In the format provided by the authors and unedited.

Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer

Jakob Nikolas Kather ^{1,2,3,4,5*}, Alexander T. Pearson⁴, Niels Halama ^{2,5,6}, Dirk Jäger^{2,3,5}, Jeremias Krause ¹, Sven H. Loosen¹, Alexander Marx⁷, Peter Boor ⁸, Frank Tacke⁹, Ulf Peter Neumann¹⁰, Heike I. Grabsch ^{11,12}, Takaki Yoshikawa^{13,14}, Hermann Brenner^{2,15,16}, Jenny Chang-Claude^{17,18}, Michael Hoffmeister¹⁵, Christian Trautwein¹ and Tom Luedde ^{1*}

¹Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany. ²German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany. ³Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany. ⁴Hematology/ Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA. ⁵Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg, Germany. ⁶Translational Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany. ⁷Institute of Pathology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany. ⁸Institute of Pathology and Department of Nephrology, University Hospital RWTH Aachen, Aachen, Germany. ⁹Hepatology and Gastroenterology, Charité University Medicine, Berlin, Germany. ¹⁰Visceral and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany. ¹¹Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK. ¹²Pathology and GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands. ¹³Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan. ¹⁴Department of Gastric Surgery, National Cancer Center Hospital, Tokyo, Japan. ¹⁵Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany. ¹⁷Division of Cancer Research Center (DKFZ), Heidelberg, Germany. ¹⁹Division of Cancer Research Center (DKFZ), Heidelberg, Germany. ¹⁰Division of Cancer Research Center (DKFZ), Heidelberg, Germany. ¹⁰Division of Cancer Research Center (DKFZ), Heidelberg, Germany. ¹⁰Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. ¹⁰Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. ¹⁰Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. ¹⁰Division of Cancer Epidemiology, Germa

Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer

- Supplementary Tables 1-5-

	TCGA-STAD	TCGA-CRC-	TCGA-CRC-	TCGA-UCEC	DACHS	КССН
		KR	DX			
Material	FFPE	snap frozen	FFPE	FFPE	FFPE	FFPE
Staining	HE	HE	HE	HE	HE	HE
N patients	315	387	360	327	378	185
Median age	67	67	67	63	68	65
[years]						
% UICC stage 1	13%	17%	17%	69%	20%	0%
% UICC stage 2	31%	37%	37%	6 %	33%	39%
% UICC stage 3	44%	29%	30%	19%	33%	55%
% UICC stage 4	10%	12%	13%	4%	14%	6%

Supplementary Table 1: Clinico-pathological variables of all patient cohorts. STAD = stomach adenocarcinoma, CRC = colorectal cancer, KR = snap-frozen slides, DX = diagnostic slides with FFPE processing, FFPE = formalin-fixed and paraffin-embedded, HE = hematoxylin and eosin, UICC = Union internationale contre le cancer, UCEC = uterine corpus endometrial carcinoma, KCCH = Yokohama gastric cancer cohort, DACHS = German colorectal cancer cohort, MSI = microsatellite instable, NA = not applicable.

	TCGA-STAD	TCGA-CRC-	TCGA-CRC-	TCGA-	DACHS	КССН
		KR	DX	UCEC		
Class	MSI-H (sequencing, Ref.: (1))			MSI-H	MSI found	MMRd found
MSI	Hypermutated with missing MSI status (2)			(genetic)	with genetic	with 4-IHC-
				(3)	test* (4)	panel (5)
Class	MSS (1)			MSS (3)	Genetic test	Normal IHC
MSS					negative (4)	(5)
Exclude	MSI-L (1)			MSI-L (3)	None	None

Supplementary Table 2: Definition of MSI in all sets. In distinct cohorts, different methods to assign patients to "MSI" or "MSS" were used. This table is a summary of the patients that were assigned to the respective classes, explaining differences in MSI prevalence between the cohorts. MMRd = mismatch-repair deficiency, IHC = immunohistochemistry. *In DACHS, MSI status was determined genetically using a 3-marker panel (BAT25, BAT26, CAT25) as described in (6).

	TCGA-STAD	TCGA-CRC-	TCGA-CRC-	TCGA-UCEC	DACHS	КССН
	Test set	KR Test set	DX Test set	Test set		
N patients	98	109	100	110	378	185
in test set						
% MSI in	25.5 %	27.5 %	26.0 %	36.4 %	7.4 %	9.7 %
these						
patients						
% MSI in	61.5 %	25.0 %	28.6 %	40.7 %	6.7 %	N/A
stage 1						
% MSI in	28.1 %	42.2 %	42.9 %	25.0 %	11.1 %	9.7 %
stage 2						
% MSI in	17.0 %	15.3 %	8.6 %	31.6 %	7.2 %	9.8 %
stage 3						
% MSI in	9.1 %	11.1 %	6.3 %	0.0 %	0.0 %	9.1 %
stage 4						
% MSI im-	23.6 %	22.5 %	28.6 %	35.9 %	7.7 %	13.9 %
age tiles						

Supplementary Table 3: Prevalence of microsatellite instability (MSI) in all test sets. For definition of "MSI" in these groups, see Supplementary Table 2.

Correlation of	Ref.	TCGA-STAD	TCGA-CRC-KR	TCGA-CRC-DX	DACHS
MSIness to					
N patients	-	N=91 from test	N=105 from test	N=95 from test	Subset N=134
		set	set	set	
CD8+ T-cells	(1)	cor = 0.413	cor = 0.0498	cor = 0.088	N/A
signature		p = 5.16e-5 ***	p = 0.617	p = 0.401	
CD8+ T-cells	(7)	N/A	N/A	N/A	cor = 0.050
(IHC for CD8)					p = 0.567
PD-L1 expression	(8)	cor = 0.044	cor = 0.292	cor = 0.408	N/A
		p = 0.677	p = 0.00247 **	p = 4.1e-5 ***	
IFN-gamma	(1)	cor = 0.175	cor = 0.452	cor = 0.350	N/A
signature		p = 0.099	p = 1.63e-6 ***	p = 0.0005 ***	
Macrophages M1	(1)	cor = 0.252	cor = 0.032	cor = 0.141	N/A
		p = 0. 016 *	p = 0.743	p = 0.173	
Macrophages	(7)	N/A	N/A	N/A	cor = 0.207
(IHC for CD163)					p = 0.017 *

Supplementary Table 4: Correlation of MSIness with immune gene expression signatures in test cohorts of gastrointestinal cancer. * < 0.05, ** <0.01, *** < 0.001; cor = Pearson correlation coefficient (calculated with R version 3.5.1 cor.test), IFN-gamma = interferon gamma, expression = gene expression signature, IHC = immunohistochemistry, N/A = not available. For the KCCH cohort, no genetic or IHC data were available. This table is related to Figure 2e in the main manuscript. Raw data are available through the respective references (column "Ref."). All statistical tests are two-sided.

covariates	Hazard ratio (HR)	HR low Cl	HR high Cl	p-value
only MSIness	1.647	1.074	2.524	0.0221 *
+ age	1.598	1.041	2.452	0.0320 *
+ age + sex	1.569	1.016	2.423	0.0420 *
+ age + sex + stage	1.373	0.883	2.137	0.1598

Supplementary Table 5: Prognostic value of high vs low MSIness in genetically determined MSS tumors in the DACHS cohort, multivariable Cox models. CI = 95% confidence interval, * < 0.05. MSIness was binarized at the mean value between true MSI and true MSS patients. These survival models were fitted using the 'survival' package in R (R-project.org). A Kaplan-Meier survival curve for patients stratified by MSIness is shown in Suppl. Figure 3b. This analysis was performed on all N=350 patients with genetic MSS status. All statistical tests are two-sided.

References for Supplementary Tables

1. Liu Y, Sethi NS, Hinoue T, Schneider BG, Cherniack AD, Sanchez-Vega F, et al. Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas. Cancer Cell. 2018;33(4):721-35 e8.

2. Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A, et al. Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell. 2018;174(4):1034-5.

3. Cancer Genome Atlas Research N, Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67-73.

4. Hoffmeister M, Blaker H, Kloor M, Roth W, Toth C, Herpel E, et al. Body mass index and microsatellite instability in colorectal cancer: a population-based study. Cancer Epidemiol Biomarkers Prev. 2013;22(12):2303-11.

5. Aoyama T, Hutchins G, Arai T, Sakamaki K, Miyagi Y, Tsuburaya A, et al. Identification of a highrisk subtype of intestinal-type Japanese gastric cancer by quantitative measurement of the luminal tumor proportion. Cancer Med. 2018;7(10):4914-23.

6. Brenner H, Chang-Claude J, Seiler CM, Hoffmeister M. Long-term risk of colorectal cancer after negative colonoscopy. J Clin Oncol. 2011;29(28):3761-7.

7. Kather JN, Suarez-Carmona M, Charoentong P, Weis CA, Hirsch D, Bankhead P, et al. Topography of cancer-associated immune cells in human solid tumors. Elife. 2018;7.

8. Anaya J. OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Computer Science. 2016;2:e67.