasound, chronic, assessment, findings,
scan, skin, neoplasia, hematemesis, different,

ddx, machine, nephrectomy, thickened, nodule,
somewhat, ileum, not, intestines, last,

bilateral,

Disorder of
nervous system

laryngeal, seizures, his, meningioma, phenobarbital,

seizure, home, signs, time, assessment,

weeks, cytarabine, myelopathy, therapy, cricket,

lesion, unremarkable, disease, hyperadrenocorticism, keppra,
paralysis, tumor, neurology, levetiracetam, diagnosed,

visit,

Hypersensitivity dermatitis, allergic, therapy, atopic, otitis,
condition pruritus, ears, assessment, allergies, dermatology,
this, infection, weeks, treatment, not,
ear, dvm, allergy, future, malassezia,
time, today,
Anemia pancytopenia, anemia, visit, hemolytic, persistent,

steroids, hypertension, neoplasia, exam, thickening,
calculi, white, inflammation, prednisolone, prednisone,
treatments, vomiting, following, not,

Disorder of
the genitourinary
system

bladder, assessment, hematuria, tcc, urinary,
urethra, mass, culture, uti, pyelonephritis,
prostatic, cystitis, ureter, chemotherapy, diagnosed,
testicle, therapy, piroxicam, disease, urine,

not, prostate, revealed, carcinoma, renal,
transitional, well, treatment, surgery,

Disorder of
hemostatic system

thrombocytopenia, pancytopenia, itp, administration, prednisone,
time, tramadol, bear, leflunomide, history,

service, due, count, azathioprine, hypocalcemia,

dose, mild, hypothyroidism, previous, steroids,

Propensity to

dermatitis, allergic, atopic, therapy, otitis,



Diagnosis

Words

adverse reactions

allergies, assessment, ears, infection, this,
weeks, dermatology, pruritus, dvm, not,
ear, trial, treatment, atopica, malassezia,
atopy, today,

Poisoning

ingestion, assessment, toxicity, chocolate, vomiting,
charcoal, not, maya, chance, activated,

this, signs, dog, possible, rattlesnake,

time, month, monitoring, therapy, marijuana,

Mental disorder

alopecia, screen, limb, issue,

Congenital disease

dysplasia, hip, bilateral, assessment, testicle,
right, cerebellar, service, surgery, echo,
congenital, options, buffalo, mild, signs,
butternut, malformation, worse, reverse, pain,
deformity, red, elbow, management,

Disorder of

musculoskeletal system

osteosarcoma, assessment, osteoarthritis, surgery, dysplasia,
ligament, left, disease, carboplatin, oncology,

time, right, at, rupture, trial,

diagnosed, fracture, amputation, this, joint,

bilateral, cruciate, she, chemotherapy, tendon,

lesion, home, weeks, presented, osa,

Disorder of
endocrine system

methimazole, thyroid, weeks, levothyroxine, carcinoma,
mass, hyperadrenocorticism, assessment, diabetes, diagnosed,
home, disease, nph, trilostane, dose,

time, may, hyperthyroidism, surgery, visit,

glargine, eye,

Disorder of
digestive system

dental, assessment, sac, adenocarcinoma, melanoma,
mass, home, has, anal, time,

oncology, carboplatin, anesthesia, left, metastatic,
disease, this, enteropathy, necropsy, problem,

not, surgery, oral, lip, liver,

enteritis, from,

Visual system
disorder

eye, ophthalmology, surgery, eyelid, assessment,
sicca, time, uveitis, diagnosed, this,

keratitis, cataract, treatment, mass, glaucoma,
after, week, well, months, visit,

infection,

Disorder of
connective tissue

osteosarcoma, assessment, ligament, surgery, carboplatin,
disease, dysplasia, rupture, cruciate, fracture,
amputation, hip, weeks, right, diagnosed,

left, trial, osa, chemotherapy, anesthesia,

this, tendon, bilateral, oncology, joint,

crcl, she, well,

Disorder of
labor / delivery

level, progesterone, high, apparently, assessment,
draw, healthy, days, puppies,

Disorder of
pregnancy

progesterone, level, today, veterinary, measure,
high, labor, pregnant, approximately, assessment,
healthy, prior, once,

Supplementary Table 2: Most salient words in the model. Diagnosis categories without salient words
not, shown.

are
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1 Dataset Details

We provide additional descriptive statistics of the dataset below. The training and evaluation CSU dataset,
the external evaluation PP dataset and the unsupervised learning PSVG dataset are different due to the
nature of the clinics. This additional information allows us to quantify the domain mismatch between CSU,
PP and PSVG.

Length Distribution We plot a histogram to show the proportion of records in each dataset with the
certain length in Supplementary Figure 1. Noticeably, CSU and PP follow the SOAP format (“Subjective,
Objective, Assessment, Plan”), but PSVG data due to the API limitation, does not strictly follow this format.
PSVG notes contain “History, Plan, Physical Exam” sections of the electronic medical record data. This
causes the length of PSVG notes to be much shorter compared to CSU and PP notes.

Number of Labels Per Document Distribution We plot a histogram to show the proportion of records
in each labeled dataset with the certain number of labels in Supplementary Figure 1. We do not have any
labeled notes from PSVG and hence it is not included in the plot.

Species Distribution We plot pie charts to show the proportion of species in each labeled dataset in
Supplementary Figure 2. CSU dataset contains a fair amount of notes across different species (e.g. equine,
bovine, etc.), while PP being a suburban-based private clinic, the animal representations are much more
focused on house pets.



2 Model Details

We formulate the problem of veterinary diagnosis coding as a multi-label classification problem. Given a
veterinary record X, which contains detailed description of the diagnosis, we try to infer a subset of diagnoses
y € ), given a pre-defined set of diagnoses ). The problem of inferring a subset of diagnosis codes can
be viewed as a series of independent binary prediction problems'. The binary classifier learns to predict
whether a diagnosis code y; exists or not for i = 1,...,m, where m = || = 4577.

Our learning system has two components: a text encoder module and diagnosis code prediction module.
In our work, we evaluated three text encoder modules: the convolutional neural network (CNN), the long
short-term memory network (LSTM), which has demonstrated its effectiveness in learning implicit language
patterns from the text?, and the Transformer network, recently developed and proposed by Vaswani et al.?.
Our diagnosis code prediction module consists of binary classifiers that are parameterized independently for
each diagnosis.

2.1 Text Encoder

CNN The convolutional neural network (CNN) has been demonstrated to be effective for many NLP
tasks*. Given a sequence of word embeddings z1,...,z7, we apply a convolution operation with a window
size of h (words) and a max-over-time pooling operation to get the summary vector ¢. The computation can
be described in Eq 1, where & and ® indicate the concatenation operator and the convolution operator, and
tanh is the hyperbolic tangent function.

1T =1 DPx2D ... Dy
¢ = tanh(w ® @i n—1 +b)

5 = [01702, ceey CT—h+1]

(1)

¢ = max{¢}

LSTM The long short-term memory network (LSTM) is a recurrent neural network with a long short-
term memory cell®>. A common LSTM network is composed of a hidden state h;, a cell state ¢, an input
gate i;, an output gate o; and a forget gate f;. It maintains semantic gating functions specifically designed
to capture long-term dependency between words. Given a sequence of word embeddings zi,...,x7, the
recurrent computation of LSTM network at a time step ¢t can be described in Eq 2. ¢ is the sigmoid
function: o(x) =1/(1 + e~ %), and ® indicates the Hadamard product.

o(Wrxs + Vihe 1 + by)
o(Wizi + Vihi—1 + b;)
o(Wexy + Vohi—1 + by)

¢ = tanh(Weay + Vohe—1 + be)
ct=ftOc1+1 O

ht = oy ® tanh(c;)

It
it
Ot

Transformer The Transformer network was proposed by Vaswani et al. as a machine translation archi-
tecture®. We use a multi-layer Transformer setup similar to the one in Radford et al.’. The Transformer
network is defined as a feed-forward network that starts at the word embedding level. Given the word em-
beddings of a sequence z1, ..., z7 € R?, we add positional embedding to such sequence so that the model can
know the location of each word. We define this positional embedding PE € RT*¢, where T is an arbitrarily
set maximum length of a sequence (usually much longer than the longest sequence in our training dataset).
For notation convenience, we let it equal to the sequence length T. However, since PE is generated as a
cyclical sine-cosine wave and never updated during training, we can easily generate PE for sequence longer
than T'. For i = 1,...,d/2, we can define the element in the PE matrix in Eq 3 (symbols inside parentheses
indicate the coordinate of the element).

PE(t, 2i) = sin(t/10000%"/%)
PE(t, 2i + 1) = cos(t/10000%/4)



We define the first input to the Transformer network: H° = X + PE, where X = {xy,...,z7} and PE
is defined above. We note that H° € R7*¢, Then for a given layer [, | > 0, we can define a feedforward
transformer block in Eq 4. We let Wél), Wq(Z)7 WS to have dimensions (d/n) x d, and the resulting H® to
have dimension T x (d/n). We additionally apply a mask M over the attention so that the model only looks
at < t steps when it generates the token at step ¢. For the same layer [, we repeat the above computation n
times. This is referred as the multi-head attention computation, and n indicates the number of heads.

K@ Wéi) bz(f)
QW — Wq(z‘) H- 4 bt(f)
V(@) wid ¥
QW' K@ )

H® = v (SoftMax(~*——=— ©
( ( 7
HD =wHD 1)

After the multihead attention computation described above, we concatenate n H(?) matrices to obtain
H' € RT*d_ We then apply a fully connected layer with ReLU activation function to this matrix and obtain
the final hidden representation of the sequence for layer I: H'. We describe the calculation in Eq 5. The
matrix multiplication by W,, € RP*4 W, € R4 are referred to as a bottleneck computation, where D
is much larger than d. The Transformer network repeats the above computation to construct a multi-layer
Transformer network.

H' = Concat(H(l),H(z), ...,H(”))

~ (5)
H' = W,,ReLU(W,, H + b,,) + bo,

2.2 Diagnosis Code Prediction

We define a binary classifier for each of the 4577 diagnosis code in our pre-defined set. The binary classifier
takes in a summary vector ¢ that represents the veterinary record and outputs a sufficient statistic for
the Bernoulli probability distribution indicating the probability of whether a diagnosis should be predicted

(Eq 6).
p(yi) = 9 = o(w] ¢+ b;) (6)

Flat Training We use binary cross entropy loss averaged across all labels as the training loss for the flat
training. Given the binary predictions from the model § € [0,1]™ and correct binary label y € {0,1}™,
binary cross entropy loss is written in Eq 7. The decision boundary in our model is set to be 0.5.

m

Locn(§.y) =~ D" yilog(d) + (1 = yi)log(1 — ) (7

Hierarchical Training In this setting, we first define a adjacency matrix M, where M;; = 1 if diagnostic
code 7 is the child of diagnostic code j in the SNOMED-CT hierarchy, otherwise M;; = 0. during training
time, we generate a mask b € [0, 1]™. We generate the mask based on a recursive definition (Eq 8).

L 0, otherwise

Then we can easily apply this mask to both y the ground truth label as well as the §. This masking vector
allows us to only penalize the prediction of a diagnostic code when its parent is present, thus greatly reducing
the number of negative examples for rare diagnoses. We compute the hierarchical binary cross-entropy loss
in Eq 9.

1
Ly A» = - ™
H-BCE (9, Y) ST

Z[yz log(gi) + (1 — yi) log(1 — g5)] - b; (9)

i=1

K2

During inference time, we generate masking vector b by setting b; = 1 when all the ancestors of the
diagnosis code i are predicted as true, and produce the final model prediction as y - b.



3 Experimental Setup

We describe our experimental setup in the following section. We truncate all documents to no more than
600 tokens, padded with start and end of sentence tokens. This step is helpful in reducing computational
requirement.

Neural Network Architecture In order to have a fair comparison among encoders—CNN, LSTM and
Transformer—we set all the latent dimension as 768. For the CNN, we use 384 kernels for convolution with
the kernel size of 4. For the LSTM, we compare the performance of unidirectional LSTM and bidirectional
LSTM. For the Transformer, we stack 6 transformer blocks, with 8 heads for the multi-head attention on
each layer. We let the feedforward dimension to be 2048.

Pretraining All pretraining is conducted on the PSVG dataset. We investigate the effect of pretraining
the word embedding (+W) and pretraining the encoder with language modeling objective (+P). In the
word embedding pretraining, we use the Word2Vec algorithm?” on the PSVG dataset. The word embedding
dimension is set to 768. For the pretraining language modeling objective, we initialize word embeddings
with Xavier initialization® and directly optimize — log P(X).

Training We implement our model in PyTorch. We use Noam Optimizer® with 8000 warm up steps. The
dropout rate is set to 0.1 during training to reduce overfitting. All models are trained for 10 epochs. We use
a batch size of 5 for each model, which is the maximum allowed to train VetTag on a single GPU.

MetaMap Baseline We use the popular MetaMap, a program developed by the National Library of
Medicine (NLM)?, as a baseline. MetaMap processes a document and outputs a list of matched medically-
relevant keywords with its frequencies in the given document. We use MetaMap as a feature extractor,
mapping each document into a frequency-encoded bag-of-words vector. The final feature vector size is
57,235. We perform the multi-label classification task with SVM and MLP with feature vectors.

4 Comparing VetTag and DeepTag

DeepTag is designed to make predictions on the 42 top-level diagnosis categories'®. We restrict the perfor-
mance of VetTag to these top-level categories except for clinical finding (the spurious category) in order to
directly compare its performance head-to-head with DeepTag. Note that VetTag is optimized not to predict
just on these categories but on all 4577 categories; hence the comparison is more favorable for DeepTag.
We report the result comparison in Supplementary Table 1. On the PP test data, VetTag substantially
outperforms DeepTag for both F; and exact match (EM). On the CSU test data, VetTag achieved better
EM score and comparable F; score as DeepTag. Supplementary Figure 3 provides the comparison of VetTag
and DeepTag for the 20 most frequent categories, demonstrating the superior performance of VetTag.

5 Interpretation Details

We compute the standard saliency map for each input text; this is defined as the input vector multiplied by
the gradient of the predicted probability with respect to the input. The saliency of each word quantifies the
influence of that word on VetTag’s predictions. For each of the 41 top-level diagnosis categories, we select
the top 50 words that have the highest saliency for that diagnosis, defined as the words with saliency score
> 0.2 are the largest number of clinical notes labeled with the diagnosis. We then intersect the 50 most
salient words with the MetaMap expert-curated dictionary in order to select the most medically relevant
words. These words are shown in Supplementary Table 2.
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