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Supplementary Note 

Materials and Methods 

Tissue dissociation 

Samples collected in this study (Supplementary Table 1) were analyzed from fresh surgical 

resections and cryopreserved tissue as previously described1. Tumors were mechanically 

and enzymatically dissociated using Human Tumor Dissociation Kit (Miltenyi Biotec), 

following the manufacturer’s protocol. For cryopreserved tissue, tumor tissues were thawed 

and washed twice with RPMI 1640 prior to dissociation. Following incubation at 37oC for 30 

to 60 min, the sample was resuspended in RPMI 1640 and filtered through MACS® 

SmartStrainers (70 µM; Miltenyi Biotec). The resulting single cell suspension was 

centrifuged at 300 × g for 5 min. For fresh tissue processing, red blood cells were lysed with 

Lysing Buffer (Becton Dickinson) for 5 min and the resulting suspension was centrifuged at 

300 × g for 5 min. Where viability was < 80%, viability enrichment was performed using the 

EasySep Dead Cell Removal (Annexin V) Kit (StemCell Technologies) as per 

manufacturer's protocol. Dissociated cells were resuspended in a final solution of PBS with 

10% fetal calf serum (FCS) solution prior to loading on the 10X Chromium platform.  

 

Data processing, cell cluster annotation and data integration  

Raw bcl files were demultiplexed and mapped to the reference genome GRCh38 using the 

Cell Ranger Single Cell v2.0 software (10X Genomics). For individual samples, the 

EmptyDrops method from the DropletUtils package (v1.2.2)2 was applied to filter the raw 

unique molecular identifiers (UMIs) count matrix for real barcodes from ambient background 

RNA cells. An additional cutoff was applied, filtering for cells with a gene and UMI count 

greater than 200 and 250, respectively. All cells with a mitochondrial UMI count percentage 
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greater than 20% were removed. We used the Seurat v3.0.0 method3 in R (v3.5.0) for data 

normalisation, dimensionality reduction and clustering using default parameters. Cell 

clusters were annotated using the Garnett method4 (v0.1.4) using the default recommended 

parameters, with a classifier derived from an array of cell signatures for breast epithelial 

subsets from Lim et al. (2009)5, and immune and stromal cell types from the XCell 

database6, including T-cells, B-cells, plasmablasts, monocyte/macrophages, endothelial, 

fibroblast and perivascular cell signatures.  

Data integration was performed using Seurat v3.0.0 using default parameters3. A total of 

2000 features for anchoring (FindIntegrationAnchors step) and 30 dimensions for alignment 

(IntegrateData step) were used. For reclustering immune and mesenchymal lineages, a total 

of 5000 features were used for anchoring (FindIntegrationAnchors step), with a total of 30, 

20, and 10 Principal Components were used for clustering T-cells, Myeloid cells and B-cells, 

respectively. The default resolution of 0.8 was used (FindNeighbors and FindClusters step). 

For clustering without batch correction steps, we merged all individual dataset together 

(merge function) performed clustering steps (RunPCA, FindNeighbors and FindClusters 

steps) using the “RNA” assay with a total of 100 principal components.   

Identifying neoplastic from normal breast cancer epithelial cells 

CNV signal for individual cells was estimated using the inferCNV method with a 100 gene 

sliding window. Genes with a mean count of less than 0.1 across all cells were filtered out 

prior to analysis, and signal was denoised using a dynamic threshold of 1.3 standard 

deviations from the mean. Immune and endothelial cells were used to define the reference 

cell inferred copy-number profiles. Epithelial cells were used for the observations. Epithelial 

cells were classified into normal (non-neoplastic), neoplastic or unassigned using a similar 

method to that previously described by Neftel et al.7. Briefly, inferred changes at each 

genomic loci were scaled (between -1 and +1) and the mean of the squares of these values 

were used to define a genomic instability score for each cell. In each individual tumor, the 
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top 5% of cells with the highest genomic instability scores were used to create an average 

CNV profile. Each cell was then correlated to this profile. Cells were plotted with respect to 

both their genomic instability and correlation scores. Partitioning around medoids (PAM) 

clustering was performed using the 'pamk' function in the R package 'cluster' (v2.0.7-1) to 

choose the optimum value for k (between 2-4) using silhouette scores, and the 'pam' function 

to apply the clustering. Thresholds defining normal and neoplastic cells were set at 2 cluster 

standard deviations to the left and 1.5 standard deviations below the first cancer cluster 

means. For tumors where PAM could not define more than 1 cluster, the thresholds were 

set at 1 standard deviation to the left and 1.25 standard deviations below the cluster means. 

This method was used to identify 27,506 neoplastic and 6084 normal cells in all tumors, the 

remaining 3208 cells were classed as unassigned (Extended Data Fig. 1g and 

Supplementary Fig. 1). Only tumours with at least 200 epithelial cells were used for this 

neoplastic cell classification step. 

 

Calling PAM50 on pseudo-bulks and matching bulk RNA-Seq 

We constructed “pseudo-bulk” expression profiles for each tumor, where all the reads from 

all cells of a given tumor were added together, and then mapped as one sample. The 

resulting pseudo-bulk matrix thus constructed was named “Allcells-Pseudobulk” and was 

subsequently processed similarly to any bulk RNA-Seq sample (i.e. upper quartile 

normalized-log transformed) for calling molecular subtypes using the PAM50 method8. An 

important consideration made before PAM50 subtyping is to adjust a new sample set 

relative to the PAM50 training set according to their ER and HER2 status as detailed by 

Zhao et al.9. Thus, after ER/HER2 group-based adjustments, and then applying the 

PAM50 centroid predictor to the pseudo-bulk data, the methodology identified 7 of 20 

Basal-like (CID3963, CID4465, CID4495, CID44971, CID4513, CID4515, CID4523), 4 of 
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20 HER2E (CID3921, CID4066, CID44991, CID45171), 5 of 20 LumA (CID3941, CID4067, 

CID4290A, CID4463, CID4530N), 3 of 20 LumB (CID3948, CID4461, CID4535) and 1 of 

20 as Normal-like (CID4471). 

We performed whole-transcriptome RNA-Seq using Ribosomal Depletion on 18 matching 

tumor samples from our single-cell dataset. RNA was extracted from diagnostic FFPE 

blocks using the High Pure RNA Paraffin Kit (Roche #03 270 289 001). The Sequence 

alignment was done using Salmon10. We then called PAM50 on each bulk tumor using 

Zhao et al.9 normalization and then the PAM50 centroid predictor (Supplementary Table 

3). 

 

Calling intrinsic subtype on scRNA-Seq using scSubtype 

To design and validate a new subtyping tool specific for scRNA-Seq data, we first divided 

our tumor samples into training and testing sets. The training dataset was defined by 

identifying tumors with unambiguous molecular subtypes. Here, we identified robust 

training set samples using two subtyping approaches: (i) PAM50 subtyping of the Allcells-

Pseudobulk datasets (described above); and (ii) hierarchical clustering of the Allcells-

Pseudobulk data with the 1,100 tumors in the TCGA breast cancer RNA-Seq dataset using 

~2000 genes from an intrinsic breast cancer genelist8. We first identified tumors that 

shared the same “concordant” subtype from both Allcells-Pseudobulk PAM50 calls and 

TCGA hierarchical clustering based subtype classifications (Supplementary Table 3). Next, 

since our methodology aimed to subtype cancer cells, we removed any tumors with <150 

cancer cells. Finally, we did not include cells from the two metaplastic samples (CID4513 

and CID4523) in the training data because this is a histological subtype not used in the 

original PAM50 training set. Using this approach, we identified 10 tumor samples in the 

training dataset: HER2E (CID3921, CID44991, CID45171), Basal-like (CID4495, 
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CID44971, CID4515), LumA (CID4290, CID4530) and LumB (CID3948, CID4535). Only 

tumor cells with greater than 500 UMIs were used for training and test datasets in 

scSubtype (total of 24,889 cells).  

Within each training set subtype, we utilized the cancer cells from each tumor sample and 

performed pairwise single cell integrations and differential gene expression calculations. 

The integration was carried out in a “within group” pairwise fashion using the 

FindIntegrationAnchors and IntegrateData functions in the Seurat v3.0.0 package3. Briefly, 

the first step identifies anchors between pairs of cells from each dataset using mutual 

nearest neighbors. The second step integrates the datasets together based on a distance 

based weights matrix constructed from the anchor pairs. Differentially expressed genes 

were calculated between each pair using a Wilcoxon Rank Sum test by the FindAllMarkers 

function within Seurat v3. As the number of cancer cells per tumor sample were highly 

variable, this strategy prevented a bias of identifying genes for a training group from a 

sample with the highest number of cells. The following pairs were analyzed: HER2E 

(CID3921-CID44991, CID44991-CID45171, CID45171-CID3921), Basal-like (CID4495-

CID44971, CID44971-CID4515, CID4515-CID4495), LumA (CID4290-CID4530) and LumB 

(CID3948-CID4535). In this way we identified unique upregulated genes per sample, but 

also genes broadly highlighting cells within each respective training group or subtype. We 

removed any duplicate genes occurring between the 4 training groups, which yielded 4 

sets of genes composed of 89 genes defining Basal_SC, 102 genes defining HER2E_SC, 

46 genes defining LumA_SC and 65 genes defining LumB_SC, which we define as 

“scSubtype” gene signatures (Supplementary Table 4).  

To assign a subtype call to a cell we calculated the average (i.e. mean) read counts for 

each of the 4 signatures for each cell. The SC subtype with the highest signature score 

was then assigned to each cell. We utilized this method to subtype all 24,489 neoplastic 

cells, from both our training samples (n=10) and the remaining test (n=10) set samples.   
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Gene module analysis of neoplastic intra-tumor heterogeneity 

For each individual tumor, with more than 50 neoplastic cells, the neoplastic cells were 

clustered using Seurat v3.0.03 at five resolutions (0.4, 0.8, 1.2, 1.6, 2.0). MAST11 (v1.12.0) 

was then used to identify the top-200 differentially regulated genes in each cluster. Only 

gene-signatures containing greater than 5 genes and originating from clusters of more than 

5 cells were kept. In addition, redundancy was reduced by comparing all pairs of signatures 

within each sample and removing the pair with fewest genes from those pairs with a Jaccard 

index greater than 0.75. Across all tumors, a total of 574 gene-signatures of intra-tumor 

heterogeneity were identified.  

Consensus clustering (using spherical k-means, skmeans, implemented in the cola R 

package (v1.2.0): https://www.bioconductor.org/packages/release/bioc/html/cola.html) of 

the Jaccard similarities between these gene-signatures was used to identify 7 robust groups, 

or gene-modules. For each of these, a gene module was defined by taking the 200 genes 

that had the highest frequency of occurrence across clusters and individual tumors. These 

are defined as gene-modules GM1 to GM7. A gene-module signature was calculated for 

each cell using AUCell12 and each neoplastic cell was assigned to a module, using the 

maximum of the scaled AUCell gene-module signature scores. This resulted in 4,368, 3,288, 

2,951, 4,326, 3,931, 2,500, 3,125 cells assigned to GM1 to GM7, respectively. These are 

defined as gene-module based neoplastic cell states. Selected breast cancer related gene-

signatures13-16 were used for pathway enrichment in Extended Data Figure 2b. 

 

Differential gene expression, module scoring and gene ontology enrichment  

Differential gene expression was performed using the MAST method11 (v1.8.2) in Seurat 

(FindAllMarkers step) using default cutoff parameters. All DEGs from each cluster 

(Supplementary Table 9 and 10) were used as input into the ClusterProfiler package17 
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(v3.14.0) for gene ontology functional enrichment. All ontologies within the enrichGO 

databases were used with the human org.Hs.eg.db database. Results were clustered, 

scaled and visualised using the pheatmap package (v1.0.12) in R. Cytotoxic, TAM and 

Dysfunctional T-cell gene expression signatures were assigned using the 

AddModuleScore function in Seurat v3.0.03. The list of genes used for dysfunctional T-

cells were adopted from Li et al.18. The TAM gene list was adopted from Cassetta et al.19. 

The cytotoxic gene list consists of 12 genes which translate to effector cytotoxic proteins 

(GZMA, GZMB, GZMH, GZMK, GZMM, GNLY, PRF1 and FASLG) and well described 

cytotoxic T-cell activation markers (IFNG, TNF, IL2R and IL2).  

 

CITE-Seq antibody staining 

Samples were stained with 10X Chromium 3’ mRNA capture compatible TotalSeq-A 

antibodies (Biolegend, USA). Staining was performed as previously described by 

Stoeckius et. al20 with a few modifications listed below. A total of four cases from our 

scRNA-Seq cohort were analyzed, including one luminal (CID4040), one HER2 (CID383) 

and two TNBC (CID4515 and CID3956). A panel of 157 barcoded antibodies 

(Supplementary Table 11) were used, which recognised a range of cell surface lineage 

and activation markers, in addition to a large collection of co-stimulatory and co-inhibitory 

receptors and ligands21. Briefly, a maximum of 1 million cells per sample was resuspended 

in 120 ul of cell staining buffer (Biolegend, USA) with 5 ul of Fc receptor Block (TrueStain 

FcX, Bioelegend, USA) for 15 min. This was followed by a 30 min staining of the 

antibodies at 4°C. A concentration of 1 ug / 100 ul was used for all antibody markers used 

in this study. The cells were then washed 3 times with PBS containing 10% FCS media 

followed by centrifugation (300 x g for 5min at 4°C) and expungement of supernatant. The 

sample was then resuspended in PBS with 10% FCS for 10X Chromium capture. 
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Visium spatial transcriptomics data processing  

Reads were demultiplexed and mapped to the reference genome GRCh38 using the 

Space Ranger Software v1.0.0 (10X Genomics). Count matrices were loaded into the 

Seurat v3.2.0 (https://github.com/satijalab/seurat/tree/spatial) and STutility v0.1.0 

(https://github.com/jbergenstrahle/STUtility) R packages for all subsequent data filtering, 

normalisation, filtering, dimensional reduction and visualization. All spatial spots 

determined to be over tissue regions by Space Ranger were kept for subsequent analysis. 

Poor quality tissue locations were then filtered out based on a cutoff of 500 unique genes. 

Genes detected in more than 10 locations were also kept for analysis. Data normalisation 

was performed on independent tissue sections using the variance stabilizing 

transformation method implemented in the SCTransform function in Seurat. We applied 

non-negative matrix factorization (NMF) to the normalised expression matrix using the 

STutility package (nfactors = 20). NMF reduction was then used for clustering using Seurat 

with all 20 factors as input (RunUMAP, FindNeighbors and FindClusters functions). 

 

Spatial deconvolution using Stereoscope  

The Visium platform has not yet reached single cell resolution, but rather tends to host 

multiple cells at each capture location, potentially of different cell type identities. Thus, we 

performed deconvolution of spatial tissue locations using the method presented as 

Stereoscope22 (v0.2.0), a probabilistic model for estimating cell type proportions using 

annotated scRNA-Seq data as input. Stereoscope models the observed expression 

vectors (associated to each spatial location) as a mixture of transcripts originating from 

one or more cells of equally many or less types. By assuming that both single cell and 

spatial expression data is negative binomial distributed, parameters characterizing the 

different cell types can be learnt from the former and transferred to the latter. Inferring 
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proportion estimates for the spatial data, somewhat simplified, is thus equivalent to finding 

the combination of cell type parameters (estimated from the single cell data) that best 

explain the observed expression values. Implementation-wise, stochastic optimization 

using gradient descent to find the MAP estimates of the parameters is used.  

 

Upon deconvolving the spatial data, we matched spatial and single cell data with respect 

to cancer subtype. Meaning that for any spatial sample of a given subtype, only cells 

originating from tissue of the same subtype were provided as input into Stereoscope and 

used when inferring type parameters. We deconvolved cell types across three tiers of 

classification including the major, minor and subset lineages, still maintaining the 

separation between different cancer subtypes. In all of our analyses, we used 50000 

epochs during both steps (parameter inference and proportion estimation) of the analysis. 

Furthermore, the scRNA-Seq in each analysis was subsampled excluding those types with 

less than 25 members and using an upper bound of 500 cells per type. Finally, only the 

top 5000 highest expressed genes (in the single cell data) were used throughout the 

procedure. Both these approaches (of subsampling and top gene selection) were in line 

with the official documentation of Stereoscope. The batch size was set to 2,046 in both 

steps of the analysis. For the remaining set of parameters we used the default values. The 

results obtained when deconvolving the spatial data are proportion estimates of each type 

at every spatial location, represented using a [n_spots] x [n_types] matrix for every 

sample. The rows of this matrix always sum to one, due to the values representing 

proportions. 

 

Tumor ecotype analysis using deconvolution of bulk sequencing patient cohorts  

CIBERSORTx23 and DWLS24 were used to deconvolute predicted cell-fractions from a 

number of bulk transcript profiling datasets. To prevent confounding of cycling cell-types 
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we first assigned all neoplastic epithelial cells with a proliferation score > 0 as cycling and 

then combined these with “cycling” cell states from all other cell-types to generate a single 

“Cycling” cell-state. To generate cell-type signature matrices for each of the tiers of cell-

type annotation described in this study, we randomly subsampled 15% of cells from each 

level of annotation type.  

CIBERSORTx 

We then ran CIBERSORTx “cibersortx/fractions” to generate cell-type signature matrices 

using the following parameters: --single_cell TRUE --G.min 300 --G.max 500 --q.value 

0.01 --filter FALSE --k.max 999 --replicates 5 --sampling 0.5 --fraction 0.75. 

For cell-type deconvolution of bulk tumours we ran CIBERSORTx “cibersortx/fractions” to 

calculate the relative cell-type abundances in each tumour. S-mode batch correction was 

used for the METABRIC tumours.  

DWLS 

For deconvolution analysis using DWLS we used the functions in the 

“Deconvolution_functions.R” script obtained from https://github.com/dtsoucas/DWLS. Cell-

type signature matrices were generated using the buildSignatureMatrixMAST() function 

and then filtered to only contain genes that are present in both the bulk and single-cell 

derived signature matrices, using the trimData() function. Cell-type abundances were then 

calculated using the solveDampenedWLS() function. 

Bulk expression datasets 

Pseudo-bulk expression matrices were generated from the scRNA-Seq datasets in this 

study by summing the UMIs for each gene across all cells for each tumor. Normalised 

METABRIC expression matrices, clinical information and PAM50 subtype classifications 

were obtained from https://www.cbioportal.org/study/summary?id=brca_metabric.  

Tumour Ecotypes 
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Tumor ecotypes in the METABRIC cohort were identified using spherical k-means 

(skmeans) based consensus clustering (as implemented in the cola R package v1.2.0: 

https://www.bioconductor.org/packages/release/bioc/html/cola.html) of the predicted cell-

fraction from either CIBERSORTx or DWLS, in each bulk METABRIC patient tumor. When 

comparing ecotypes between methods (i.e., consensus clustering results from using cell-

abundances of all cell-types or just the 32 significantly significantly correlated cell-types 

from CIBERSORTx deconvolution and consensus clustering results from CIBERSORTx or 

DWLS cell-abundances) the number of tumour ecotypes was fixed as 9 and the tumour 

overlaps between all ecotype pairs was calculated (Supplementary Table 7 and 8). 

Common ecotypes were then identified by identifying the ecotype pairs with the largest 

average METABRIC tumour overlap.      

Survival Analysis 

Differences in survival between ecotypes were assessed using Kaplan-Meier analysis and 

log-rank test statistics, using the survival (v2.44-1.1) and survminer (v0.4.7) R packages. 
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Supplementary Figure 1. Identification of malignant epithelial cells using inferCNV 

a, InferCNV heatmaps showing all epithelial cells and their associated inferCNV based 

classification for all tumors. For each cell, the normal cell call, copy number alteration (CNA) 

values, number of unique molecular identifiers (UMIs) and genes per cell are plotted on the 

right. Normal cell calls were classified as either Normal (green), Unassigned (grey) or 

Neoplastic (pink). These classification are derived from the a genomic instability score, 

which is estimated by the inferred changes at each genomic loci, as determined by 

inferCNV. High UMI and gene metrics in normal cells importantly show that they are not a 

product of coverage or low sequencing depth.      

 




