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Dear Alex, 
 
Firstly, I'd like to thank you and your co-authors for your patience during the review process. 
 
Your Article, "An integrated multi-omic cellular atlas of human breast cancers" has now been seen by 
3 referees. You will see from their comments below that while they find your work of interest, some 
important points are raised. We are interested in the possibility of publishing your study in Nature 
Genetics, but would like to consider your response to these concerns in the form of a revised 
manuscript before we make a final decision on publication. 
 
Broadly speaking, all three reviewers appear supportive of the timeliness of the paper, and the dataset 
analysed. However, they all raise issues regarding technical details that we believe should be 
addressed. 
 
Referee #1 asks for more methodological details and further characterisation of the results. They think 
that the Gene Modules are more interesting and novel than the scSubtype signature analysis. Their 
comments on the spatial analysis suggests major improvements are required. 
Referee #2 questions the robustness of the immune cell data, and asks for significantly more detail on 
this. They also request more statistical testing, and also to compare the results presented here to 
other published data. 
Referee #3 appreciates the value of the dataset but asks interesting questions regarding HER2 
heterogeneity. 
 
We note that all three referees' reports had some concordant themes: for example, more comparisons 
to external data (PAM50, METABRIC) and more technical/statistical detail, and further validation of 
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findings (e.g. using IHC/FISH). We think that reviewer #2's comment on the immune cell enrichment 
is important and should be fully addressed. Finally, we also note that the reviewers made relatively 
few comments about the spatial transcriptomics data, suggesting that this part of the manuscript 
could be improved and better-integrated with the remainder of the analysis. 
 
To guide the scope of the revisions, the editors discuss the referee reports in detail within the team, 
including with the chief editor, with a view to identifying key priorities that should be addressed in 
revision and sometimes overruling referee requests that are deemed beyond the scope of the current 
study. We hope that you will find the prioritized set of referee points to be useful when revising your 
study. Please do not hesitate to get in touch if you would like to discuss these issues further. 
 
We therefore invite you to revise your manuscript taking into account all reviewer and editor 
comments. Please highlight all changes in the manuscript text file. At this stage we will need you to 
upload a copy of the manuscript in MS Word .docx or similar editable format. 
 
We are committed to providing a fair and constructive peer-review process. Do not hesitate to contact 
us if there are specific requests from the reviewers that you believe are technically impossible or 
unlikely to yield a meaningful outcome. 
 
When revising your manuscript: 
 
*1) Include a “Response to referees” document detailing, point-by-point, how you addressed each 
referee comment. If no action was taken to address a point, you must provide a compelling argument. 
This response will be sent back to the referees along with the revised manuscript. 
 
*2) If you have not done so already please begin to revise your manuscript so that it conforms to our 
Article format instructions, available 
<a href="http://www.nature.com/ng/authors/article_types/index.html">here</a>. 
Refer also to any guidelines provided in this letter. 
 
*3) Include a revised version of any required Reporting Summary: 
https://www.nature.com/documents/nr-reporting-summary.pdf 
It will be available to referees (and, potentially, statisticians) to aid in their evaluation if the 
manuscript goes back for peer review. 
A revised checklist is essential for re-review of the paper. 
 
Please be aware of our <a href="https://www.nature.com/nature-research/editorial-policies/image-
integrity">guidelines on digital image standards.</a> 
 
Please use the link below to submit your revised manuscript and related files: 
 
[REDACTED] 
 
<strong>Note:</strong> This URL links to your confidential home page and associated information 
about manuscripts you may have submitted, or that you are reviewing for us. If you wish to forward 
this email to co-authors, please delete the link to your homepage. 
 
We hope to receive your revised manuscript within four to eight weeks. If you cannot send it within 
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this time, please let us know. 
 
Please do not hesitate to contact me if you have any questions or would like to discuss these revisions 
further. 
 
Nature Genetics is committed to improving transparency in authorship. As part of our efforts in this 
direction, we are now requesting that all authors identified as ‘corresponding author’ on published 
papers create and link their Open Researcher and Contributor Identifier (ORCID) with their account on 
the Manuscript Tracking System (MTS), prior to acceptance. ORCID helps the scientific community 
achieve unambiguous attribution of all scholarly contributions. You can create and link your ORCID 
from the home page of the MTS by clicking on ‘Modify my Springer Nature account’. For more 
information please visit please visit <a 
href="http://www.springernature.com/orcid">www.springernature.com/orcid</a>. 
 
We look forward to seeing the revised manuscript and thank you for the opportunity to review your 
work. 
 
Sincerely, 
 
Michael Fletcher, PhD 
Associate Editor, Nature Genetics 
 
ORCID: 0000-0003-1589-7087 
 
 
Referee expertise: 
 
Referee #1: single-cell and spatial methods 
 
Referee #2: breast cancer, immunology 
 
Referee #3: breast cancer, single-cell and spatial methods 
 
 
Reviewers' Comments: 
 
Reviewer #1: 
Remarks to the Author: 
The authors have collected a large database and are to be commended for an amazing job. The 
manuscript not only presents a large dataset, but also provides a comprehensive classification of the 
subtypes of microenvironment and the modules of expression in cancer cells. Finally, the authors 
mount an extensive analysis which integrates a previously published large dataset (METABRIC) to 
generate interesting insights into breast cancer ‘ecotypes’. This is an impressive and important work. 
We do have the following concerns: 
 
It is not clear how the cells in Figure 1G are selected. For example for tumor 3838, figure 1D indicates 
there are malignant cells present, however this tumor does not appear to have any epithelial cells in 
1C. Furthermore, in 1G this tumor is absent from the analysis, suggesting again that there are no 
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cancer cells. The parts of Figure 1 should be coherent. 
 
The method of Figure 1G is generally not clear even after reading the methods section. In the Tirosh 
et al method there are cells that are required to be used as a reference. Here this is either different or 
not described. It seems that what the authors must be doing is using the cells that cluster across 
patients as a reference (i.e., non-cancer; Fig. 1F) but this is not described at all. 
 
scSubtype is presented as a primary method in the paper whereas their gene modules are much more 
novel and useful. In Figure 2, the authors mostly analyze the cancer cell transcriptomes using a 
pseudo-bulk RNAseq method scSubtype to assign the subtypes of individual cells. This method has a 
circular-logic element to it as the scSubtype gene signatures are based on a “bulk” signature of cancer 
cells of the tumor which are later shown to be a mixture of the different subtypes. It would instead be 
more useful to focus directly on the integrative clustering method that truly utilizes the power of the 
single cell data and expand further on their findings from this analysis. That is, it would be more 
useful to move the scSubtype method to the supplementary and move the analysis of the gene 
modules from the supplementary fig S5 to the main figure. Further, the authors should consider better 
characterizing the gene modules and comparing to subtype signatures (either from scSubtype or bulk 
PAM50 analysis) to provide a better understanding of the biological relevance of these gene modules. 
Finally, it would be informative to correlate the presence of these gene modules with patient outcomes 
using TCGA or METABRIC data. Lastly, in Fig 2E, all 26 samples have not been shown and it would 
important to include all samples. 
 
In the analysis of lymphocytes, the authors claim to “provide insights into the immunotherapeutic 
strategies most appropriate for each subtype of disease”. The evidence is that across sub-populations 
receptor-ligand pairs (immune checkpoint molecules) are differentially expressed. However, this is 
difficult to appraise since a P-value is not provided. Specifically, the authors claim “significantly higher 
expression” with no statistical support. What should be provided is a comparison between the average 
expression levels of the gene/pair in each tumor across the subtypes. Moreover, it would be 
appropriate to substantiate any claim with an independent method such as immunofluorescence, or 
average expression from published datasets. 
 
Similarly, the authors write that “We observed a substantially reduced proportion of LAM 1:FABP5 cells 
in the HER2+ tumors”. However, no P-value is provided although in the caption it is mentioned that 
the t-test is significant without mentioning specifics. 
 
In Figure 5, the authors present a spatial transcriptomics analysis. Overall the results are not dramatic 
as no novel claims are made and the analysis is riddled with unresolved dependencies with other 
manuscripts: 1. Stereoscope is not a published method and therefore we do not know if it has been 
through peer-review. It’s difficult to assess its validity. For example, what do the numbers in Figure 5B 
signify. 2. In Figure 5, the authors use an independent dataset (cited as Lundeberg et al); it seems 
problematic that if this were published the other dataset may not be available. Moreover, there are 
aspects of the results which are in the supplement that can be better used for the main figure: there 
are subplots in Figure S10D that would be better shown in the main Figure 5. Finally, the authors 
state “We earlier predicted that gene modules were associated with unique microenvironments.” There 
is no mention regarding this prediction earlier in the section where the gene modules are identified 
neither a justification to support this prediction. It is confusing the colors between Fig. 5A and B are 
different yet correspond to the same regions in the slide. 
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The ecotype analysis shown in Figure 6 is very interesting, however additional validation could be 
provided. As the prediction of the ecotype heavily hinges on CIBERSORT, it might be useful to use an 
independent method of deconvolution to support their findings. 
 
 
 
Reviewer #2: 
Remarks to the Author: 
 
A major contribution in Wu et al is development of a molecular signature to classify single cell 
transcriptional profiles of breast cancer into different molecular subtypes, as well as to evaluate 
infiltrating immune and parenchymal cell clusters, and their associated correlates. For subtyping, the 
initial strategy employed was to assume PAM50 is the gold standard and then devise scSubtype to 
maximize similarity to PAM50 subtype assignments. This is a reasonable approach. A summary of the 
overlap between genes in scSubtype and PAM50 would aid in interpretation of scSubtype. 
 
scSubtype is applied to individual cells by computing the average gene expression of each subtype 
signature and assigning subtype to the highest score. There is no information provided about the 
robustness of the assignments for an individual cell. The authors should comment on this, particularly 
for samples classified as ‘discordant’ with bulk PAM50 scores. 
 
scSubtype signatures are “validated” by calculating the degree of epithelial cell differentiation 
and proliferation, both of which are associated with the molecular intrinsic subtypes. This seems a bit 
circular because the signatures were optimized against the PAM50 intrinsic subtypes. At a minimum, 
there should be an assessment of the overlap of genes across the various signatures. 
 
True validation of scSubtype signatures in an external single cell dataset would strengthen the claims 
about its robustness. 
 
With that immune cells occupy (at most) between 10-20% of the cellularity in a breast tumor (based 
on FACs studies), robustness of the immune cell data is questionable given that scRNA Seq was not 
performed following any sort of enrichment for CD45 cells by either positive or negative selection. 
Data should be provided on proportions of cellular compartments, and significance of read depths for 
lower percentage populations so that interpretation can be appropriately gauged. 
 
CIBERSORT deconvolution: Fig S11 shows correlations between deconvoluted pseudobulk and actual 
proportions that from 0-1. However, the main text claims that there is good correlation between these 
measures. Some additional analyses to support the claim is needed, or else the authors need to roll 
back their interpretation of the findings. 
 
Application of scSubtype to deconvolute METABRIC is an interesting use case for the signatures and 
provides some additional insights into classification of breast tumors. Curtis et al (PMID: 22522925) 
describe 10 molecular subtypes of breast cancer. The authors should comment on the relationship of 
their ecosystem signatures to the previously published subtypes. 
 
Missing details and/or stats in several places, for example: 
• Fig 2D (lines 197-199): No indication of whether the differences across subtypes are significant 
• Supp Fig 5: No stats to support the comparisons of GM expression across scSubtypes 
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• The authors claim that tumors in E3 were associated with poor overall survival, consistent with 
known poor prognosis of Basal-like and highly proliferative tumors (line 515-517), however this does 
not appear to be supported by data. 
 
 
Other comments 
Introduction mentions data indicating CD8 infiltrations correlate with outcome but fail to mention 
impact on myeloid subsets also in correlating with outcome, or the significant body of literature 
identifying myeloid subsets as significant regulators of T cell functionality 
‘parenchyma cells’ in introduction should be defined for the reader. Based on text later in results, this 
is an odd definition as infiltrating immune cells would also be considered as “parenchymal”. 
Terminology here is not standard and confusing. Do the uthors instead mean to refer to mesenchymal 
lineage cells? 
 
CD68 was used to identify a myeloid cluster in Fig 1. CD68 only identifies a subset of myeloid cells, 
predominantly monocytes and macrophages, not DCs, eosinophils, basophils, neutrophils or mast 
cells. This should be clarified for the reader. In Fig 3, immune cells are subsetted with deeper 
resolution, but again, myeloid subsetting is for monocytes, macrophages, and DCs only. Were 
eosinophils, basophils, mast cells not identified? Were they absent? Clarification on this topic is 
needed. Is their absence a result of bulk scRNAseq without any CD456 enrichment where read depth 
was limited by paucity of these subsets? Should be discussed. How are subsets identified concordant 
(or not) with published FACs studies of breast cancer? 
 
The authors identified 6 macrophage clusters. Do any of these identify the macrophage-signature that 
predicts clinical outcome (in Metabric) reported by Pollard (PMID 30930117) via RNAseq from FACs 
sorted macrophages? 
 
B cell cluster is identified in Fig 1, but not included in Fig 3. Why? What B cell state is represented in 
the cluster (Fig 1)? Any indication of plasma cells? B cell clusters are evaluated in Fig S6 but more 
details on why absent in Fig 3 are needed. 
 
Spatial transcriptomic data in Fig 5 – CAF-T cell neighborhoods were identified. What about myeloid-T 
cell considering association of LAM2 and T cells in (Fig 3, S10). Are these suppressive myeloid subsets 
by gene expression, e.g., hi IL-10, ROS, iNOS)? 
 
Methods for scSubtype are reasonable and leverage existing tools in Seurat package, however the 
description of how the methods were implemented is a bit confusing and should be written for readers 
not familiar with Seurat package functions. 
 
In general, the figure legends are not very informative. Additional details about what is plotted would 
aid in interpretation. 
 
Suggest moving Supp Fig 5B to main to provide overview summary of molecular features in each gene 
module. 
 
 
 
Reviewer #3: 
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Remarks to the Author: 
Wu et al. have conducted single cell profiling of 26 primary breast tumours using RNA sequencing and 
CITE-sequencing. They map major cell types and lineage relationships among cancer cells and the 
TME. They explore inter and intra-tumoural heterogeneity with respect to the intrinsic subtypes of 
breast cancer and formulate a single cell subtype classifier. Using these data they also deconvolve 
bulk RNAseq data and classify tumours into ‘ecotypes’ based on their cell composition. In addition, 
they use the Visium 10x platform to conduct analysis of RNA expression with spatial resolution in a 
small subset of tumours. 
 
This is a well presented and timely report that does a reasonable job of viewing established breast 
cancer subtypes through a single cell lens. I judge the work to be of moderate novelty and impact; 
many of the observations are not as original as claimed. 
 
Points to be addressed: 
The novelty and significance of some of the findings are frequently over stated. There have been 
several single cell analyses of breast tumours. What amounts to ‘comprehensive’ is also highly 
subjective. The language should be moderated to acknowledge efforts that have gone before. 
 
Established cell signatures were used to annotate cell clusters. A limitation of cell signatures is that 
they are typically prototypes and do not account for the variability in expression profiles that may 
arise in a dynamic environment like a tumour. How well did cell signatures match clusters? How did 
the authors deal with poorly concordant cluster signatures? 
 
The single cell subtyping classifier is a nice addition. However, need it be so complex? After all the key 
criteria are whether a cell expresses hormone receptors, proliferation markers, HER2 and basal 
cytokeratins. I would like to see how a much simpler classifier performs in these data, for example 
one using as few as three genes (see Haibe-Kains et al JNCI 2012). 
 
Several tumours are shown to contain HER2 cells that do not belong to the HER2 subtype. One HER2 
tumour (4066) is identified as having almost half of its cells as non-HER2. This could be of major 
clinical significance in the use of targeted therapy. Can these cells be identified in situ using IHC 
and/or FISH? If not, how should they be interpreted? 
 
In this report, as in many others, HER2 positive breast cancer is treated as a single subtype. But this 
does not reflect the clinical reality. Hormone receptor expression stratifies HER2 positive disease into 
two groups that differ in every meaningful way - prognosis, treatment, patterns of relapse. It would be 
interesting to know how this distinction impacted the cellular ecosystem of HER2 positive tumours 
here. 
 
I typically use the term ‘parenchyma’ or ‘parenchymal’ to refer to the body of a tissue, and not 
specifically referring to stromal/endothelial cells as the authors seem to. I suggest reconsidering this. 
 
With respect to ‘ecotypes’: how useful were the true single cell data in disease stratification? If the 
authors use prototypical gene signatures (of the TME and/or epithelial cells), deconvolve and call 
subtypes again, is there a difference in outcome prediction? How well do the subtypes compare to 
ecotypes and PAM50? 
 
Pseudotime analyses are used to interpret stromal and endothelial cell profiles. Analyses of this sort 
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should be conducted cautiously because they will always return some sort of answer. What leads the 
authors to believe that these cell types do in fact differentiate in this manner? Other forms of 
differentiation, from mesenchymal stem cells for example, are possible. 
 
 

Author Rebuttal to Initial comments   
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Wu et. al. 
Detailed responses and revisions 
 
SUMMARY OF REVISIONS: 
 
We thank the reviewers and the editors for their valuable time and effort committed 
towards improving our manuscript. We have been able to address the comments and 
questions raised with new analysis or clarifications of our results or methods. We 
believe that these changes have significantly improved the manuscript. We have used 
tracked changes in the manuscript and describe them below in our detailed point-by-
point response.  
 
RESPONSE TO EDITORIAL COMMENTS AND OTHER MAJOR CHANGES: 
 
Referee #1 asks for more methodological details and further characterisation of the 
results. They think that the Gene Modules are more interesting and novel than the 
scSubtype signature analysis.  
 
Response: We appreciate the referees’ comments, which have allowed us to improve 
the manuscript. We have added substantial methodological details to the results and 
methods sections (see response to referee’s comments 1.1 & 1.2 below). We agree 
that the gene module results are interesting and have moved data into the main figure 
to bolster that analysis. However, we also think the scSubtype work is an important 
complement to it and a link to established clinically-relevant methods of bulk tumour 
subtyping. Referees 2 & 3 also acknowledge the importance of scSubtype (see 2.1, 
3.3) and so we respectfully suggest that it remains in the main body of the manuscript.  
 
Their comments on the spatial analysis suggests major improvements are required. 
 
Response: We have addressed all of the referee’s comments with clarifications and 
revisions of the spatial analysis. We note that the method used for deconvolution is 
now published, and that our findings hold-up regardless of whether we use the 
additional Her2+ dataset (see 1.6).  
 
Referee #2 questions the robustness of the immune cell data, and asks for significantly 
more detail on this. They also request more statistical testing, and also to compare the 
results presented here to other published data. 
 
Response: We have provided substantial additional details on the immune analysis, 
both in the manuscript and in additional data for the referees. We have conducted 
additional statistical analyses, which largely support our conclusions (see 2.1, 2.2). 
Finally as suggested by the referee, we have conducted new analysis of myeloid-T cell 
interactions in the single cell and spatial datasets, which reveals new insights when 
integrated with the literature suggested by the referee (2.12, 2.13).   
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Referee #3 appreciates the value of the dataset but asks interesting questions 
regarding HER2 heterogeneity.  
 
Response: Indeed the referee makes important points about heterogeneity of HER2+ 
disease. We have clarified our nomenclature of HER2+ disease and conducted further 
analysis of the association of HER2+ disease subsets with ecotypes, as requested (see 
3.4, 3.5).  
 
We note that all three referees' reports had some concordant themes: for example, 
more comparisons to external data (PAM50, METABRIC) and more technical/statistical 
detail, and further validation of findings (e.g. using IHC/FISH).  
 
Response: We appreciate this feedback and have included substantial comparisons to 
external data when appropriate (see 1.3c, 1.4, 2.1, 2.4, 2.7). We have provided more 
detailed statistical analyses, which mostly support our claims (see 1.4, 1.5, 2.1, 2.2, 
2.8, 2.9, 2.12, 3.2). In cases where they do not support our conclusions, we have 
altered them accordingly. We have not conducted additional experimental IHC or FISH 
experiments due to time constraints and limitations in validating highly multiplexed data 
using low-plex methodology. However, we have provided supporting evidence from 
analysis of published datasets.  
 
We think that reviewer #2's comment on the immune cell enrichment is important and 
should be fully addressed. 
 
Response: We agree and have provided an extensive response to this question. In 
short, the single cell technology used in this manuscript preferentially captures immune 
cells. In fact, the majority (50.3%) of filtered cells in the dataset are immune. For this 
reason, we consider this dataset to be well suited to immune analysis. We also provide 
further metrics to demonstrate the quality of the immune cell data generated (see 2.5, 
2.12).  
 
Finally, we also note that the reviewers made relatively few comments about the spatial 
transcriptomics data, suggesting that this part of the manuscript could be improved and 
better-integrated with the remainder of the analysis. 
 
Response: We appreciate this request and have improved our integration of the single 
cell and spatial transcriptomics.  We include additional text linking the rationale for 
spatial analysis back to the single cell data (see 1.6). We have also conducted new 
analyses of macrophage function that uses the single cell- and spatial-transcriptomics 
datasets to identify evidence for T cell suppression by our novel macrophage subsets 
(see 2.13). 
 
Additional reanalysis of ecotypes 
 
In response to questions from all 3 reviewers on ecotyping (See 1.7, 2.6, 2.7 below), 
we conducted extensive additional ecotype analysis, including comparison to results 
obtained from an independent method of deconvolution, DWLS. These show that the 
ecotyping results are robust and not an artefact of the Cibertsortx method nor overly 
influenced by cell types with lower deconvolution accuracy. Furthermore, we provide 
new analysis of the stratification of Her2+ tumours by ecotype and the relationship of 
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ecotypes with the genomic IntCluster classifier. These analyses have improved 
confidence in ecotyping and support the conclusion that ecotypes are not simply 
surrogates of previously-identified transcriptomic or genomic subtypes. 
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POINT BY POINT RESPONSES TO REVIEWERS: 
 
Reviewer #1: 
 
The authors have collected a large database and are to be commended for an amazing 
job. The manuscript not only presents a large dataset, but also provides a 
comprehensive classification of the subtypes of microenvironment and the modules of 
expression in cancer cells. Finally, the authors mount an extensive analysis which 
integrates a previously published large dataset (METABRIC) to generate interesting 
insights into breast cancer ‘ecotypes’. This is an impressive and important work. We do 
have the following concerns: 
 
1.1 It is not clear how the cells in Figure 1G are selected. For example for tumor 3838, 
figure 1D indicates there are malignant cells present, however this tumor does not 
appear to have any epithelial cells in 1C. Furthermore, in 1G this tumor is absent from 
the analysis, suggesting again that there are no cancer cells. The parts of Figure 1 
should be coherent. 
 

Response: We’d like to thank the reviewer for pointing out this lack of 
coherency. This has arisen due to the way in which we selected samples for 
detailed epithelial cell analysis. As we carried out ‘within-sample’ analysis for all 
steps related to the epithelial cell analyses (i.e., inferCNV, integrative clustering 
to identify gene-modules, and scSubtype) we removed all samples with less 
than 200 epithelial cells from our analysis (samples CID3838, CID4398, 
CID3946 and CID4040). As Fig 1A-C shows all the cells in our final, filtered 
dataset, the epithelial cells from these 4 samples are not included in this figure. 
Our intention with figures 1D-F was to highlight the areas of overlap between 
cells across all of our samples (1D) and with respect to clinical subtype (1E) and 
whether the cells had been identified as neoplastic using inferCNV (1F). 
 
Revision:  To improve coherency, we have re-plotted these figures with the 
epithelial cells from these 4 samples removed.  It follows that this is also why 
these samples (including CID3838) were not included in the figure 1G related to 
neoplastic cells identified using inferCNV. We have also clarified this point in the 
methods, page 31 and lines 4-5.  
We also noticed that sample CID4398 was mistakenly included in the inferCNV 
heatmap of neoplastic cells, shown in fig 1G. We have updated figure 1G and 
removed sample CID4398. 
 
 

1.2 The method of Figure 1G is generally not clear even after reading the methods 
section. In the Tirosh et al method there are cells that are required to be used as a 
reference. Here this is either different or not described. It seems that what the authors 
must be doing is using the cells that cluster across patients as a reference (i.e., non-
cancer; Fig. 1F) but this is not described at all.  

 
Response: We thank the reviewer for correctly pointing out that this important 
detail of our implementation of the inferCNV was left out of the methods. To 
clarify, the reference cells were all patient-matched stromal cells (except for 



5 

CAFs, as there is a possibility that some of these may be cancer cells with a 
mesenchymal phenotype). All epithelial cells were used as the observations.  
 
Revision: We have added this to the text at page 30 lines 14-15. 

 
1.3a scSubtype is presented as a primary method in the paper whereas their gene 
modules are much more novel and useful. In Figure 2, the authors mostly analyze the 
cancer cell transcriptomes using a pseudo-bulk RNAseq method scSubtype to assign 
the subtypes of individual cells. This method has a circular-logic element to it as the 
scSubtype gene signatures are based on a “bulk” signature of cancer cells of the tumor 
which are later shown to be a mixture of the different subtypes. It would instead be 
more useful to focus directly on the integrative clustering method that truly utilizes the 
power of the single cell data and expand further on their findings from this analysis. 
That is, it would be more useful to move the scSubtype method to the supplementary 
and move the analysis of the gene modules from the supplementary fig S5 to the main 
figure.  

 
Response: We thank the reviewer for their interest and suggestions regarding 
the breast cancer gene modules. While we agree with the comments regarding a 
“circular-logic element” of scSubtype, we would like to reiterate that this was 
circular by design. The intrinsic subtypes are a very well accepted classifier of 
breast cancer biology and a clinically-actionable predictor of risk. Our objective 
was to apply the ‘bulk’ pam50 classifier at single cell resolution. In this way we 
link the observed neoplastic heterogeneity to well-accepted breast cancer 
phenotypes with clinically-relevant associations. To achieve this we made a 
necessary assumption that the bulk subtype of a tumour will match the most 
frequent neoplastic cell subtype. This work is complemented by the gene 
module work which takes a data-driven approach to finding the most frequent 
ontologies associated with intra-tumoral heterogeneity.  
 
Revision: We respectfully suggest that scSubtype remains in the main figure 
however, we do agree that Figure S5B would be more appropriately placed in 
the main figure, and have updated this in the revised manuscript. 
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1.3b Further, the authors should consider better characterizing the gene modules and 
comparing to subtype signatures (either from scSubtype or bulk PAM50 analysis) to 
provide a better understanding of the biological relevance of these gene modules.  
 

Response: We thank the reviewer for the interest in our gene-module based 
approach. With regards to comparing the gene-modules to scSubtype 
signatures, this analysis is specifically shown in figure S5F of the manuscript, 
where the scSubtype score enrichments, for the cells assigned to each gene-
module are plotted.  
 
With regards to further characterization of the biological relevance of the gene-
modules, we curated a set of 78 gene-signatures related to breast cancer 
biology and compared them to each of the gene-modules. Briefly, we calculated 
a score (using AUCell) for each gene-signature (including the 7 gene-modules), 
in each neoplastic cell. We then generated a pair-wise correlation matrix using 
these per-cell enrichment scores and extracted those with highest correlations 
(top-10) to each gene-module (Figure R1). 
 

 
Figure R1: Pearson correlation matrix of AUCell scores from all neoplastic cells. The top-10 

correlated gene-sets to each of the 7 gene-modules is shown. 
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A number of gene-set clusters are apparent, broadly related to individual gene-
modules. For instance: GM1 is related to FOS_JUN, EGFR and PI3K signalling 
and luminal tumours; GM3 is related to EMT, Claudin-low breast cancers and 
interferon signalling; GM4 is correlated with proliferation and basal-like breast 
cancer tumours; GM5 is a strongly related to luminal breast cancers; and GM6 
forms a small cluster related to GATA3 signalling.      
 
This analysis reinforces our findings that a number of our gene-modules align 
with breast cancer subtypes, at both bulk tumour and cellular level (scSubtype) 
and suggests other disease pathways that may be of relevance for 
understanding the role that these gene-modules play in driving tumour 
heterogeneity.       

 
Revisions: Again we thank the reviewer for interest in this analysis. In the 
interests of space, we have not included the additional gene signature analysis 
in the revised manuscript. However, we would be willing to incorporate if the 
reviewer and editor consider it an important addition. 

 
 
1.3c Finally, it would be informative to correlate the presence of these gene modules 
with patient outcomes using TCGA or METABRIC data.  
 

Response: As requested by the reviewer, we have investigated the prognostic 
association of the seven breast cancer gene modules using Kaplan Meier 
analysis in the METABRIC1 and TCGA2 cohorts, as well as a third independent 
cohort by Harrell et al.3. This revealed two survival trends that were consistently 
identified across multiple cohorts. As seen in the survival curves below (Figure 
R2), we found that patients with a high gene module 4 (GM4) score had worse 
overall survival (red line). As GM4 was enriched for proliferation and cell cycle 
related pathways, this result is expected from the known prognostic association 
of proliferation markers and signatures4. Furthermore, patients with a high GM5 
score had better overall survival (red line). As GM5 was enriched for ER gene 
pathways, this result is consistent with the better prognostic outcomes of luminal 
breast cancers. No other gene modules revealed significant survival trends that 
were detected across two or more cohorts (data not shown).  
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Figure R2. Kaplan Meier curves showing the prognostic association between gene modules 4 
(proliferation and cell cycle) and 5 (ER pathway) across three independent datasets from the 

METABRIC, TCGA and Harrell et al. studies. Univariate Kaplan–Meier analysis with Cox–Mantel 
log-rank test was performed using the survival package in R. Patients were stratified into 2 or 3 
equal sized groups based on the rank order of the gene expression module. Overall Survival or 

Relapse Free Survival were used as the end points.  
 
 

While we agree that correlating these gene modules with patient outcomes is 
interesting, we believe that directly examining the prognostic associations of 
single-cell breast cancer signatures in bulk tumor cohorts can be confounded by 
neoplastic heterogeneity and by non-malignant cell types that have overlapping 
transcriptional profiles. To this regard, we were not surprised to find no novel 
survival trends in other gene modules. For instance, GM3 was enriched for 
pathways related to immune regulation (e.g. interferon response and antigen 
presentation) and EMT, which can be confounded in bulk studies by infiltrating 
immune cells and mesenchymal cells, respectively.  
 
Revisions: As the association of GM4 and GM5 with prognosis are as expected, 
we have decided to not include these results in our manuscript in the interest of 
space. However, we are open to incorporating it at the discretion of the reviewer 
and editor.  
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1.3d Lastly, in Fig 2E, all 26 samples have not been shown and it would important to 
include all samples. 
 

Response: It is correct that not all 26 samples were included in fig 2 (we 
assume the reviewer is referring to figure panels 2B, F and G) as only 21 
samples had sufficient neoplastic cells to be included in the integrative clustering 
analysis. For the identification of gene-modules we removed any samples with 
less than 50 neoplastic cells. This is why sample CID44041 is not included in 
figure 2F and 2G. For scSubtype, we applied a slightly more stringent cell 
filtering threshold of at least 150 neoplastic cells, which is why sample CID3586 
was additionally removed from scSubtype analysis and is not included in figure 
2B.  
 
Revisions: We have updated the text and methods to improve the clarity of 
these extra neoplastic cell based, sample filtering steps (see: page 8, lines 2-3; 
page 10, line 12; page 32, line 12; and page 34, line 14) 
 

1.4 In the analysis of lymphocytes, the authors claim to “provide insights into the 
immunotherapeutic strategies most appropriate for each subtype of disease”. The 
evidence is that across sub-populations receptor-ligand pairs (immune checkpoint 
molecules) are differentially expressed. However, this is difficult to appraise since a P-
value is not provided. Specifically, the authors claim “significantly higher expression” 
with no statistical support. What should be provided is a comparison between the 
average expression levels of the gene/pair in each tumor across the subtypes. 
Moreover, it would be appropriate to substantiate any claim with an independent 
method such as immunofluorescence, or average expression from published datasets.  

 
Response: We apologise to the reviewer for the missing statistics for ligand-
receptor comparisons across subtypes in our manuscript. We acknowledge that 
statistical support is critical to support these claims. To address this, we have 
included the p-values from our differential gene expression analysis across 
subtypes for each gene using the MAST method (Figure R3; Figure R4). This 
reveals that the majority of changes reported are significant.  
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Figure R3.  Log2fold differential gene expression change of surface immunomodulatory receptor 
genes between BrCa subtypes, stratified by immune cell subset. Only statistically-significant 

differences using a pair-wise comparison are shown (bonferroni corrected values using MAST). 
P-values denoted by asterisks: *p < 0.05, p < 0.01, *p < 0.001 and ****p < 0.0001. 

  
 

 
Figure R4. Violin plots showing the log-normalised expression of immunoregulatory genes 
LAG3, CD27, PDCD1, CD70, for the T-cell : LAG3 cluster across clinical BrCa subtypes 

analysed by scRNA-Seq. Statistical significance was computed using paired student t-test.  P-
values denoted by asterisks: *p < 0.05, p < 0.01, *p < 0.001 and ****p < 0.0001. 
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Furthermore, we agree with the referee that support from an independent 
dataset would substantiate these claims. We have investigated the expression of 
these immuno-modulatory genes in published datasets such as METABRIC and 
TCGA (Figure R5). While there are obvious caveats of exploring single-cell 
expression in bulk tumor data, we do observe a consistent enrichment of 
markers in Basal-like breast cancers which were up-regulated in CD8+ T-cells 
from TNBC tumors in our scRNA-Seq cohort. As seen in the expression plots 
below, this includes CD70, PDCD1 (PD-1), LAG3 and CD27. In the case of PD-
1, our findings are also consistent with our recent immunofluorescence study 5, 
which shows that TNBC have a higher infiltration of PD-1+ T-cells compared to 
luminal BrCa.  
 

 
Figure R5. Normalised expression of immunoregulatory genes PDCD1, CD27 and CD70 in the 

METABRIC and TCGA cohorts. Tumors are grouped by PAM50 subtype classification. Statistical 
significance was computed using a wilcoxon test. P-values denoted by asterisks: *p < 0.05, p < 

0.01, *p < 0.001 and ****p < 0.0001.    
 
For immunoregulatory genes 4-1BBL (TNFSF9) and (TNFRSF9/CD137) found 
to be enriched in LAG3/c8 cells from ER+ and HER2+ patients, these were not  
differentially expressed in METABRIC and TCGA. This may be a limitation of 
estimating single-cell expression in bulk tumors, nonetheless, claims were 
removed from manuscript.  
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Revisions: P-values for single cell expression claims have now been included in 
revised manuscript. Specifically, the following modifications were made to 
address reviewers comments: 

● We have added statistical significance values for the expression of 
dysfunctional and cytotoxic gene signature across all T-cell / ILC clusters. 
Previous Figure S6C is now relocated to Fig S7B.  

● We have included a figure to demonstrate that dysfunctional T-cell gene 
expression scores are statistically different across cancer subtypes for 
cells of CD8+ T : LAG3 and CD8+ T : IFNG clusters  (Fig S7C).  

● We have included a figure to visualise Log2fold expression of all 
statistically significant receptor-ligand genes described in Figure 3I, 
stratified by celltype, across breast cancer subtypes (Fig S7D) 

● Violin plots with statistical analysis for each gene claimed in text; PD1, 
CD27, CD70, LAG (Fig S7E). 

● The expression of markers PDCD1 (PD-1), CD27, LAG3 and CD70 in the 
METABRIC cohort across breast cancer subtypes to support the single-
cell differential gene expression findings (Fig S7F). This is further 
discussed in the text page 13 lines 8-11.  

● We have also discussed a recent immunofluorescence study by Millar et 
al 20205 in the text page 13 lines 11-12, which supports claims of 
increased PD1 expression in tissue resident T-cells in TNBC in 
comparison to HER2+/ER+. 

   
 
1.5 Similarly, the authors write that “We observed a substantially reduced proportion of 
LAM 1:FABP5 cells in the HER2+ tumors”. However, no P-value is provided although in 
the caption it is mentioned that the t-test is significant without mentioning specifics. 
 

Response: We apologise to the reviewer for this oversight in our manuscript. 
Descriptions of the p-values in the figure legends were mistakenly removed 
through editing and have now been re-incorporated into the figure legend of 
Figure 3 of the revised manuscript.   

 
 
1.6 In Figure 5, the authors present a spatial transcriptomics analysis. Overall the 
results are not dramatic as no novel claims are made and the analysis is riddled with 
unresolved dependencies with other manuscripts: 1. Stereoscope is not a published 
method and therefore we do not know if it has been through peer-review. It’s difficult to 
assess its validity. For example, what do the numbers in Figure 5B signify. 2. In Figure 
5, the authors use an independent dataset (cited as Lundeberg et al); it seems 
problematic that if this were published the other dataset may not be available. 
Moreover, there are aspects of the results which are in the supplement that can be 
better used for the main figure: there are subplots in Figure S10D that would be better 
shown in the main Figure 5. Finally, the authors state “We earlier predicted that gene 
modules were associated with unique microenvironments.” There is no mention 
regarding this prediction earlier in the section where the gene modules are identified 
neither a justification to support this prediction. It is confusing the colors between Fig. 
5A and B are different yet correspond to the same regions in the slide. 
 



13 

Response: We acknowledge the referee’s concerns regarding the use of 
unpublished methods and datasets in our study. In regards to stereoscope 
method we applied for spatial deconvolution, this method has now been 
published 6.  
 
While we acknowledge that the Lundeberg et al. dataset used in our study is 
unpublished, we would like to highlight that our findings of stromal-immune co-
localisations hold true without the inclusion of these additional HER2+ spatial 
transcriptomics datasets. This is evident in the heatmap in Figure 5H, where 
Pearson Correlations between stromal-immune cell types are summarised 
across the four TNBC and two ER+ spatial datasets exclusive to this study, and 
the seven HER2+ spatial datasets from the Lundeberg et al. study. For example, 
this shows that negative correlations between iCAFs and myCAFs, and positive 
correlations between iCAFs and CD4+ and CD8+ T-cells, hold true across a 
majority of cases from both studies. The use of this independent dataset 
provides important additional support for our biological findings across the Her2 
subtype of breast cancer. A preprint describing this data is available online7 and 
this manuscript is currently under revision. As such we expect the timing of its 
publication to coincide with ours. Dr Lundeberg makes all published spatial 
transcriptomics datasets available online 
(https://www.spatialresearch.org/resources-published-datasets/). 
 
Revisions:  

● We have clarified the data in Fig 5B where scaled deconvolution 
abundances, as estimated using stereoscope, are shown. This has been 
updated in the figure legend for Figure 5 of the revised manuscript. 

● We thank the referee for the suggestion that Figure S10D could be better 
shown in the main figure. We agree with this, and this has now been 
updated in Figure 5C-D of the revised manuscript.  

● We also apologise that our statement “We earlier predicted that gene 
modules were associated with unique microenvironments” was not clear. 
This is now clarified in the text p19 lines 4-6 of the revised manuscript.  

● As requested, the colours related to pathology regions are now consistent 
between Fig. 5A and Fig. 5B of the revised manuscript.  

 
1.7 The ecotype analysis shown in Figure 6 is very interesting, however additional 
validation could be provided. As the prediction of the ecotype heavily hinges on 
CIBERSORT, it might be useful to use an independent method of deconvolution to 
support their findings. 
 

Response: We thank the reviewer for this suggestion and agree that a second 
method of deconvolution could be used to support our conclusions. To address 
this we have used an independent method (DWLS8) to provide additional 
validation to our CIBERSORTx based ecotype.  Similar to CIBERSORTx, DWLS 
is also specifically designed to utilise single-cell data and performed well in a 
recent benchmark9. However, DWLS uses a different method, dampened 
weighted least squares, so is not redundant to CIBERSORT, which uses support 
vector regression. Comparison between the deconvolution results showed no 
significant difference (wilcox p-value >0.05) in correlation coefficients, between 
actual and predicted cell-type fractions, using pseudo-bulk samples (Figure R6).  



14 

 

 
Figure R6: Boxplots comparing the Pearson correlations between the actual cell-fractions 

captured by scRNA-Seq and those predicted by CIBERSORTx and DWLS, using pseudo-bulk 
expression profiles. Wilcox p-value. 

 
This indicated that both methods were performing comparably across all cell-
types.  
 
We next compared the performance of DWLS when applied to the METABRIC 
cohort. Similar to fig 6B, we assessed the performance of the DWLS method 
when predicting the scSubtype and cycling cell abundances across the PAM50 
tumour subtypes. This resulted in similar performance to CIBERSORTx, where: 
(i) each scSubtype cell-type was significantly enriched in tumours with 
associated bulk PAM50 subtype classifications; and (ii) cycling cells were 
enriched in the more proliferative tumours, namely basal-like, Her2E and LumB. 
An exception to this was seen for the LumA_SC cell-type, where only a modest 
difference (p=0.034) was seen between LumA and B tumours and no difference 
(p=0.86) between LumA and Her2E tumours (Figure R7). This indicates that 
CIBERSORTx performs slightly better (see Figure 6B in the manuscript) in the 
deconvolution of scSubtype defined cell-types, in particular LumA tumours.   
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Figure R7: Boxplot comparing the DWLS predicted cell-fractions of LumA_SC cells in each 

METABRIC patient tumor, stratified by PAM50 subtypes. p-values calculated using Wilcox test. 
 

Next we approached the analysis by comparing the concordance between nine 
tumour ecotypes generated from CIBERSORTx versus DWLS calculated cell-
fractions. Our hypothesis being that if the deconvolution approaches were 
performing similarly they should show pairs of ecotypes with substantial overlap 
of tumours. The Table R1 below, listing the nine ecotype pairs with the highest 
average overlap, shows that this was broadly the case. Importantly, all nine of 
the CIBERSORTx ecotypes are part of this top-ranked list.     
 

cibersortx 
ecotype dwls ecotype sample 

overlap sample overlap (%) 

E1 E9 113 43.1 

E2 E3 221 79.5 

E3 E6 157 82.3 

E4 E2 185 75.7 

E5 E8 64 34.3 

E6 E1 58 28.1 

E7 E4 145 70.6 

E8 E7 104 45.8 

9 E7 63 32.8 

Table R1: Tumour ecotype overlaps between using CIBERSORTx and DWLS. 
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Finally, we used these overlapping tumours to define nine “common” ecotypes 
consisting of 1110 tumours whose ecotype calls were concordant between the 
two methods. To test if these common ecotypes showed similar properties to the 
original CIBERSORTx ecotypes we compared their molecular subtype (Figure 
R8) and cell-type compositions (Figure R9), and their ability to stratify prognostic 
groups of patients (Figure R9). 
 

 
Figure R8: Relative proportion of the PAM50 molecular subtypes of the ecotypes generated from 
CIBERSORTx (LHS) and the common tumors in each ecotype, when combining CIBERSORTx 

and DWLS results (RHS). 
 
 

 
Figure R9: Comparison between ecotypes generated from CIBERSORTx (top) and the common 

tumors in each ecotype, when combining CIBERSORTx and DWLS results (bottom). Relative 
average proportion of the major cell-types enriched in the ecotypes (LHS). KM plots showing 

overall survival analysis of the ecotypes (RHS).   
 

This comparison shows that the common ecotypes look very similar to the 
ecotypes defined from using CIBERSORTx alone. For example: ecotype E3 
predominantly consists of basal-like tumours, the largest proportion of cycling 
cells, and relates to poor prognosis. E7 predominantly consists of Her2E 
tumours and relates to poor prognosis; E4 consists of a mixture of all subtypes 
and is enriched for immune cells; and E2 shows good prognosis, predominantly 
luminal A and normal-like subtypes, and lowest cycling cell content. Additionally, 
stratification of Her2E patients in the immune high (E4) and low (E7) ecotypes 
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shows similar trends (although no longer significant, p=0.07) towards improved 
survival for those in E4.  
 
In summary, we have shown that the concordance when comparing ecotypes 
derived from the independent methods is high and maintains clinical and cellular 
composition features. Thus indicating that the ecotypes are not a unique feature 
of CIBERSORTx.     
 
Revisions: 

● We have added panel S11B to show a comparison between CIBERSORTx and 
DWLS when deconvoluting the pseudo-bulk datasets 

● We have added panel S11J to show the consistency of survival results when 
using ecotypes formed from the overlap of CIBERSORTx and DWLS. 

● We have added Table S11 showing the tumour overlap between the ecotypes 
when using CIBERSORTx and DWLS. 

● The manuscript text has been updated (page 22, lines 3-4 and page 23, lines 
10-14) to reflect these figure and table additions.   

● The methods have been updated to describe the DWLS approach (page 40, line 
20; page 41, lines 10-16; page 41, lines 22-26; page 42, lines 1-7). 

● Figure S11 legend text has been updated accordingly.  
 
 
Reviewer #2: 

 
2.1 A major contribution in Wu et al is development of a molecular signature to classify 
single cell transcriptional profiles of breast cancer into different molecular subtypes, as 
well as to evaluate infiltrating immune and parenchymal cell clusters, and their 
associated correlates. For subtyping, the initial strategy employed was to assume 
PAM50 is the gold standard and then devise scSubtype to maximize similarity to 
PAM50 subtype assignments. This is a reasonable approach. A summary of the 
overlap between genes in scSubtype and PAM50 would aid in interpretation of 
scSubtype.  
 

Response: We agree with the reviewer that the overlap of scSubtype and 
PAM50 gene lists would aid the interpretation of the methods. As seen in below 
(Figure R10), this revealed only 4 genes in common between the two gene lists. 
This included two genes in common with Basal_SC (ACTR3B and KRT14) and 
two genes in common with the Her2E_SC (ERBB2 and GRB7) signatures (Table 
S4).  
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Figure R10. Overlap of scSubtype and PAM50 gene lists. 

 
Revision: We have incorporated these overlaps into the results section of the 
text on page 8 lines 14-16.  

  
2.2 scSubtype is applied to individual cells by computing the average gene 
expression of each subtype signature and assigning subtype to the highest 
score. There is no information provided about the robustness of the 
assignments for an individual cell. The authors should comment on this, 
particularly for samples classified as ‘discordant’ with bulk PAM50 scores.  
 

Response: It is technically challenging to calculate the robustness of each cell 
without a gold standard external guide of some type, which does not exist for a 
single-cell intrinsic subtype classifier. It is worth noting the well-accepted 
methods such as Pam50 (Prosigna), OncotypeDX or Mammaprint also do not 
implement a robustness measure or any threshold when assigning subtype to a 
sample, yet are is widely accepted as a clinical tests. We believe that the 
robustness of scSubtype will only improve upon greater sample numbers applied 
in future scRNA-Seq studies.  
 
Revisions: To ensure this is clearly communicated, we have modified or 
removed parts of our text in the revised manuscript describing the “accuracy”, 
“discordance”, and “classifier” nature of our scSubtype results, as seen in the 
abstract (page 4) and the text (page 8, line 21; page 24, line 20; page 25, lines 
8-9). We have also incorporated a sentence into the discussion page 25 lines 
14-16 acknowledging that the performance of scSubtype will improve upon 
greater sample numbers in future scRNA-Seq studies.  
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2.3 scSubtype signatures are “validated” by calculating the degree of epithelial cell 
differentiation and proliferation, both of which are associated with the molecular intrinsic 
subtypes. This seems a bit circular because the signatures were optimized against the 
PAM50 intrinsic subtypes. At a minimum, there should be an assessment of the overlap 
of genes across the various signatures. 

 
Response: The reviewer raises an important point regarding the validation of 
intrinsic breast cancer subtypes with the differentiation scores (Dscore) and 
proliferation scores. However, it is important to consider that PAM50, Dscore 
and proliferation scores were independently developed in 3 different 
publications, and using distinct methods. 
 
Dscore was derived from models of normal breast epithelial cell differentiation 
states rather than from breast cancers4. Dscore reflects the differentiation axis 
from mammary stem cells to luminal progenitors and mature luminal cells, which 
were all established using gene expression data from each of these FACS 
purified subpopulations10,11. The application of Dscore to breast cancers 
subsequently revealed important correlations with clinical subtypes, for instance, 
higher Dscores were found in luminal cancers, whereas lower Dscores are found 
in basal-like breast cancers4. Therefore our validation approach is not circular in 
nature. We observed consistent Dscore trends with our scSubtype classifier, 
which revealed high Dscores in LumA_SC and LumB_SC subtypes compared to 
Basal_SC and HER2_SC. This provides important correlations with established 
breast cancer biology. While we agree that assessing the overlap would be 
informative, this is not possible as the Dscore is computed using a centroid 
based predictor with information from ~20 thousand genes.  
 
For proliferation scores12, these were 11 genes related to the cell cycle that were 
initially used to compare against clinical assays, such as the Ki67 IHC 
proliferation index, for their prognostic abilities to predict patient outcome. While 
it is true that there is a strong overlap with PAM50 (9 of 11 genes shared), none 
of these 11 genes overlap with our scSubtype signatures (Figure R11). As we 
observed higher proliferation scores in cells classified as Basal_SC and 
Her2_SC compared to LumA_SC and LumB_SC, this independent correlation 
fits with the higher proliferative nature of Basal and Her2 breast cancers12.  
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Figure R11. Overlap of scSubtype, PAM50 and proliferation score gene lists. 

 
Taken overall, scSubtype provides novel signatures for classifying intrinsic 
molecular subtypes on the single cell level, which importantly fits with known 
breast cancer biology. We agree that reporting this overlap between scSubtype 
signatures and Dscores/Proliferation scores in our manuscript would help clarify 
this point to the reader.  
 
Revisions: We have included these overlaps into the respective sections of the 
text page 8, lines 14-16 and page 33, lines 22-25 of the revised manuscript. We 
also acknowledge that the use of the term “validate” may not be appropriate 
here, which we have clarified in the text on page 10 line 1 of the revised 
manuscript.  
 

 
2.4 True validation of scSubtype signatures in an external single cell dataset would 
strengthen the claims about its robustness. 
 

Response: We agree with the reviewer that validation of scSubtype signatures 
using an external dataset would strengthen its claims. In our study, we tried to 
best control for this by splitting our scRNA-Seq tumor cohort into training and 
test sets in our scSubtype methodology. As for most classifiers, the robustness 
of scSubtype signatures will likely improve when using a larger number of 
samples across training and test sets in future scRNA-Seq studies. We do 
acknowledge that there are externally published scRNA-Seq datasets of primary 
human breast cancers10,13 however, we do not believe they are suitable for this 
purpose. Most of these studies include datasets that are experimentally enriched 
for immune cells rather than tumor cells 14,15. Most importantly, these datasets 
do not have matching bulk RNA-Seq and single cell RNAseq on the same 
tumors, like we have for our study, which is importantly required for a true 
validation against the gold standard clinical assay (which is based upon bulk 
mRNA expression).  
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Revision: We have included some discussion on these aspects in the text of the 
revised manuscript on page 25 lines 14-16. 
 

2.5 With that immune cells occupy (at most) between 10-20% of the cellularity in a 
breast tumor (based on FACs studies), robustness of the immune cell data is 
questionable given that scRNA Seq was not performed following any sort of enrichment 
for CD45 cells by either positive or negative selection. Data should be provided on 
proportions of cellular compartments, and significance of read depths for lower 
percentage populations so that interpretation can be appropriately gauged.  

 
Response: While it is true that we did not perform any enrichment or selection 
for immune cells prior to scRNA-Seq, it is widely accepted that droplet-based 
single-cell methods, including the 10X Chromium platform used in our study, are 
biased due to cell size, flow rates and droplet sizes. This has been explored in a 
large benchmarking study by Slyper et al. 16 which showed an enrichment of 
leukocytes in single-cell analysis of cancer tissues compared to matching single 
nuclei analysis (Slyper et al., 2020 Fig. 6). The natural selection of immune cells 
using this methodology can also be seen as beneficial for studying the immune 
milieu of cancers and tissue types with lower immune infiltration, as no extensive 
experimental enrichments are required.  
  
In response to the requested data for the proportions of each cellular 
compartment, this is shown for each of the major cell types and states in Figure 
1C of the manuscript. On average, 50.3% of cells from each tumor were immune 
cells (B-cells, Plasmablasts, T-cells and Myeloid cells), which ranged between 
39.8%, 52.5% and 69.2% for ER+, TNBC and HER2+ tumors, respectively. If we 
have misinterpreted the reviewer request here, we are happy to provide other 
data upon clarification.  

 
The read depths in each cellular compartment can be observed in Figure S2 C-
D of the original manuscript, which shows the number of unique molecular 
identifiers (UMIs) and genes detected across each of the major cell types and 
states. In general, lymphocytes such as T- and B-cells show a lower average 
number of UMIs and genes per cell compared to more transcriptionally active 
cells such as cancer cells and proliferating ‘Cycling’ cells. These trends across 
cell types metrics are consistent with those previously reported in other cancer 
types (Lambrechts et al. 2018, Fig.1D17 and Slyper et al., 2020 Extended Data 
Fig. 2 16).  
 
Despite this, we sequenced our single cell libraries extensively and our T- and 
B-cells clusters have read depths that are slightly higher than those reported by 
previous studies 16 with an average of ~2,000 and ~1,000 UMIs and genes per 
cell (Fig. S2C-D). In addition, we have applied sophisticated and stringent 
filtering methods to ensure the highest possible quality of our final dataset, 
including the Emptydrops method, which distinguishes real cell droplets from 
empty droplets that hold similar expression profiles to the ambient ‘noise’ RNA 
profile. We hope these clarifications of our methodology, metrics and data 
processing steps satisfy the reviewers concerns about the quality and 
robustness of our immune cells.       
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2.6 CIBERSORT deconvolution: Fig S11 shows correlations between deconvoluted 
pseudobulk and actual proportions that from 0-1. However, the main text claims that 
there is good correlation between these measures. Some additional analyses to 
support the claim is needed, or else the authors need to roll back their interpretation of 
the findings. 
 

Response: We thank the reviewer for the opportunity to clarify this point. Our 
reference to a “good” correlation was referring to the average of correlation 
coefficients (0.64) for all 46 cell-types (S11A, inset).  However, we acknowledge 
that deconvolution methods have limitations and that not all cell-types perform 
equally, as shown by the individual results when deconvoluting the pseudo-bulk 
samples. To investigate this further we calculated the statistical significance of 
these correlations for each cell-type and summarised according to their major 
cell-type (Figure R12). 

 

 
Figure R12: Barplot of the Pearson correlation between the actual cell-fractions captured by 

scRNA-Seq and the CIBERSORTx predicted fractions from pseudo-bulk expression profiles. * 
denotes a significant correlation p<0.05. 

 
 
Clearly, a majority of cell-types consistently perform well (32/46 have p-
value<0.05). These include: all epithelial cells (cancer and normal); all T-cell & 
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ILC subsets; cycling; and most of the CAF cell-types. In contrast, B-cells & 
plasmablasts, as well as a number of myeloid (c1_LAM1_FABP5, 
c11_cDC2_CD1C, c3_cDC1_CLEC9A, c8_Monocyte_2_S100A9, 
c12_Monocyte_1_IL1B, c7_Monocyte_3_FCGR3A), Endothelial 
(Endothelial_Lymphatic_LYVE1, Endothelial_RGS5), PVL (Differentiated_s3, 
Immature_s2), and one CAF (CAFs_Transitioning_s3) cell-type, didn’t reach 
significance in correlation. 

 
One explanation why some cell-types perform less well could be that they are 
rarer cell-types with low abundance. Indeed, on average the cell-types with 
significant correlation between actual and predicted cell-type abundances have 
significantly higher actual abundance in the pseudo-bulk samples (p<0.001, 
Wilcox-test) (Figure R13). This indicates that the rarity of a cell-type may be 
having some impact on the deconvolution performance. 
 

 
Figure R13: Boxplot comparing the actual cell-abundances, captured via scRNA-Seq, of those 

cell types with and without a significant correlation with predicted cell-type abundance using 
CIBERSORTx. Wilcox test p-value.  

 
Although rare cell-types can be a challenge for deconvolution methods, our 
analysis in response to REF 1.7 shows that our ecotypes are robust across two 
deconvolution methods. Importantly, the alternative deconvolution approach that 
we used (DWLS ) was specifically developed to help improve the identification of 
rarer cell-types, indicating that a combined approach may be beneficial. 
However, even when comparing the performance of both methods we can see 
that some cell-types remain challenging to predict accurately by either method, 
as seen by the 8 cell-types in the “significant_in_none” grouping (Figure R14).  
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Figure R14: Barplot comparing the Pearson correlation, for each of the cell-types in the subset 
level of the BrCa cell taxonomy, between the actual cell-fractions captured by scRNA-Seq and 

the CIBERSORTx and DWLS predicted fractions from pseudo-bulk expression profiles. * 
denotes a significant correlation p<0.05 between actual and predicted cell-type abundance. 

 
Ultimately, it’s important to estimate the impact that these poorer performing cell-
types might have on the tumour ecotypes identified from METABRIC. Because 
deconvolution methods perform better when the most complete set of 
representative cell-types are used, we were hesitant to repeat the cell-type 
deconvolution analysis with these poorly performing cell-types removed, as it 
may have an unintended impact on the performance of the other cell-types. 
Instead, we repeated the consensus clustering to re-generate the tumour 
ecotypes using only the 32 cell-types that were significantly correlated (p<0.05). 
The hypothesis being that if the ecotypes were similar, after removal of the 
poorer performing cell-types, we could increase our confidence in the 
robustness of the ecotypes and that they are not unduly dependent on or 
influenced by the poorer performing cell-types. This is broadly what we 
observed. When using only the 32 significantly correlated cell-types we identified 
similar numbers of tumour ecotypes. To allow a direct comparison between the 
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ecotypes generated with all cell-types we evaluated the concordance of the nine 
ecotypes by calculating the tumour overlaps between those generated using all 
cell-types and only the significant ones. Our hypothesis being that if the cell-
types with lower correlation scores weren’t substantially affecting the ecotypes 
they should show pairs of ecotypes with substantial tumour overlaps. The table 
below (Table R2), listing the nine ecotype pairs with the highest average 
overlap, shows that this was the case. 

 
ecotype (all cell-
types) 

ecotype (significant 
cell-types) 

sample overlap sample overlap (%) 

E1 E1 234 81 

E2 E3 237 86 

E3 E2 182 90 

E4 E4 216 78 

E5 E7 148 69 

E6 E5 195 86 

E7 E6 154 81 

E8 E8 133 59 

E9 E8 71 37 

 
Table R2: Tumour ecotype overlaps between using CIBERSORTx on all or significantly 

correlated cell-types. 
 

These overlaps show that most of the “all cell-types” tumour ecotypes have a 
greater than 75% overlap of samples with the “significant cell-types” tumour 
ecotypes, showing their robustness. We then used these overlapping tumours to 
define nine “common” ecotypes consisting of 1570 tumours whose ecotype calls 
were concordant between the two methods, a clustered heatmap of the cell 
abundances for these ecotypes is shown below (Figure R15).  
 

 
 

Figure R15: Heatmap of ecotypes formed from the common METABRIC tumors (columns) 
identified from combining ecotypes generated using CIBERSORTx with all, or the 32 significantly 

correlated cell-types (rows), when using CIBERSORTx on pseudo-bulk samples. 
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To test if these common ecotypes showed similar properties to the ecotypes 
using all cell-types we compared their molecular subtype (Figure R16) and cell-
type compositions (Figure R17). 
 

       
Figure R16: Relative proportion of the PAM50 molecular subtypes of the ecotypes generated 

from all cell-types (LHS) and the common tumors in each ecotype, when combining 
CIBERSORTx consensus clustering results from using all or the 32 significant cell-types (RHS). 

 

      
Figure R17: Relative average proportion of the major cell-types enriched in the ecotypes from all 

cell-types (LHS) and the common tumors in each ecotype, when combining CIBERSORTx 
consensus clustering results from using all or the 32 significant cell-types (RHS). 

 
 

Finally, we wanted to look at the effect on survival of removing poorly correlated 
cell-types. As expected from the substantial sample overlaps between ecotypes 
derived from all cell-types and just the significantly correlated ones, similar 
overall survival was seen for the “significant cell-types” ecotypes. In particular, 
patients in E3 (mostly basal-like tumours) and E7 (mostly Her2E tumours) again 
had the worst prognosis (see figure 6F for result using all cell-types) and Figure 
R18. When stratifying the Her2E patients in the immune depleted (E7) and 
immune rich (E4) ecotypes we again see increased overall survival in the 
patients with significantly increased immune cell abundance (log-rank p-
value=0.034) (Figure R18).  
 

        
Figure R18: Kaplan-Meier (KM) plot of all patients with common tumors in each of the ecotypes 

(LHS) and Her2E patients with tumors in ecotypes E4 and E7 (RHS). 
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Taken together these new analyses indicate that the ecotyping approach is 
robust and not unduly affected by the presence of poorer performing cell-types. 
However, we acknowledge that care should be taken when interpreting results 
specifically related to these cell-types. In particular, a more conservative 
approach, with those cell-types removed, should also be used for corroboration.   

 
Revisions: 

 
○ We have updated figure S11A to indicate the cell-types that have 

significant correlations between actual and CIBERSORTx predicted cell 
abundances.   

○ We have removed S11B, related to per-sample correlations, as we focus 
specifically on the accuracy of the cell-type correlations which we think 
are more informative for interpreting our findings.  

○ We have added panels S11C-H to reflect the ecotyping results when 
using only the significantly correlated cell-types. 

○ We have added Table S10 showing the tumour overlap between the 
ecotypes when using all cell-types or only the significantly correlated cell-
types. 

○ The manuscript text has been updated (page 21, line 26; page 22, lines 
1-4; page 23, lines 10-14) to reflect these figures and table additions. 

○ To be conservative in our interpretation of the cellular composition of the 
ecotypes, we have removed specific reference in the text to any cell-types 
that have insignificant deconvolution performance (i.e., Memory B-cells 
(page 22, line 21) and S1009 monocytes (page 23, line 5). 

 
 
2.7 Application of scSubtype to deconvolute METABRIC is an interesting use case for 
the signatures and provides some additional insights into classification of breast 
tumors. Curtis et al (PMID: 22522925) describe 10 molecular subtypes of breast 
cancer. The authors should comment on the relationship of their ecosystem signatures 
to the previously published subtypes. 
 

Response: To assess the relationship between our tumour ecotypes and the int-
clusters a similar approach to assessing the PAM50 subtype relationship, shown 
in figure 6D, was used. There is not a unique association between ecotypes and 
the int-clusters, however some interesting relationships can be seen (Figure 
R19). 
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Figure R19: Relative proportion of the METABRIC integrative cluster annotations of the tumors 

in each ecotype (ecotypes generated using CIBERSORTx across all cell-types). 
 
 

E3, which is enriched for basal-like tumours and cycling cells, has a high 
proportion of cancers from int-cluster 10, also associated with basal-like 
tumours and similarly poor 5-year survival; E7 has a high proportion of cancers 
from int-cluster 5, which is defined by ERBB2 amplification and enrichment of 
the HER2E tumours. This is the worst prognosis group in both the METABRIC 
and our ecotype analysis; E2 is the best prognosis ecotype, consisting of mostly 
normal-like and LumA tumours. This associates with both intCluster 3 (mostly 
LumA) and the ER+ patients in int-cluster 4 (mostly normal-like and LumA). This 
has some similarity to the METABRIC paper, where the best prognosis is for int-
cluster 3 patients, however, our approach was able to additionally group these 
two good prognosis genomic clusters together.  
 
Finally, ecotype E4 doesn’t have a clear association with either a specific int-
cluster or PAM50 subtype, suggesting that our cell deconvolution based 
approach has identified a mixed subtype tumour group that is not easily resolved 
by bulk genomic studies, reflected by the role of the stromal and immune cells in 
defining this ecotype. In conclusion,  these results suggest that ecotypes are not 
a simple surrogate for molecular subtypes and genomic subtypes. 
 
Revisions: We agree that this is an important point and will be of wider interest 
to the community. We have added a new figure panel to show the association 
between ecotypes and METABRIC int-clusters (figure S11K) and supporting text 
to the manuscript (page 23, lines 16-26). 
 

Missing details and/or stats in several places, for example: 
2.8 • Fig 2D (lines 197-199): No indication of whether the differences across subtypes 
are significant 

 
Response: We thank the reviewer for noting this lack of statistics. To resolve 
this we have used the Wilcox test to estimate the significance of the differences 
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between the proliferation and differentiation scores, shown in figure 2D, for each 
of the 4 scSubtypes. This showed that all pairwise comparisons were significant 
(<0.001).   
Revisions: We have clarified this in the legend of figure 2.  

 
2.9 • Supp Fig 5: No stats to support the comparisons of GM expression across 
scSubtypes 
 

Response: We thank the reviewer for noting this lack of supporting statistics. To 
resolve this we have estimated the significance of the differences between the 
scSubtype scores of cells assigned to each of the gene-modules (fig S5F). We 
have approached this in 2 ways: (i) A Kruskal-Wallis test was performed to 
calculate the significance between any of the four scSubtype score groups in 
each of the gene-module groups; (ii) Wilcox tests were used to identify which 
scSubtype had significantly increased scSubtype scores in the cells assigned to 
each gene-module. Four (one-sided) Wilcox tests were performed within each 
gene-module grouping, to compare the scSubtype scores of each scSubtype to 
the rest of the scSubtype scores. P-values were adjusted for multiple testing. 

 
Revisions: We have updated figure S5F, and the associated figure legend, to 
reflect these statistical tests. 
 

2.10 • The authors claim that tumors in E3 were associated with poor overall survival, 
consistent with known poor prognosis of Basal-like and highly proliferative tumors (line 
515-517), however this does not appear to be supported by data.  
   

Response: We thank the reviewer for the opportunity to clarify this point. Our 
intention is to show that ecotype E3, which predominantly consists of basal-like 
tumours and is enriched for Basal_SC and cycling cells, has a poor prognosis as 
expected from other studies. Although this is not the ecotype with the worst 20-
year overall survival, these patients do have a particularly poor 5-year prognosis, 
similar to METABRIC int-cluster 10.  

 
Revision: To clarify and support this we have added a specific reference to 
figure 6F (page 23, line 3) and updated the text (page 23, line 3) to clarify that 
this is specifically related to poor 5-year survival.  

 
 
Other comments 
2.11 Introduction mentions data indicating CD8 infiltrations correlate with outcome but 
fail to mention impact on myeloid subsets also in correlating with outcome, or the 
significant body of literature identifying myeloid subsets as significant regulators of T 
cell functionality 
‘parenchyma cells’ in introduction should be defined for the reader. Based on text later 
in results, this is an odd definition as infiltrating immune cells would also be considered 
as “parenchymal”. Terminology here is not standard and confusing. Do the uthors 
instead mean to refer to mesenchymal lineage cells? 
 

Response: We acknowledge the reviewers comment on our citation of myeloid 
literature in our introduction. We agree that the role of myeloid cells in the clinical 
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outcome of breast cancer and regulation of anti-tumour immunity is established 
and should be included. We also agree with the reviewers comment that our use 
of ‘parenchymal cells’ may be confusing, and does not fit with standard 
terminology. We are indeed referring to cells of the mesenchymal lineage, 
including fibroblasts, perivascular cells and endothelial cells, which we agree 
would be more appropriate terminology.  
  
Revisions: We have now incorporated several key myeloid related studies in 
our introduction of the text page 5 lines 21-23 in our revised manuscript. We 
have also replaced all instances of ‘parenchymal’ with ‘mesenchymal’ in the text 
and figures of our revised manuscript. 
     

 
 
2.12 CD68 was used to identify a myeloid cluster in Fig 1. CD68 only identifies a subset 
of myeloid cells, predominantly monocytes and macrophages, not DCs, eosinophils, 
basophils, neutrophils or mast cells. This should be clarified for the reader. In Fig 3, 
immune cells are subsetted with deeper resolution, but again, myeloid subsetting is for 
monocytes, macrophages, and DCs only. Were eosinophils, basophils, mast cells not 
identified? Were they absent? Clarification on this topic is needed. Is their absence a 
result of bulk scRNAseq without any CD45 enrichment where read depth was limited by 
paucity of these subsets? Should be discussed. How are subsets identified concordant 
(or not) with published FACs studies of breast cancer? 
 

Response: Regarding our myeloid cell classifications, the expression of CD68 
in Figure 1B is used for visualisation purposes only, and that a single marker is 
not used for the cell classification. We rather applied two levels of cell type 
classification using gene signatures and a cluster grouping approach to ensure 
that all cells were subsequently examined through reclustering analysis at higher 
resolutions. The first was applying the Garnett method18 using published cell 
type signatures. Here, myeloid related signatures including gene sets for 
monocytes, macrophages and DCs were extracted from the XCell database19 
and included for Garnett classification. Secondly, we utilised Garnett’s ‘cluster 
extension’ approach where all neighbouring cells that are clustered together are 
classified as the majority call within that cluster, including ‘unknown’ cells. This 
conservative approach ensures that every unclassified ‘unknown’ cell that 
shares similar transcriptional profiles are annotated and further examined by 
reclustering. 
 
In response to the missing cell types mentioned by the referee (including 
eosinophils, basophils and mast cells), We acknowledge their presence in breast 
cancers, previously described by Ruffell et al. 20. However, these cell types were 
not detected in our study. This is likely due to (i) relative rarity of these cells and 
(ii) loss due to tissue dissociation or capture bias. In a study by Azizi, Pe’er and 
colleagues (2018)14, no eosinophils or basophils are described, while only very 
small numbers of mast cells are identified. These findings are consistent with 
previous IHC studies that report no tumor infiltrating eosinophils in breast 
cancers 21. Furthermore, mast cells have been associated with low tumor grade 
and estrogen positivity21. Considering that less than half of our patient tumor 
cohort are estrogen positive and predominantly consists of high grade tumors, it 
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is not unexpected that mast cells were not detected without prior immune 
enrichment. Similarly, previous FACS studies suggest have shown that 
basophils make up less than 5% of CD45+ cells in treatment naive breast 
cancers20, suggesting targeted enrichment strategies are required to study them 
by scRNA-Seq.  
 
Revisions: We acknowledge these caveats of our immune dataset, which we 
have discussed in the text of the revised manuscript (page 13, line 25; page 14, 
line 1; page 24, lines 12-14). 
 

2.13 The authors identified 6 macrophage clusters. Do any of these identify the 
macrophage-signature that predicts clinical outcome (in Metabric) reported by Pollard 
(PMID 30930117) via RNAseq from FACs sorted macrophages? 
 

Response: We thank the reviewer for the suggested literature regarding tumor-
associated macrophages (TAM). The TAM RNA signature reported by Pollard22 
correlates to some degree with all macrophages, with Macrophage clusters MAC 
: CXCL10, MAC : SIGLEC1 and MAAC : EGR1 associating most highly. The 
distinct high expression of CCL8 found within MAC : CXCL10 cluster strongly 
suggests the most likely candidate for the CCL8 TAM phenotype identified in 
Pollard22. 

 
 

 
Figure R20. Enrichment of the TAM gene signature from Cassetta et al. (2019) across myeloid clusters, 

as estimated using ModuleScore function in seurat v3. A paired t-test was performed for cell types of 
interest. P-values denoted by asterisks: *p < 0.05, p < 0.01, *p < 0.001 and ****p < 0.0001. Dashed red 

line marks median expression value of signature score. 
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Figure R21. Expression of selected TAM markers from Cassetta et al. (2019) across myeloid clusters. 

 
Revisions: We have included the Pollard Tumour-associated macrophage 
(TAM) signature22 and scRNA log-normalised expression value of CCL8 found in 
our myeloid dataset as a supplementary figure (Fig S7I). 
 

2.14 B cell cluster is identified in Fig 1, but not included in Fig 3. Why? What B cell 
state is represented in the cluster (Fig 1)? Any indication of plasma cells? B cell 
clusters are evaluated in Fig S6 but more details on why absent in Fig 3 are needed. 
 

Response: Compared to the T/ILC and myeloid data, the B cell data did not 
cluster to high resolution. This is likely an artefact of variable Ig gene expression 
confounding clustering and differential gene expression analysis, as noted in the 
original submission. This is a common issue with analysis of B cells using this 
technology. Nonetheless,we identified 2 major sub-clusters of memory and naive 
B cells. In the interest of space, the B cell data is reported in supplementary 
figure S6.  
Plasma-like cells were detected in multiple cases. As mature plasma cells are 
thought to primarily reside in the bone marrow, we have conservatively named 
all cells of this lineage ‘plasmablasts’ as seen in Fig 1 and Fig S6. Similar 
confounders, however at a greater intensity, afflict the clustering and DEG 
analysis of plasma cells due to their even greater proportion of immunoglobulin 
genes. 

 
2.15 Spatial transcriptomic data in Fig 5 – CAF-T cell neighborhoods were identified. 
What about myeloid-T cell considering association of LAM2 and T cells in (Fig 3, S10). 
Are these suppressive myeloid subsets by gene expression, e.g., hi IL-10, ROS, 
iNOS)? 
 

Response: To address whether myeloid subsets are suppressive, we first 
looked at the expression of the genes noted by the reviewer. The expression of 
IL-10 was mainly detected in the c10_Macrophage_1_EGR1 cluster, while both 
LAM clusters (c1_LAM1_FABP5 and c2_LAM2_APOE) showed very sparse 
expression. iNOS could not be detected by scRNA-Seq, while both markers 
were too sparsely detected across both single cell and spatial transcriptomics 
datasets, likely due to gene drop-out (data not shown).  
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To account for gene dropout, we instead scored signatures of immune 
suppression, separated by known ligand mediated versus secreted genes. We 
used IL10, TGFB1, IL4, IL13, IL37, IL33, IL35, IL12A, EBI3, IL27, IL23A for 
module scoring of secretable immune molecules and VSIR, CD276, CD274, 
PDCD1LG2, LGALS9, TNFRSF14, PVR, FASLG, TNFSF10, VTCN1, B7H4 
along with ectoenzymes  ENTPD1, NT5E, for surface bound molecule mediated 
suppressions. Signature score of inhibitory surface markers revealed a distinctly 
high expression of Macrophage 2 : CXCL10 cluster in comparison to all other 
macrophages. Expression of secreted immune suppressor genes was found to 
be not significant within the Macrophage clusters (Mac 1, Mac 2, Mac 3) 
however significant when compared across to LAM1/2 macrophages.  

 
 

 
Figure R22. Gene signature score of surface markers previously associated with suppression across 

myeloid clusters, as estimated using ModuleScore function in seurat v3. A paired t-test was performed 
for cell types of interest. P-values denoted by asterisks: *p < 0.05, p < 0.01, *p < 0.001 and ****p < 

0.0001. Dashed red line marks median expression value of signature score. 
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Figure R23. Gene signature score of secreted immune suppressive markers previously associated with 
suppression across myeloid clusters, as estimated using ModuleScore function in seurat v3. A paired t-

test was performed for cell types of interest. P-values denoted by asterisks: *p < 0.05, p < 0.01, *p < 
0.001 and ****p < 0.0001. Dashed red line marks median expression value of signature score. 

 
In light of this result, we examined our spatial transcriptomics data to reveal 
associations between T-cells and the Mac:CXCL10/c9 cluster in addition to the 
reported interaction of LAM2 cells with T cells (Fig 6F). Mac:CXCL10/c9 cells 
were mostly enriched in spots annotated as ‘invasive cancer + stroma + 
lymphocytes’ (Fig S10E). As seen in the plots of cell abundance over tissue 
spots (Figure R24) and the revised heatmap from Figure 5H of Pearson 
correlations in the revisions below, the Mac:CXCL10/c9 cluster showed 
consistent positive correlations with CD4+ and CD8+ T-cells across a majority of 
breast tumors, suggesting they are spatially localised to similar tumor regions. 
Interestingly, Mac:CXCL10/c9 cells also express the highest levels of CCL8, 
corresponding to the repressive TAM phenotype reported by Pollard et al. 
discussed in rebuttal point 2.13. Considering the expression of PD-L1 and PD-
L2 in Mac:CXCL10/c9 cells, as identified earlier by scRNA-Seq and CITE-Seq 
(Figure 3H), spatial proximity with T-cells suggests these immune niches have 
some functional relevance in regulating anti-tumor immunity. 
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Figure R24. Scaled deconvolution values for Macrophage CXCL10/c9, CD4+ and /CD8+ T-cells 

overlaid onto tissue spots as in Figure 5A, as estimated using Stereoscope. Representative 
tissue mostly enriched for DCIS (left) and invasive cancer (right) from TNBC case CID44971 is 

shown. 
 

Revisions: We have included these results related to the spatial associations 
between the macrophage CXCL10/c9 cluster and CD4/CD8 T-cells in Figure 5H 
(Figure R25). We have also placed a plot of the cell abundances (as above in 
Figure R24) over tissue spots in Figure 5K. These findings are now discussed in 
the text page 21 lines 9-15 in the revised manuscript.  

 
Figure R25. Extract from figure 5H of the revised manuscript below, where we have included the 
associations between Myeloid_c9_Macrophage_2_CXCL10 and CD4/CD8 T-cells across spatial 

datasets. Pearson correlations between deconvolution abundances, as estimated using 
stereoscope, as shown.  
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2.16 Methods for scSubtype are reasonable and leverage existing tools in Seurat 
package, however the description of how the methods were implemented is a bit 
confusing and should be written for readers not familiar with Seurat package functions. 
 

Revisions: We have updated this methods sections with greater detail 
explaining the seurat functions applied to scSubtype in the text (page 32, line 
23-25; page 33, lines 1-5) of the revised manuscript. 
  

2.17 In general, the figure legends are not very informative. Additional details about 
what is plotted would aid in interpretation. 

 
Revision: We have provided greater detail to all our figure legends of the 
revised manuscript. 
 

2.18 Suggest moving Supp Fig 5B to main to provide overview summary of molecular 
features in each gene module. 
 

Revisions: We have moved S5B to figure 2E. Re-numbered and re-arranged 
other panels in figure 2 to fit and amended accordingly in the text and figure 2 
and S5 legends. 
 
Reviewer #3: 

Remarks to the Author: 
Wu et al. have conducted single cell profiling of 26 primary breast tumours using RNA 
sequencing and CITE-sequencing. They map major cell types and lineage relationships 
among cancer cells and the TME. They explore inter and intra-tumoural heterogeneity 
with respect to the intrinsic subtypes of breast cancer and formulate a single cell 
subtype classifier. Using these data they also deconvolve bulk RNAseq data and 
classify tumours into ‘ecotypes’ based on their cell composition. In addition, they use 
the Visium 10x platform to conduct analysis of RNA expression with spatial resolution 
in a small subset of tumours. 
 
This is a well presented and timely report that does a reasonable job of viewing 
established breast cancer subtypes through a single cell lens. I judge the work to be of 
moderate novelty and impact; many of the observations are not as original as claimed.  
 
Points to be addressed: 
3.1 The novelty and significance of some of the findings are frequently over stated. 
There have been several single cell analyses of breast tumours. What amounts to 
‘comprehensive’ is also highly subjective. The language should be moderated to 
acknowledge efforts that have gone before.  

 
Response: We acknowledge that our use of the term ‘comprehensive’ is 
subjective. It was used to convey the strengths of our study in providing an in 
depth and integrated analysis of the neoplastic, immune and stromal 
compartments of breast tumors, whereas previous studies have mostly focused 
on profiling these cell types in isolation. With regards to the previous breast 
cancer single-cell based publications, we have tried to include reference to 
studies that we are aware of in the introduction and at other relevant points. 
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However, if the reviewer has a specific study in mind that we may have missed 
we would welcome the opportunity to include this.  
 
Revisions: We have moderated our language to avoid the use of 
‘comprehensive’ in the text of the revised manuscript (page 4, line 4; page 6, line 
19; page 7, line 3; page 24, line 4; page 24, line 26). 

   
3.2 Established cell signatures were used to annotate cell clusters. A limitation of cell 
signatures is that they are typically prototypes and do not account for the variability in 
expression profiles that may arise in a dynamic environment like a tumour. How well 
did cell signatures match clusters? How did the authors deal with poorly concordant 
cluster signatures? 
 

Response: The referee raises a valid concern regarding the use of established 
cell signatures to annotate our single-cell clusters, which raises an interesting 
point regarding the distinction between cell types and cell states. While we 
acknowledge that these prototypical signatures are derived from other tissues 
and technologies, we would like to reiterate that these were only applied to 
classify our major cell lineages. We used a carefully curated list of established 
signatures from databases and the primary literature to ensure that all cell types 
in our scRNA-Seq dataset were covered. We subsequently examined each 
major cell type in great detail to annotate our finer cell subsets using unbiased 
reclustering methods, independent analysis, and correlations with extensive 
literature and expertise in breast cancer, immune and stromal biology.  
 
For the annotation of major cell lineages, we also applied a conservative 
approach to deal with cell types whose expression profiles may vary in the 
dynamic tumour microenvironment. All cells that first pass our quality control 
parameters and cell filtering methods (Emptydrops) are run through the cell 
annotation method Garnett, which classifies poorly concordant cells as 
‘unknown’. Here we used Garnett’s cluster extension approach, which 
reclassifies these ‘unknown’ cells in each cluster to the majority cell type call 
within that cluster. For example, ‘unknown’ cells within a cluster that 
predominantly contains myeloid cells may have expression profiles that slightly 
deviate from prototypical signatures however, these unknown cells are 
reclassified as myeloid cells and are further examined in subsequent analyses. 
In this example, more detailed myeloid annotations are subsequently defined by 
examining the expression of established monocyte, macrophage and DC 
markers, cell surface molecules by CITE-Seq (Figure 3H) and enrichment of 
more refined signatures from the literature (Figure 3F). In another example of 
the mesenchymal cells, prototypical fibroblast signatures were first applied to 
classify cells with the major CAF lineage annotation. We then reanalysed CAFs 
using an independent pseudotime method to define all the dynamic CAF states 
present in breast tumors (Figure 4C), and further correlated them to established 
CAF signatures from the literature (Figure S9E-F).   

 
As requested by the reviewer, we have also scored these prototypical signatures 
in our single cell dataset to show how well they matched clusters (figure below). 
This was performed using the AUCell method, which is independent of our cell 
classification method Garnett. Here we see a specific enrichment of each 
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signature in their respective major cell annotation groups, for example, Myeloid 
signatures enriched in the Myeloid cluster, suggesting that they are highly 
suitable for cell type classification in breast cancers. This highlights that these 
prototypical signatures broadly reflect major lineage cell types rather than their 
dynamic cell states in a tumour. 

 

  
Figure R26. Signature scores for the gene lists used for the classification of major cell lineages using 

Garnett. Gene lists were extracted from the XCell database and the Lim et al. study. Scores were 
computed using AUCell, which is an independent method to Garnett. For each cell type, signature scores 

are shown as featureplots in UMAP space (left), as in Figure 1A, and as violin plots (right).    
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3.3 The single cell subtyping classifier is a nice addition. However, need it be so 
complex? After all the key criteria are whether a cell expresses hormone receptors, 
proliferation markers, HER2 and basal cytokeratins. I would like to see how a much 
simpler classifier performs in these data, for example one using as few as three genes 
(see Haibe-Kains et al JNCI 2012). 
 

Response: We thank the reviewer for their comment regarding the complexity of 
our single cell subtyping method. While studies by Haibe-Kains et al. (2012) 
have suggested that a three gene model can be used for an adequate 
classification of the clinical subtypes of breast cancers in bulk analysis, these 
studies did not fully explore its clinical relevance. Further discussion on this 
specific matter can be found in a detailed rebuttal23, which suggested that larger 
gene panels provide significantly greater prognostic information. For instance, 
larger gene panels such as that used in PAM50 can provide significantly greater 
prognostic information, predict response to chemotherapy, and provide a greater 
understanding of breast cancer diversity compared to the three gene model. The 
latter point is particularly important as our study aimed to understand the 
phenotypic diversity of breast cancers at single cell resolution. Furthermore, 
classification using fewer genes can not maintain the same concordance for 
subtype classification, particularly for Luminal B and Her2E tumors23.  
 
We would also like to reiterate that our method is not overly complex in nature. 
For cell classification, the average expression of the four subtypes signatures 
are first computed, then every neoplastic cell is classified by the highest of the 
four signature scores. This is simpler than some  previous classifiers. 

 
Lastly, due to the inherent sparsity of current scRNA-Seq technologies, models 
applying a small number of gene parameters to the single-cell space, such as 
the three gene model, may be technically challenging. When we assessed the 
PAM50 genes in single cell space, we observed that for each gene, an average 
of 80% of all the neoplastic cells had zero values (Table R3). One important 
example was that ~37.8% of all luminal cells, and ~68.7% of all neoplastic cells, 
had 0 reads for the estrogen receptor gene ESR1. The sparsity of PAM50 was 
our main rationale for the need to derive new signatures for intrinsic molecular 
subtyping that are compatible with the unique features of single-cell data.  
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Table R3. Sparsity of PAM50 genes in scRNA-Seq data. For each PAM50 gene, the percentage of 

neoplastic cells with zero reads are shown.  
 
3.4 Several tumours are shown to contain HER2 cells that do not belong to the HER2 
subtype. One HER2 tumour (4066) is identified as having almost half of its cells as non-
HER2. This could be of major clinical significance in the use of targeted therapy. Can 
these cells be identified in situ using IHC and/or FISH? If not, how should they be 
interpreted?  
 

Response: The reviewer is correct in stating that “HER2 cells'' could be found in 
several tumors that do not belong to the HER2 subtype (Fig 2B) however, we 
would like to clarify that our findings are referring to the presence of HER2-
Enriched (HER2E) cells by intrinsic subtype (scSubtype) in clinically HER2-
negative (cHER2-) tumors. These are two distinct classifications based on 
molecular intrinsic subtype (HER2E) or clinical pathology guided by Her2 
IHC/amplification status (cHER2). The HER2E subtype is known to have 
significant clinical heterogeneity, and is composed of both cHER2+ or cHER2– 
tumors24, and also those that are ER+ and ER–. The presence of HER2E cells in 
cHER2- tumors indicates that these cells have transcriptional similarities to the 
HER2-Enriched subtype tumors; this does not necessarily mean these cells are 
cHER2+ as we know that 20-30% of HER2E tumors are not cHER2+. 
 
Similarly, cHER2+ tumours can contain cells with transcriptomes more closely 
related to the LumA, LumB or Basal intrinsic subtypes than to HER2E. The 
particular case that the reviewer has highlighted (CID4066) is a cHER2+/ER+ 
breast cancer (70% 3+ ER, 100% HER2-ISH AMPLIFIED 3+; Table S1). Our 
findings that this tumor contains a mixture of non HER2E cells from the LumA 
and LumB intrinsic subtypes (Fig 2B) highlights the power of single cell and 
scSubtype for identifying intra-tumor heterogeneity, and it is quite possible this 
tumor might showed a less than robust response to trastuzumab due to this 
mixed molecular nature. This intriguing finding cannot be corroborated here and 
will be the focus of future studies. We hope that our explanation of these distinct 
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HER2 definitions have clarified the reviewer’s request for the use of IHC and/or 
FISH to identify the “non-HER2” cells in this cHER2+ tumor.  
 
Revision: We have clarified the definition of molecular and clinical HER2 
subtypes in the introduction of the text page 5, lines 10-11. 

 
3.5 In this report, as in many others, HER2 positive breast cancer is treated as a single 
subtype. But this does not reflect the clinical reality. Hormone receptor expression 
stratifies HER2 positive disease into two groups that differ in every meaningful way - 
prognosis, treatment, patterns of relapse. It would be interesting to know how this 
distinction impacted the cellular ecosystem of HER2 positive tumours here. 
 

Response: We thank the reviewer for raising these important points regarding 
the challenges in defining and treating HER2+ breast cancers. We acknowledge 
that these tumours can have significant heterogeneity in both ERBB2 and ER 
signalling. Due to low numbers of HER2+ tumours in this study (2 x 
HER2+/ER+, 3 x HER2+/ER-) we weren’t confident in the power to robustly 
analyse specific cellular differences between these tumour types. We look 
forward to exploring this in detail as more cellular datasets of breast cancer are 
generated by the community. 

 
However, we are able to address this question in our deconvolution analysis. 
Specifically, we extracted all 247 tumours classified as HER2+ from the 
METABRIC cohort and stratified them according to their ER status. This resulted 
in 139 HER2+/ER- and 108 HER2+/ER+ tumours. First we carried out 
unsupervised hierarchical clustering on the CIBERSORTx deconvolution results 
to identify patterns of difference in cell-type composition between the 2 (Figure 
R27). This clearly highlights the separation between luminal cell-types, and 
Her2_SC and Basal_SC cell-types, which are significantly enriched in the 
HER2+/ER+ and HER2+/ER- tumours, respectively. In addition, a number of T-
cells & ILC cell-types are significantly enriched in the HER2+/ER- tumours 
(CD4+ IL7R, NKT, CD8+ LAG3, CD4 Tfh). 
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 Figure R27: Heatmap of scaled CIBERSORTx cell-type abundances in all HER2+ tumours in 

METABRIC, stratified on ER status.  
 

In addition, as we specifically note a survival advantage of Her2E patients in 
ecotype E4 compared to E7, we looked into the HER2 and ER status of these 
tumours (Figure R28). 
 

 
Figure R28: Proportion of Her2E METABRIC tumours assigned to ecotypes E4 and E7, stratified 

by both their HER2 and ER status.   
 

Clearly there is an enrichment for HER2+/ER- tumours in E7 (which we showed 
to have worse prognosis) and HER2+/ER+ in E4 (which we showed to have 
better prognosis). This suggests that ER status may be impacting and 
confounding the survival analysis and that we can not with reasonable certainty 
state whether this survival advantage is related to the predicted cellular 
composition, the ER status, or a combination of the 2.  

 
Revisions: Again we thank the reviewer for raising these important points 
regarding the heterogeneity of HER2+ breast cancers. In the interests of space, 
we have not included the analysis of the HER2+/ER+ vs HER2+/ER- cellular 
compositions in the manuscript, but would be willing to incorporate if the 
reviewer and editor consider it an important addition. In light of ER status 
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possibly confounding the survival analysis of the Her2E patients assigned to 
ecotypes E4 and E7 we have decided to take a conservative approach and 
remove these findings from the manuscript. In summary, we have removed 
Figure 6I and related text (page 23, line 8).  

 
3.6 I typically use the term ‘parenchyma’ or ‘parenchymal’ to refer to the body of a 
tissue, and not specifically referring to stromal/endothelial cells as the authors seem to. 
I suggest reconsidering this. 
 

Response: We thank the reviewer for their suggestion. We agree that our use of 
‘parenchymal cells’ may be confusing. We believe ‘mesenchymal’ better fits with 
the standard terminology of stromal/endothelial cells. 
  
Revisions: We have replaced the use of ‘‘parenchymal’ with ‘mesenchymal’ in 
all instances of the text and figures of our revised manuscript.  

 
3.7 With respect to ‘ecotypes’: how useful were the true single cell data in disease 
stratification? If the authors use prototypical gene signatures (of the TME and/or 
epithelial cells), deconvolve and call subtypes again, is there a difference in outcome 
prediction? How well do the subtypes compare to ecotypes and PAM50? 
 

Response: We agree with the reviewer that this is an interesting question. 
However, the high resolution to which we have defined our taxonomy of breast 
cancer cells and the novelty of our dataset means that many of our cell-types do 
not have suitable prototypic gene signatures available from breast cancers. In 
addition, we have used cell-type deconvolution methods (CIBERSORTx and 
DWLS) that are specifically designed to work with annotated single-cell data. 
Unfortunately, a consequence of this is that we are not able to directly compare 
the performance of specific prototypic signatures using this approach. 

 
3.8 Pseudotime analyses are used to interpret stromal and endothelial cell profiles. 
Analyses of this sort should be conducted cautiously because they will always return 
some sort of answer. What leads the authors to believe that these cell types do in fact 
differentiate in this manner? Other forms of differentiation, from mesenchymal stem 
cells for example, are possible. 
 

Response: We agree with the reviewer that caution should always be taken 
from single-cell pseudotime analyses. We would like to reiterate that analysis 
using conventional clustering methods including seurat v3 revealed very similar 
structures for each of our mesenchymal cell types (indicated by the UMAPs with 
pseudotime states overlaid in Fig. S10C of original manuscript). In addition, our 
interpretation of these results are drawn from a strong body of literature 
surrounding the markers expressed by each mesenchymal state, as well as 
several in vitro studies in other tissue or disease settings. We do acknowledge 
that this body of work should be better highlighted and clarified in the text.  
 
Our conclusions that these stromal cells differentiate in this manner are drawn 
from the expression of established mesenchymal stem/stromal cell (MSC) 
markers in early pseudotime states. For example, early CAF state s1 expressed 
canonical MSC markers including ALDH1A125,26, KLF427, CD3425,28 and LEPR29. 
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These markers are expressed by a variety of normal tissue and bone marrow 
stem cells and have been shown to play important roles in self renewal and 
regulating cell differentiation. The expression of these markers all decrease as 
CAFs transition towards later states s5, suggesting that the earlier states 
resemble more of a progenitor like state. In contrast, the expression of 
established markers of differentiated myofibroblasts, including ACTA2 (aSMA), 
are increased in later CAF states s530. Differentiated myofibroblasts are further 
known to synthesise extracellular matrix components and remodelling 
enzymes31. To this regard, we find collagens (including COL1A1, COL1A2 and 
COL12A1) and ECM remodelling proteases (including MMP11 and MMP14) to 
be highly expressed by later CAF states s5. As we have reported in our study, 
these CAF states show similarities to CAF subsets described in pancreas 
cancer32,33. These studies have show that iCAFs can be induced towards 
myCAF-like phenotypes in vitro upon distinct tumor mono-, co- and trans-well 
culture conditions32,33, thus suggesting that the CAF states described in our 
study likely differentiate in a similar manner. These studies also show the 
plasticity of CAF differentiation, suggesting that the CAF states described here 
may also be interconvertible.  
 
Similarly for perivascular cells, early state s1 also expressed canonical MSC 
markers34 including CD4435, high PDGFRB (CD140b)36 and THY1 (CD90)37. 
Later perivascular state s3 had higher expression of several cytoskeletal 
components such as MYH11, MYLK, TAGLN, ACTA2, CNN1, ACT2G, which 
have been similarly described by in-vitro studies generating smooth muscle cells 
from MSCs38,39.  
 
In contrast, states of endothelial cells (ECs) did not share markers of MSCs but 
rather showed similarities to distinct physiological stalk and tip-like ECs. For 
instance, EC state s1 were enriched for canonical markers associated with stalk 
cells such as ACKR1, SELE and SELP40, while states s2 and s3 were enriched 
for canonical tip cell markers such as DLL441,42. Angiogenesis is known to be a 
dynamic process between stalk and tip cells, which is regulated by hypoxia, 
VEGF and Notch signalling43. Upon stimulation, stalk cells transition towards tip 
cells which display migratory behavior, whereas stalk cells proliferate to support 
sprout elongation and vessel formation. These states are thought to be dynamic 
and interchangeable44, suggesting that the states described in our study can 
likely differentiate bi-directionally.  
 
Lastly, we acknowledge the reviewers' statement that differentiation from other 
more primitive progenitor cells are possible, such as from mesenchymal stem 
cells. Although this is a very interesting question, mesenchymal stem cells were 
not detected in our dataset, likely from their rare abundance or are poorly 
captured using the current methodology.       
 
Revisions: We have incorporated several studies further supporting the 
directionality of CAF, PVL and endothelial differentiation in our revised 
manuscript. Furthermore, we have included caveats of this analysis, stating that 
mesenchymal states may not necessarily differentiate in this manner, are likely 
interconvertible, and may arise from other progenitor cells like mesenchymal 
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stem cells. These revisions can be found in the text in page 18 lines 4-6 and 
page 27 lines 3-9 of the revised manuscript.   
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Decision Letter, first revision: 
 
 22nd Feb 2021 
 
 
Dear Alex, 
 
Our thanks to you and your co-authors for your patience during the prolonged review of your revised 
manuscript. 
 
Your Article, "An integrated multi-omic cellular atlas of human breast cancers" has now been seen by 
2 referees; as I've previously informed you, the final reviewer was unable to submit a report due to 
extenuating circumstances and we concluded that there was sufficient support to make a decision at 
this point. 
 
You will see from their comments below that while they find your work has substantially improved in 
revision and both referees are now supportive of publication, there are still a small number of 
important points remaining. We would like to consider your response to these concerns in the form of 
a revised manuscript before we make a final decision on publication. 
 
In brief, reviewer #1 suggests including some of the additional figures presented in your rebuttal 
letter in the revised article; and ensuring that the spatial transcriptomic data from the Andersson et al. 
manuscript is available at publication. 
 
Reviewer #3 has two more substantial comments: the first, suggesting that the question of HER2 
clinical/intrinsic subtype discordance could be more thoroughly investigated using your dataset; and 
the deconvolution could be repeated using "conventional" methods. 
 
In our editorial view, we think that all of these points should be addressed before publication; we think 
that the clear guidance provided means that any further proposed work is not unduly onerous. We 
also note that reviewer #3 does not outright request additional in-depth analysis of HER2 status 
discordance (saying, "in any case", that further explanation is "warranted"), but we agree with their 
suggestion that clear conclusions could likely be drawn from your rich dataset. 
 
To guide the scope of the revisions, the editors discuss the referee reports in detail within the team, 
including with the chief editor, with a view to identifying key priorities that should be addressed in 
revision and sometimes overruling referee requests that are deemed beyond the scope of the current 
study. We hope that you will find the prioritized set of referee points to be useful when revising your 
study. Please do not hesitate to get in touch if you would like to discuss these issues further. 
 
We therefore invite you to revise your manuscript taking into account all reviewer and editor 
comments. Please highlight all changes in the manuscript text file. At this stage we will need you to 
upload a copy of the manuscript in MS Word .docx or similar editable format. 
 
We are committed to providing a fair and constructive peer-review process. Do not hesitate to contact 
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us if there are specific requests from the reviewers that you believe are technically impossible or 
unlikely to yield a meaningful outcome. 
 
When revising your manuscript: 
 
*1) Include a “Response to referees” document detailing, point-by-point, how you addressed each 
referee comment. If no action was taken to address a point, you must provide a compelling argument. 
This response will be sent back to the referees along with the revised manuscript. 
 
*2) If you have not done so already please begin to revise your manuscript so that it conforms to our 
Article format instructions, available 
<a href="http://www.nature.com/ng/authors/article_types/index.html">here</a>. 
Refer also to any guidelines provided in this letter. 
 
*3) Include a revised version of any required Reporting Summary: 
https://www.nature.com/documents/nr-reporting-summary.pdf 
It will be available to referees (and, potentially, statisticians) to aid in their evaluation if the 
manuscript goes back for peer review. 
A revised checklist is essential for re-review of the paper. 
 
Please be aware of our <a href="https://www.nature.com/nature-research/editorial-policies/image-
integrity">guidelines on digital image standards.</a> 
 
Please use the link below to submit your revised manuscript and related files: 
 
[REDACTED] 
 
<strong>Note:</strong> This URL links to your confidential home page and associated information 
about manuscripts you may have submitted, or that you are reviewing for us. If you wish to forward 
this email to co-authors, please delete the link to your homepage. 
 
We hope to receive your revised manuscript within four to eight weeks. If you cannot send it within 
this time, please let us know. 
 
Please do not hesitate to contact me if you have any questions or would like to discuss these revisions 
further. 
 
Nature Genetics is committed to improving transparency in authorship. As part of our efforts in this 
direction, we are now requesting that all authors identified as ‘corresponding author’ on published 
papers create and link their Open Researcher and Contributor Identifier (ORCID) with their account on 
the Manuscript Tracking System (MTS), prior to acceptance. ORCID helps the scientific community 
achieve unambiguous attribution of all scholarly contributions. You can create and link your ORCID 
from the home page of the MTS by clicking on ‘Modify my Springer Nature account’. For more 
information please visit please visit <a 
href="http://www.springernature.com/orcid">www.springernature.com/orcid</a>. 
 
We look forward to seeing the revised manuscript and thank you for the opportunity to review your 
work. 
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Sincerely, 
 
Michael Fletcher, PhD 
Associate Editor, Nature Genetics 
 
ORCID: 0000-0003-1589-7087 
 
 
 
Reviewers' Comments: 
 
Reviewer #1: 
Remarks to the Author: 
The authors have capably addressed all of our concerns related to statistical considerations, sample 
representation in the figures, as well as performing additional validations. 
 
The authors provide important additional analyses in the rebuttal but some of these are not included 
in the actual manuscript. For example, Figure R1 is not included in the revision for “in the interests of 
space”. We recommend that this figure in particular be included in the publication though as it does 
add to an understanding of the dataset. 
 
With respect to the public release of ST datasets discussed on page 13 of the rebuttal, the authors 
expect simultaneous publication of the two manuscripts (ref. 7, Andersson et al.). We suggest 
ensuring that the data is available upon publication, since ST is a central aspect of this study. 
 
 
 
 
Reviewer #3: 
Remarks to the Author: 
The authors have adequately addressed most of my concerns. My congratulations to them on this 
substantial advance in our understanding of cellular heterogeneity in breast cancer. 
 
Two points are outstanding: 
 
3.4 I understand that the authors are distinguishing between the HER2 intrinsic subtype and clinical 
HER2 positivity. The significance of the HER2 intrinsic subtype, where discordance with the clinical 
assay is found, remains unclear. The authors explain that these differences arise owing to 
‘transcriptional similarities’. This is rather ambiguous, and may leave some readers scratching their 
heads. The single cell data that the authors have generated gives them an opportunity to determine 
whether intratumoural cellular heterogeneity may explain discordance between clinical and intrinsic 
subtype designations. In any case, a more extensive explanation is warranted as the significance of 
HER2E in HER2 negative tumours remains unclear. 
 
3.7 I expressed my point poorly. My question is: if the authors were to use a conventional 
deconvolution method (based on a reference prototypical gene signature matrix) such as xCell to 
deconvolve bulk data, and then call ecotypes based on these scores, what would the resulting tumour 
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subtypes (ecotypes) look like? How would they compare to the tumour subtypes called based on the 
authors’ scRNAseq data? And would their prognostic impact be lower, comparable or greater? 
 

Author Rebuttal, first revision: 
 
  



Wu et al. 
Detailed responses and revisions 
 
POINT BY POINT RESPONSE TO REVIEWERS: 
 
Reviewer #1: 
Remarks to the Author: 
The authors have capably addressed all of our concerns related to statistical 
considerations, sample representation in the figures, as well as performing 
additional validations. 
 

Response: We thank the reviewer for their supportive comments. 
 
1.1. The authors provide important additional analyses in the rebuttal but 
some of these are not included in the actual manuscript. For example, Figure 
R1 is not included in the revision for “in the interests of space”. We 
recommend that this figure in particular be included in the publication though 
as it does add to an understanding of the dataset. 
 

Response: We agree with the reviewer and have included this figure as 
supplementary figure S5B in the paper.  
 
Revision: We have added this figure as fig S5B and re-numbered other 
panels in this figure accordingly. We have edited the revised manuscript 
on page 10, lines 24-26 and also the legend text of supplementary 
figure 5.   

 
1.2. With respect to the public release of ST datasets discussed on page 13 of 
the rebuttal, the authors expect simultaneous publication of the two 
manuscripts (ref. 7, Andersson et al.). We suggest ensuring that the data is 
available upon publication, since ST is a central aspect of this study. 
 

Response: We agree with the reviewer that all spatial transcriptomics 
data should be made available upon publication. All relevant ST data 
used in our study from the Andersson et al. manuscript has since been 
deposited into the Zenodo public data repository (DOI: 
10.5281/zenodo.3957257). 



Revision: We have added these details into the Data Availability 
section of our revised manuscript on page 42 line 25, page 43 lines 1-2. 

 
Reviewer #3: 
Remarks to the Author: 
The authors have adequately addressed most of my concerns. My 
congratulations to them on this substantial advance in our understanding of 
cellular heterogeneity in breast cancer. 
 

Response: We thank the reviewer for their supportive comments. 
 
Two points are outstanding: 
3.4 I understand that the authors are distinguishing between the HER2 
intrinsic subtype and clinical HER2 positivity. The significance of the HER2 
intrinsic subtype, where discordance with the clinical assay is found, remains 
unclear. The authors explain that these differences arise owing to 
‘transcriptional similarities’. This is rather ambiguous, and may leave some 
readers scratching their heads. The single cell data that the authors have 
generated gives them an opportunity to determine whether intratumoural 
cellular heterogeneity may explain discordance between clinical and intrinsic 
subtype designations. In any case, a more extensive explanation is warranted 
as the significance of HER2E in HER2 negative tumours remains unclear.  
 

Response: We agree with the reviewer that the relationship between 
HER2 clinical and intrinsic subtypes is an interesting question, and this 
topic has been extensively addressed using bulk tumor profiling (see 
Prat et al.1 and Schettini et al.2). We also agree that insights into 
intratumoural cellular heterogeneity using scRNAseq may help to 
resolve the differences seen when comparing IHC status versus multi-
gene gene expression subtype. However, the present study was 
designed to comprehensively map the cellular landscape of breast 
cancer across many cell types and all clinical subtypes, so this is not an 
appropriate cohort in which to  answer this specific question concerning 
a minority clinical subtype. Our study includes 3 clinically Her2+/ER- 
and 1 Her2+/ER+ case. Similarly, when we select non-HER2+ cases in 
which there are at least 100 HER2E_SC cells, we identify 1 ER+ case 
and 3 TNBC cases. Therefore we respectfully suggest that the 



reviewer’s question would be best addressed by a focused study of 
neoplastic heterogeneity across a substantial number of HER2+ cases.  
To perform detailed comparative analyses of single cell agreement or 
discordances here would not be robust and likely subject to overfitting.  

 
3.7 I expressed my point poorly. My question is: if the authors were to use a 
conventional deconvolution method (based on a reference prototypical gene 
signature matrix) such as xCell to deconvolve bulk data, and then call 
ecotypes based on these scores, what would the resulting tumour subtypes 
(ecotypes) look like? How would they compare to the tumour subtypes called 
based on the authors’ scRNAseq data? And would their prognostic impact be 
lower, comparable or greater? 
 

Response: We thank the reviewer for clarifying their question and their 
interest in our tumour ecotyping approach. As requested we have used 
xCell and its associated suite of 64 cell-type signatures to estimate the 
enrichment of cell-type abundance in the METABRIC cohorts (Figure 
R1). To assess the performance of the approach, we first identified the 
most enriched cell-types across all ~2000 breast cancers (Figure R1). 
Although epithelial cells were highly enriched, as expected, the most 
highly enriched cell-type was MPP (Multi-Potent Progenitors). This is 
surprising as it is not a cell-type that, to our knowledge, is known to be 
present in breast cancers. Additionally, Chondrocytes and Keratinocytes 
were also within the top 10 cell types enriched. The predicted high 
abundance of these cell types immediately highlight the limitations of 
biological interpretation, in a breast cancer specific context, based on 
the cell-type signatures derived from diverse tissue and disease 
contexts in the xCell dataset.   

 



 
Figure R1: Boxplots showing the distributions of xCell identified cell-
types, across all METABRIC samples, ordered by the median 
enrichment score. 
 
Regardless, we proceeded to generate tumour ecotypes using our 
consensus clustering approach. This resulted in three ecotype clusters. 
To allow a direct comparison between the xCell-derived ecotypes and 
those using our detailed breast cancer cell taxonomy, we set the 
number of ecotype clusters to be 9 (Figure R2). 

  



 
Figure R2: Heatmap showing the pattern of cell-type enrichment across 
the 9 ecotypes generated with xCell on the METABRIC patient cohort.  

 
There were some similarities between the tumour ecotypes generated 
from the two approaches, for example: (i) a poor-prognosis ecotype, 
consisting predominantly of basal-like tumours with a low immune-score 
(E5, in figures R2 and R3). This most closely corresponds (62% 
overlap) to ecotype E3 in figure 6 of our manuscript; and (ii) a good 
prognosis ecotype, consisting mostly of LumA and normal-like tumours 
(E3, in figures R2 and R3). This most closely corresponds (54% 
overlap) to ecotype E2 in figure 6 of our manuscript.  

 
Figure R3: Survival analysis of xCell derived ecotypes from the 
METABRIC cohort. 



However, significant limitations of the xCell method were also apparent:  
● It was not able to identify the poor prognosis Her2E group of 

patients that was identified as ecotype E7 when using our single-
cell derived cell-types. 

● The ecotyping results using prototypical signatures are 
biologically difficult to interpret. For example, the xCell E5 
ecotype, is defined by cell-types including sebucytes and 
keratinocytes (figure R2), both specialised cells found in the skin 
but not the breast. In contrast, our corresponding brca-signature 
derived ecotype (E3), is defined by the presence of: Basal_SC, 
Luminal-progenitor and cycling cells, which are all hallmarks of 
basal-like breast cancers, indicating that the method is performing 
well.   

● Finally, the ecotype clustering appears to be heavily influenced by 
batch effects associated with each cohort.  For example, xCell 
derived ecotypes E4 and E9 almost exclusively consist of tumours 
from the METABRIC discovery and validation cohorts, 
respectively (Figure R2). We consider this to be a significant 
limitation that will markedly limit the ability to carry out robust, 
integrated, meta-analyses of tumour ecotypes across datasets. 
Importantly, our method using CIBERSORTx and our BrCa single-
cell data does not appear to significantly suffer from this 
phenomenon (see figure 6 of our manuscript). 

 
For these reasons we conclude that our approach, driven by our novel 
disease-specific cellular signatures and using deconvolution methods 
specifically developed for working with single-cell datasets, are more 
robust than those that utilise a broader set of gene-signatures such as 
xCell.  
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