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Referee #1 (Remarks to the Author): 

 

The paper shows an interesting analysis of the effects of anthropogenic climate change on snowpack 
and, consequently, runoff in boreal regions. In general, I found the approach novel, providing new 
important results that are worth publishing in Nature. The assessment of human influence on snow 
cover evolution is carried out by using an innovative approach that is based on a training of an 
empirical model. Overall, the analysis is welcomed. The paper is also well written. 

 

However, there are some issues affecting the reliability of presented results, thus requiring further 
consideration. A major issue is that the used observational data on snow water equivalent (SWE) is 
not really observational, but instead model predictions incorporating snow depth observations as 
model input. For example, the applied Canadian Meteorological Centre’s Daily Snow Depth Analysis 
uses synoptic snow depth observations from weather stations as input to a model that predicts 
snow accumulation and melt (Brown & Brasnett, 2010). The more complex reanalysis models, also 
used here, do basically the same. But when snow depth observations are assimilated to models, 
problematic issues include how well is the snow density evolution considered when assessing the 
magnitude of SWE. As an outcome the ensemble of model predictions used here as ‘observational’ 
data set representing the peak SWE (1 April) may include systematic errors that seriously disturb the 
reliability of regional trends, see e.g. (Pulliainen et al. 2020) that discusses the reliability of SWE 
trends among different snow products. To consider this issue the authors should investigate and 
compare their data with the available SWE information including available historical distributed SWE 
observation data sets made in snow courses across Eurasia and Canada (see e.g., NSDC data 
archives). This comparison would evidently make the uncertainty analyses of the paper more 
convincing. Currently, the methods part of the paper indicates (L.346) that the SNOTEL network in 
the Western U.S. is used for the validation of the SWE reconstruction. This is not sufficient for the 
hemispheric analysis as the single point snow pillow measurements of SWE in the SNOTEL network 
are limited to mountainous regions of the Western U.S. 

 

 

 



 

Detailed line comments: 

 

L.71-73: The possible change of bias with time in SWE products is an additional source of error that 
is not considered. 

 

L.83: References 25 and 26 only consider mountain regions (Western U.S. and European Alps). 

 

L.363: The SWE model used for reconstructing the historical April 1 SWE is simple, but robust and 
useful for the presented analysis. 

 

L.368-370: The sentence ignores the limitations, as the paper does not currently employ the in situ 
SWE observations distributed across the Northern Hemisphere. References included here (25, 26, 
59) only deal with regional analysis in some mountain regions (European Alps and Western U.S.) . 

 

L.383: Results of Fig. S4 indeed capture the interannual variability of SWE quite well at the SNOTEL 
sites of the Western U.S. for the period 2000-2020 (i.e., 21 samples for each site). However, 
apparently any conclusion on trends cannot be made (or they are not shown)? Same kind of analysis 
could be made across the hemispheric scale using in situ snow course data (requires some 
interpolation as observations are typically available on a monthly, bi-monthly, or weekly basis for a 
given snow course). 

 

L.421: SWE-T-P evidently refers to temperature and precipitation, text would be less confusing (in 
general) if the number pf abbreviations were reduced. Also e.g., abbreviation “NoACC” is somewhat 
problematic even though explained for the first time in L.99. 

 

L.431: Uncertainty in SWE data products is not adequately considered concerning the possible 
temporally changing bias of these products, see the general comment above. 

 

L.478: Since Eq. (6) is an implication of Eqs. (4) and (5) it could be expressed/clarified. 

 

L.498: It is unclear how the dSWE/dT curve is determined, as Eq. (7) is evidently providing a constant 
value for each basin? 

 



 

Figures 1 and 2: Obtained numbers for the major basins/rivers discharging to the Arctic Ocean would 
be interesting to see as well (even though they represent sparsely populated areas). 

 

Figure S8: Reader can be confused with the multitude of abbreviations, such as AMJJ. 

 

References: 
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Data, Version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center. 
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Pulliainen, J. et al. Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018. 
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Reviewed by Jouni Pulliainen 

 

Referee #2 (Remarks to the Author): 

 

This study, by Gottlieb and Mankin, uses an ensemble of snow products and climate models to 
investigate climate change impacts on basin-scale snowpack and runoff in the northern hemisphere. 
The authors focus on April 1 SWE. They conclude that warming has reduced snow in the more highly 
populated basins and that future warming will have a worsening effect on SWE and runoff losses. 

 

Overall, this study provides a nice dataset to investigate processes related to climate change. To me, 
it seems like an extension to the Mankin et al., 2015 paper (DOI 10.1088/1748-9326/10/11/114016) 
with similar conclusions. I like the attention to dataset uncertainties, but the manuscript tries to 
focus more on the runoff changes. 

 

The methodology is OK, but the author's argue that snowpack assessments are quite sensitive to the 
data products analyzed and show disagreement between the products. However, they choose to use 
an ensemble approach with these products. My question is: why should we believe that the 
ensemble approach is better? Any mean value will be driven by the datasets that are further from 



 

the truth (especially with only a handful of datasets). Furthermore, the largest RMSE values 
compared to SNOTEL (50% or greater, Fig. S4) end up being in the southwestern US in which much of 
the discussion is focused. Thus, I am not convinced that this ensemble is appropriately representing 
the analysis that the authors are attempting. 

 

Additionally, the authors reconstruct snowpack as a function of temperature and precip., with 
temperature driving much of the changes. However, a recent paper has shown that temperature 
thresholds alone give large errors in precipitation phase estimates for the northern hemisphere, thus 
adding uncertainty to some of the main points about precipitation phase near a melting point 
threshold. 

Reference: Jennings et al., 2018: https://www.nature.com/articles/s41467-018-03629-7 

 

I would like to emphasize that I like the general approach in this study and that these comments are 
meant to be constructive. However, some improvements based on my comments above/below are 
required for publication, in my opinion. 

 

Other minor comments: 

 

the term "boreal": the term boreal is used in the title and elsewhere, but I disagree with it's use. In 
the snow hydrology community, boreal areas are generally between 50 and 60 or 65 degrees 
latitude whereas the authors appear to use it as everything south of 60 degrees. 

 

line 31-33: if the data products are sensitive to the scale and analysis performed, what datasets may 
not be appropriate for the scale and analysis that was performed here? 

 

lines 40-42: These are also the basins with some of the highest RMSE. 

 

line 65: this statement "snowpacks across the Northern Hemisphere" is different than what the title 
implies. 

 

Line 70: Not sure that I am buying it with that many large RMSE values. 

 



 

line 151 (and elsewhere): please refrain from using terms like "very" as these are not well defined 
metrics (i.e., how cold is very cold?). 

 

line 199-200: this sentence is a bit distracting for the conclusions section, in my opinion. 

 

line 208-209: Please further expand on the quantifications of uncertainty sources. I gained little to 
nothing from the text about this and only a bit when looking at the figure, but nothing well 
quantified. 

 

line 216-225: this is all discussion and nothing that resembles a conclusion. Please move to an 
appropriate section of the article. 

 

Figures: Please change the projection. The current projection focuses on mid-latitudes and 
"squeezes" much of the northernmost basins. 

 

 

Referee #3 (Remarks to the Author): 

 

This study evaluates historical trends in basin-scale snowpack (SWE) and consequent snow-driven 
spring runoff over Northern Hemisphere during 1981-2020 using a statistical reconstruction 
approach. The authors argue that they have identified human-caused changes in SWE and 
consequent runoff (“attribution” in their definition) by comparing 40-year trends in the observation-
based SWE reconstructions (“historical”) with those in the counterfactual reconstructions without 
human influence (“NoACC”). 

 

I have focused on evaluating the attribution method as requested by the Editor. The attribution 
approach used in this paper has three steps: 

 

First, the authors construct a multiple linear regression model (Eq. 1) of reconstructing (or 
predicting) April 1 SWE at each basin using cold season (NDJFM) temperature (T) and precipitation 
(P). They train this regression model using observational datasets during 2001-2020, where 8 SWE, 4 
temperature (T), and 5 precipitation (P) datasets (including reanalyses and satellite measurements) 
are all combined to consider observational uncertainties, providing 160-member ensemble of 
observations and corresponding regression equations. 



 

Second, for each observational-based member, counterfactual SWE reconstructions are estimated 
by inserting adjusted T and P into the pre-defined regression model. Here, T and P values are 
adjusted by removing possible anthropogenic changes from the observations. The anthropogenic 
changes in T and P are obtained from differences between historical (ALL) and historicalnat (NAT) 
simulations of available CMIP6 multi-model simulations (86 ALL-NAT values available). 

 

Finally, the authors compare a distribution of ‘historical’ SWE trends (consisting of 160 observation-
based estimates) with that of ‘NoACC’ SWE trends (consisting of 13,760 estimates obtained from 160 
corresponding estimates × 86 CMIP6 ALL/NAT runs). To claim that “historical SWE trends are 
attributable to human causes”, the authors assess the significance of difference of the two SWE 
trend distributions using a Kolmogorov-Smirnov test (5% level) and also check the sign agreement of 
trend difference (ALL-NAT > 0 in more than 75% of 86 runs) if my understanding is correct. 

 

Applying this procedure to all snow-dependent river basins, the authors conclude that they can 
“confidently attribute changes in April 1 SWE to human causes in roughly 40 percent of the world’s 
major river basins, including the 4 most populous snow-dominated basins in Europe and 3 of the top 
4 in North America”. They employ a similar statistical approach (Eq. 4) to further estimate snowpack-
driven changes in spring runoff in the past and future conditions. 

 

I find this study interesting in that it comprehensively takes account of observational uncertainties 
through SWE-T-P data combinations at the river basin scales (step 1 above). However, with regard to 
its attribution analysis (steps 2 and 3 above), I do not think that this approach can provide a way to 
claim “robust attribution of human-forced changes”. Conventionally, attribution approaches 
quantify external forcing contributions to the ‘observed’ changes by either checking if the model-
simulated forced pattern is present in the ‘observations’ (typically based on regressions but also 
using similarity measures) or comparing the likelihoods of the ‘observed’ changes between real-
world and counterfactual conditions (similar to event attribution types of assessments). In contrast 
to the usual definition of attribution, this study evaluates human influences by comparing two 
estimates of reconstructed SWE trends, differences of which are largely determined by CMIP6-
simulated T and P changes (ALL-NAT), irrespective of the significance and sign of ‘observed’ trends. 
In particular, cold season mean T differences between ALL and NAT (using their 30-year means) will 
induce SWE differences almost linearly based on the statistical relation in Eq. (1). In this way, 
resulting SWE differences likely reflect model response patterns, not indicating that this pattern is 
present in the observations or contributes to the observed changes. Since no observational 
information is used in this trend comparisons, my interpretation of their ‘attribution’ results would 
be such that CMIP6-simulated T and P responses to anthropogenic forcing are larger than 
observational uncertainties in T and P over many river basins or similar. 

 

I have another concern about the stability of their statistical models. The statistical reconstruction 
method assumes that SWE dependence on T and P will not change with time but the validity of this 



assumption is not discussed. Statistical models are trained using recent SWE, T, and P datasets for 
2001-2020, from which regression coefficients (betas) are estimated. In this setting, SWE variations 
will be mainly associated with inter-annual variabilities in T and P during the short period. The 
authors, however, use the same betas to estimate observed SWE reconstructions for the early 
period for 1981-2000 as well as to estimate SWEs for much colder pre-industrial (for NoACC) and 
much warmer future conditions (+1 degree and even near the late 21st century). This extrapolation 
of statistical relation may induce large errors in SWE estimates. Same issue applies to spring runoff 
reconstructions in Eq. (4). 

The other issue related to attribution is about the datasets used. Since many observational datasets 
are based on estimates from reanalyses and satellite measurements rather than real observations, it 
looks difficult to attribute historical changes. Regarding climate model simulations, the authors do 
not evaluate model performances at all. Depending on locations and seasons, models can 
systematically overestimate or underestimate T and P climatology and their responses to 
anthropogenic forcing. In this respect, Table S2 indicates that a single model provides 50 members 
out of total 86 members, potentially influencing results depending on the model’s biases. 

Overall, while detailed and useful information on snowpack and associated runoff changes due to 
warming is provided at river basin scales, I do not agree that this study provides robust attribution 
results due to the limitation of the statistical reconstruction approach. 



We thank the Reviewers for their thoughtful and constructive feedback, and the Editor for 
the helpful synthesis.  

In response to the thoughtful comments from the Editor and Reviewers, we have made 
several important changes that greatly strengthen the methods and trustworthiness of the 
findings of the original submission of a detectable signal of human-caused warming on 
snowpack and snowmelt driven runoff. Briefly, these changes are as follows: 

1. We now include far more in situ observational data (2,961 stations across the Northern
Hemisphere versus 550 stations from only the Western U.S. in the original submission),
which is now folded into each step of the analysis.
2. We now employ an attribution at two spatial scales: hemispheric and river basin. The
former uses a more traditional model attribution approach, showing that the observed
pattern of SWE changes in both in situ observations and gridded products could not have
emerged from internal variability alone. The latter clarifies the spatial pattern of these
forced changes and their water availability implications.
3. We now use a machine learning approach (Random Forest algorithm) to reconstruct SWE
using all snow datasets, which we validate on the newly incorporated in situ data. Our revised
empirical model markedly increases the skill of our reconstruction (median R2 of >0.9 across
all products and basins, versus 0.6 in the original) and positions our basin-scale attribution
analysis.

This Response to the Reviewers file provides a complete documentation of the changes that 
have been made in response to each individual Reviewer comment. This may lead to some 
redundancies where our changes are relevant to multiple Reviewer comments, but our aim 
is for the Editor and Reviewer to see how each comment was addressed, independent of any 
others. 

Reviewer comments are shown in plain text. Author responses are shown in bold text. 
Quotations from the revised manuscript are shown in bold italics. Line numbers in the 
author responses refer to locations in the revised manuscript. 

********************************************** 

Referees' comments: 

Referee #1 (Remarks to the Author): 

Referees' comments: 

Author Rebuttals to Initial Comments:



Remarks to the Author: 

The paper shows an interesting analysis of the effects of anthropogenic climate change on 
snowpack and, consequently, runoff in boreal regions. In general, I found the approach 
novel, providing new important results that are worth publishing in Nature. The assessment 
of human influence on snow cover evolution is carried out by using an innovative approach 
that is based on a training of an empirical model. Overall, the analysis is welcomed. The 
paper is also well written. 

However, there are some issues affecting the reliability of presented results, thus requiring 
further consideration. A major issue is that the used observational data on snow water 
equivalent (SWE) is not really observational, but instead model predictions incorporating 
snow depth observations as model input. For example, the applied Canadian Meteorological 
Centre’s Daily Snow Depth Analysis uses synoptic snow depth observations from weather 
stations as input to a model that predicts snow accumulation and melt (Brown & Brasnett, 
2010). The more complex reanalysis models, also used here, do basically the same. But 
when snow depth observations are assimilated to models, problematic issues include how 
well is the snow density evolution considered when assessing the magnitude of SWE. As an 
outcome the ensemble of model predictions used here as ‘observational’ data set 
representing the peak SWE (1 April) may include systematic errors that seriously disturb the 
reliability of regional trends, see e.g. (Pulliainen et al. 2020) that discusses the reliability of 
SWE trends among different snow products. To consider this issue the authors should 
investigate and compare their data with the available SWE information including available 
historical distributed SWE observation data sets made in snow courses across Eurasia and 
Canada (see e.g., NSDC data archives). This comparison would evidently make the 
uncertainty analyses of the paper more convincing. Currently, the methods part of the paper 
indicates (L.346) that the SNOTEL network in the Western U.S. is used for the validation of 
the SWE reconstruction. This is not sufficient for the hemispheric analysis as the single 
point snow pillow measurements of SWE in the SNOTEL network are limited to 
mountainous regions of the Western U.S. 

We thank the Reviewer for their thoughtful engagement with our work and appreciate 
their emphasis on how more incorporation of in situ data from a wider range of regions 
and topographies would strengthen the results we present. In response to this comment, we 
have made several substantive changes to the data informing our reconstruction and 
attribution, which improves the analysis and strengthens our original conclusions.  

Briefly, we (1) include a wider array of in situ measurements, expanding the geographic 
scope and terrain diversity in our assessment; (2) we fold the in situ observations more fully 



into a new hemispheric attribution analysis and the empirical reconstructions, allowing us 
to use them to detect and attribute forced SWE changes; and (3) we perform a more 
thorough validation of our empirical reconstructions vis-a-vis the in situ observations, 
including a comparison of long-term trends and evaluation of potential trends in biases. 

(1) On the first, in addition to the data from the 550 SNOTEL sites used in the original
manuscript, we include in situ SWE measurements from 341 locations in Canada from the
Canadian historical Snow Water Equivalent (CanSWE) dataset (Vionnet et al., 2021), as
well as 2,119 locations across the Northern Hemisphere the recently-published NH-SWE
dataset. The latter makes use of more widely-available ground observations of snow depth
(SD) and a SD-to-SWE conversion model that uses a regional parameterization based on
climate variables to provide daily time series of SWE across the Northern Hemisphere
(Fontrodona-Bach et al., 2023). While we recognize that NH-SWE, by converting depth to
SWE, is a modeled product rather than a set of true instrumental measurements, the
authors are able to estimate SWE with a high level of skill (R2>0.9 for peak SWE for held-
out evaluation data).

(2) On the second, inclusion of these additional datasets gives us near-hemispheric coverage
(save Asia south of Russia, shown below in the revised Fig. 2a), with richer in situ
measurements across a wider range of climates and topographies. The better data coverage
now allows us to perform a new evaluation: in the revised manuscript we detect an
anthropogenic fingerprint on the spatial pattern of observed in situ trends at the
hemispheric scale using a climate model-based attribution technique (Padrón et al., 2020;
Grant et al., 2021; Gudmundsson, Seneviratne, and Zhang, 2017; Qian and Zhang, 2015).
Note that to perform this climate model-based attribution, we shift the quantity of interest
from April 1 SWE to average March SWE due to both the greater availability of monthly
SWE data from the climate models and the uneven sampling intervals of the expanded
observations. The revised Figure 2 presents these attribution results, allowing us to
confidently conclude that it is highly unlikely (p<0.01) that the observed pattern of March
SWE trends in these in situ measurements could have arisen from natural climate
variability alone. This is consistent with the results we find applying the same attribution
technique to gridded SWE products, and with our original results using the empirical
reconstructions.



Figure 2. Trend in March SWE from 1981-2020 in in situ observations (a), the ensemble mean of 5 long-

term gridded SWE products (b), and the multimodel mean of CMIP6 historical simulations with (c) and 

without (d) anthropogenic emissions. e, Spatial pattern correlation of 1981-2020 March SWE trends 

between the CMIP6 multimodel mean historical (red symbols) and historical-nat (blue symbols) 

simulations and each observational SWE product (see legend). The gray histogram indicates the empirical 

probability density function of spatial correlations between the historical trends and all possible 40-year 

trends from unforced pre-industrial control simulations (N=78,601). The red (orange) vertical dashed line 

indicates the 99th (95th) percentile of this empirical distribution. 



(3) On the third analytical change, our expanded set of in situ measurements provides a 
more thorough validation of our empirical reconstructions. Using these additional data, we 
find that our models show consistent skill across the Northern Hemisphere, and in both 
mountainous and non-mountainous terrain (shown below in the revised Fig. S6). 
 

Figure S6. R2 (a) and RMSE (b) of Random Forest model predictions of in situ SWE at 2,961 locations over 

the period 1981-2020. Insets show the distribution of skill across sites, with the red line and value indicating 

the median.  

 
 
 

○  
 
 
 



Detailed line comments: 

L.71-73: The possible change of bias with time in SWE products is an additional source of
error that is not considered.

We thank the Reviewer for pointing out this additional source of potential error; our 
evaluation below suggests that it is not driving our results. To evaluate the degree to which 
time-varying bias influences our results, we calculate the annual bias of our empirical 
reconstructions with respect to the trustworthy in situ observations. Then, for each in situ 
location, we evaluate whether there are any time trends in annual bias using the same 
Theil-Sen slope estimator and Mann-Kendall test used for estimate trends in the rest of the 
analysis. We find that “there are no systematic trends in time of the bias across our 
reconstructions relative to the in situ observations (shown below in revised Fig. S8), 
suggesting that the reconstruction models are capturing the real-world rate of change of 
snowpack with high fidelity” (ll. 544-546). 

Figure S8. Fraction of empirical reconstructions of in situ March SWE with statistically significant (Mann-

Kendall p<0.05) trends in bias relative to in situ observations. 

L.83: References 25 and 26 only consider mountain regions (Western U.S. and European
Alps).

Our expanded network of in situ observations includes both mountainous and non-
mountainous terrain, and we consider additional work evaluating trends in Northern 
Eurasian snowpack (Bulygina et al., 2011) when interpreting our findings. 

L.363: The SWE model used for reconstructing the historical April 1 SWE is simple, but
robust and useful for the presented analysis.



We thank the Reviewer for appreciating the value of our reduced-form modeling 
approach. 

L.368-370: The sentence ignores the limitations, as the paper does not currently employ the
in situ SWE observations distributed across the Northern Hemisphere. References included
here (25, 26, 59) only deal with regional analysis in some mountain regions (European Alps
and Western U.S.) .

As noted above, our expanded network of in situ observations includes both mountainous 
and non-mountainous terrain, and we consider additional work evaluating trends in 
Northern Eurasian snowpack (Bulygina et al., 2011) when interpreting our findings. The 
original sentence has also been removed in the revised manuscript. 

L.383: Results of Fig. S4 indeed capture the interannual variability of SWE quite well at the
SNOTEL sites of the Western U.S. for the period 2000-2020 (i.e., 21 samples for each site).
However, apparently any conclusion on trends cannot be made (or they are not shown)?
Same kind of analysis could be made across the hemispheric scale using in situ snow
course data (requires some interpolation as observations are typically available on a
monthly, bi-monthly, or weekly basis for a given snow course).

We thank the Reviewer for the suggestion. Our updated analysis presented in the revised 
Figure 2 (presented above) makes use of hemispheric trends over the longer period 1981-
2020 using in situ observations, and evaluates the consistency of those trends with 
anthropogenic forcing as derived from an ensemble of historical climate model simulations. 
Additionally, in response to this comment we evaluate the ability of our empirical models to 
reproduce the 1981-2020 trends at the in situ sites and find they can do so quite skillfully, 
with a pattern correlation of 0.72 between observed and reconstructed in situ trends 
(shown in the revised Fig. S7, reproduced below). 



 
Figure S7. Observed in situ (a) and reconstructed (b) 1981-2020 March SWE trends at 2,961 locations . c, 

Scatterplot of reconstructed versus observed trends, where each dot represents an in situ location. Points 

are colored by their density. Dashed line denotes perfect agreement between reconstructed and observed 

trends. Pearson’s correlation is shown in bottom right corner. 
 
L.421: SWE-T-P evidently refers to temperature and precipitation, text would be less 
confusing (in general) if the number pf abbreviations were reduced. Also e.g., abbreviation 
“NoACC” is somewhat problematic even though explained for the first time in L.99. 
 
We thank the Reviewer for helping us clarify our communication. In the revised 
manuscript, we spell out temperature and precipitation, and no longer use the “NoACC” 
shorthand, instead referring to these reconstructions as “counterfactuals” and using the 
phrase “forced effect” instead of “ACC effect”. 
  
L.431: Uncertainty in SWE data products is not adequately considered concerning the 
possible temporally changing bias of these products, see the general comment above. 
 
As noted in our response to detailed line comment 1 above, we now present an analysis of 
time-varying bias in our revised Fig. S8, where the vast majority of in situ locations have no 
time trends in the annual bias across our ensemble of reconstructions.  
 
L.478: Since Eq. (6) is an implication of Eqs. (4) and (5) it could be expressed/clarified. 
 
The compensatory precipitation analysis is no longer part of the revised manuscript. 
 



L.498: It is unclear how the dSWE/dT curve is determined, as Eq. (7) is evidently providing a
constant value for each basin?

In the revised analysis, we calculate the dSWE/dT curve separately for in situ observations, 
gridded observations, and climate models, in addition to our basin-scale reconstructions. 
We have also calculated it in a more straightforward manner simply by regressing March 
SWE on cold-season (November-March) average temperature across years at each 
location. We describe this in revised Methods section “Temperature sensitivity of 
snowpack”: 

“To better understand the drivers of the heterogeneous spatial response of SWE and its potential 

future changes with further warming, we evaluate the temperature sensitivity of March SWE 

across a gradient of climatological winter temperatures in in situ observations, gridded 

observations, our basin-scale reconstructions, and in climate models. The marginal effect of an 

additional degree of warming, ����
��

 or 1, is calculated as the regression coefficient of March

SWE on cold-season (November-March) temperature: 

����,� = ��,0 + ��,1��,�    (3) 

Where ����,� is March SWE in unit i (in situ station, grid cell, or river basin) in water year y 

and ��,� is average winter temperature in that same unit. We run this regression at each in situ 

location, for all 20 combinations of gridded SWE and temperature products, for all 12 climate 

models (using the HIST simulations), and for all 120 basin-scale reconstructions. We then 

calculate the average and standard deviation of all of the coefficients for a given type of data 

(in situ, gridded observations, climate models, basin-scale reconstructions) in a rolling 5-degree 

temperature window to produce the curves in Figure 4a. As such, the uncertainty estimate 

includes both parametric and data uncertainty.” (ll. 629-643) 

Figures 1 and 2: Obtained numbers for the major basins/rivers discharging to the Arctic 
Ocean would be interesting to see as well (even though they represent sparsely populated 
areas). 

We have calculated the average forced SWE change for these basins:  

“[…] enhanced them in the cold, high-latitude basins that drain into the Arctic Ocean by 2.5 ± 
1.8% per decade (Fig. 3e)” (ll. 180-181)  



We also report the SWE-driven runoff changes for these basins:  

“Snowpack in cold and sparsely-populated basins, meanwhile, is likely to be resilient to high 
levels of winter warming exceeding 5°C, such as that arising from Arctic amplification, and 
the coldest may see increased snowpacks and enhanced spring runoff into the Arctic Ocean of 
over 10% on average (Figs. 4b, S13h).” (ll. 266-269) 

Figure S8: Reader can be confused with the multitude of abbreviations, such as AMJJ. 

We thank the Reviewer for helping us clarify our communication. In the revised 
manuscript, we write out the months (e.g., April-July for AMJJ) and consistently refer to 
the period November-March as the “winter” and April-July as “spring”. Additionally, as 
mentioned above, we spell out temperature and precipitation, and no longer use the 
“NoACC” shorthand, instead referring to these reconstructions as “counterfactuals” and 
using the phrase “forced effect” instead of “ACC effect” (line # examples). 
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Referee #2 (Remarks to the Author): 

This study, by Gottlieb and Mankin, uses an ensemble of snow products and climate 
models to investigate climate change impacts on basin-scale snowpack and runoff in the 
northern hemisphere. The authors focus on April 1 SWE. They conclude that warming has 
reduced snow in the more highly populated basins and that future warming will have a 
worsening effect on SWE and runoff losses. 

Overall, this study provides a nice dataset to investigate processes related to climate 
change. To me, it seems like an extension to the Mankin et al., 2015 paper (DOI 
10.1088/1748-9326/10/11/114016) with similar conclusions. I like the attention to dataset 
uncertainties, but the manuscript tries to focus more on the runoff changes. 

The methodology is OK, but the author's argue that snowpack assessments are quite 
sensitive to the data products analyzed and show disagreement between the products. 
However, they choose to use an ensemble approach with these products. My question is: 
why should we believe that the ensemble approach is better? Any mean value will be driven 
by the datasets that are further from the truth (especially with only a handful of datasets). 



We thank the Reviewer for their thoughtful engagement with our work. We expand upon 
our motivation for the ensemble approach and why it is more defensible than using any one 
dataset alone.  
 
Briefly, we only have observational truth about snowpack at a limited number of locations 
in the Northern Hemisphere, which are not necessarily representative of snow states or 
trends at the hydrologically-relevant scales (like river basins) at which water resource 
management decisions are made. Because of the imperative to assess snow changes under 
warming coupled with the limitations of in situ data to do so, we need to contend with other 
products and their differences. Assessing the gridded products against the in situ data can 
provide some guidance about relative product skill but only in places for which the in situ 
data exist. As such, we must return to the representativeness issue noted above: we want to 
make claims about snow changes at hydrologically meaningful scales, but do not have 
ground-based observations to do so. And so, we adopt an approach that is common to the 
climate modeling community, which is to recognize the observational products as an 
“ensemble of opportunity” rather than an ensemble of thoughtful design. In this framing, 
each product, like each model, has some truth and some noise in it. Our hope is to find the 
shared elements of truth among the observational products by treating each data 
combination as an equally-valid representation of truth. In other work in which we have 
taken this approach (Gottlieb and Mankin, 2022), we were able to show that leveraging all 
available SWE datasets to forecast historical warm-season droughts was over 100% more 
skillful than forecasts using any single product. These results suggest that the ensemble 
approach is indeed effective at isolating a signal amidst the inter-product noise. Changes to 
the text that reflect this argument more fully can be seen in the Methods section: 
 
“Our ensemble approach is motivated by two main considerations. First, it is difficult to 
determine what represents “true” snowpack at hydrologically relevant scales. All methods of 
estimating spatially distributed snowpack (e.g., remote sensing or reanalysis) have their 
intrinsic limitations that result in high levels of disagreement on snow mass, its variability, 
and long-term trends (Mortimer et al., 2020; Gottlieb and Mankin, 2022), as we show in 
Figure 1. In situ measurements may represent truth at the locations at which they are 
collected, but are difficult to generalize, especially in complex terrain. As a result, using these 
point observations to adjudicate which gridded products (whose values represent averages over 
tens to tens of thousands of kilometers) lie closest to “truth” is challenging. Given the inability 
to know the true state of snowpack or rigorously rule out any of its various gridded estimates, 
we choose to consider these observational products as equally valid estimates of truth in which 
we can attempt to identify shared responses. Second, the ensemble approach allows us to 
capture the structural uncertainty in how SWE responds to changes in temperature and 
precipitation, which are themselves subject to data uncertainties (Fig. S9). Using all dataset 
combinations, we can sample and characterize uncertainty in SWE, temperature, and 



precipitation and their covariance with one another. Such an approach has been used to 
estimate forced changes in components of the Earth system in which both the dependent and 
independent variables of interest are themselves uncertain (Yao et al., 2023).” (ll. 513-529) 

Furthermore, the largest RMSE values compared to SNOTEL (50% or greater, Fig. S4) end up 
being in the southwestern US in which much of the discussion is focused. Thus, I am not 
convinced that this ensemble is appropriately representing the analysis that the authors are 
attempting. 

In response to this and other concerns about the skill of our ensemble reconstructions, we 
adopt a revised empirical approach to generating the reconstructions on which our 
conclusions are based. Our revised approach is far more skillful than that presented in our 
original submission and greatly strengthens many of the original conclusions of the work. 

Briefly, our revised method now uses a machine learning (Random Forest) model in place 
of the multiple regression, allowing for greater model flexibility. The Random Forest 
algorithm predicts March SWE using monthly-scale temperature and precipitation from 
November through March, versus seasonal averages in the original, and is trained on the 
full spatiotemporal panel of data (i.e., all grid cell-years), versus individually at each grid 
cell in the original. This results in greatly improved model skill relative to the original 
multivariate OLS model, both in reproducing the gridded SWE products (revised Fig. S3, 
S5) and in predicting out-of-sample in situ SWE (revised Fig. S6, S7), including in the 
Southwestern U.S. where we identify large changes. We reproduce those figures below to 
show the skill of the reconstructions in the revised manuscript.  



Figure S3. Basin-scale cross-validated R2 (a-e) and root-mean-square error (RMSE; f-j) for 5 gridded SWE 

data products over the period 1981-2020. Each metric shows the skill of the mean of all reconstructions 

for a single SWE product versus the observed values from that product. Insets show the distribution of skill 

across basins, with the red line and value indicating the median. See Methods for cross-validation 

procedure. 



Figure S5. Observed (a-f) and reconstructed (g-l) 1981-2020 March SWE trends for 5 gridded SWE data 

products and their mean. m-r, Scatterplot of reconstructed versus observed trends, where each dot 

represents a river basin. Dashed line denotes perfect reconstruction. Pearson’s correlation is shown in 

bottom right corner.



Figure S6. R2 (a) and RMSE (b) of Random Forest model predictions of in situ SWE at 2,961 locations over 

the period 1981-2020. Insets show the distribution of skill across sites, with the red line and value indicating 

the median. 



 
Figure S7. Observed in situ (a) and reconstructed (b) 1981-2020 March SWE trends at 2,961 locations . c, 

Scatterplot of reconstructed versus observed trends, where each dot represents an in situ location. Points 

are colored by their density. Dashed line denotes perfect agreement between reconstructed and observed 

trends. Pearson’s correlation is shown in bottom right corner. 

 
Additionally, the authors reconstruct snowpack as a function of temperature and precip., 
with temperature driving much of the changes. However, a recent paper has shown that 
temperature thresholds alone give large errors in precipitation phase estimates for the 
northern hemisphere, thus adding uncertainty to some of the main points about 
precipitation phase near a melting point threshold. 
Reference: Jennings et al., 2018: https://www.nature.com/articles/s41467-018-03629-7 
 
We now clarify in our Methods that we do not impose any temperature thresholds for rain-
snow partitioning or snowmelt in our empirical modeling:  
 
"Additionally, this empirical approach imposes no a priori assumptions about temperature 
thresholds for rain-snow partitioning or snowmelt, which can vary substantially in space and 
are themselves a contributor to uncertainty in modeled estimates of SWE (Kim et al., 2021; 
Jennings et al., 2018).” (ll. 497-499) 
 
Our discussion of thresholds in the original was intended to provide some physical and 
statistical intuition for the emergent nonlinearity in the temperature sensitivity of snow 
(revised Fig. 4a, original Fig. 3). We have edited this section to make the physical drivers of 
the generalizable nonlinear sensitivity of SWE to temperature more clear:  
 



"There are several notable features of these curves. First, is their scale- and data-invariance: 
the location of the inflection point in temperature sensitivity is consistent when it is estimated 
from point measurements, gridded data products, climate models, or our basin scale 
reconstructions. This consistency suggests that despite substantial measurement and modeling 
uncertainties, simple thermodynamics can explain much of snow’s historical and future 
response to warming. As a location’s climatological temperature warms towards the freezing 
point, the likelihood of subseasonal temperatures exceeding thresholds where precipitation is 
partitioned towards rain over snow or accumulated snowpack will melt increases 
exponentially. We note, however, that these thresholds themselves are not constant in space, 
owing to factors such as topography and distance from oceanic moisture sources (Jennings et 
al., 2018), which may account for some of the uncertainty in snow sensitivities at any one 
climatological temperature.” (ll. 220-229) 

I would like to emphasize that I like the general approach in this study and that these 
comments are meant to be constructive. However, some improvements based on my 
comments above/below are required for publication, in my opinion. 

Other minor comments: 

the term "boreal": the term boreal is used in the title and elsewhere, but I disagree with it's 
use. In the snow hydrology community, boreal areas are generally between 50 and 60 or 65 
degrees latitude whereas the authors appear to use it as everything south of 60 degrees. 

We no longer use the term “boreal” to refer to the entire Northern Hemisphere in either 
the title, which has been changed to “Attributing Northern Hemisphere snow loss and its 
consequences to human influence” or the text. 

line 31-33: if the data products are sensitive to the scale and analysis performed, what 
datasets may not be appropriate for the scale and analysis that was performed here? 

This sentence has been removed from the revised manuscript. 

lines 40-42: These are also the basins with some of the highest RMSE. 

Our revised Random Forest classifier reduces inter-basin heterogeneity in skill that 
prompted this comment—our reconstructions are now far more skillful in these populous 
basins (Figs. S3, S4, S6). 

line 65: this statement "snowpacks across the Northern Hemisphere" is different than what 
the title implies. 



This statement now reads:  

“Together, our results provide a thorough documentation of the historical and future effects 
of climate change on snow water storage at the hemispheric and river basin scales.” (ll. 64-65) 

Additionally, we now make the scale of the analysis being discussed throughout the 
manuscript more clear. 

Line 70: Not sure that I am buying it with that many large RMSE values. 

The Random Forest model used in the revision reduces inter-basin heterogeneity in skill 
that prompted this comment—our reconstructions are now far more skillful (Figs. S3, S4, 
S6). 

line 151 (and elsewhere): please refrain from using terms like "very" as these are not well 
defined metrics (i.e., how cold is very cold?). 

We have removed these and other ambiguous adverbs.  

line 199-200: this sentence is a bit distracting for the conclusions section, in my opinion. 

We have removed this sentence. 

line 208-209: Please further expand on the quantifications of uncertainty sources. I gained 
little to nothing from the text about this and only a bit when looking at the figure, but nothing 
well quantified. 

In response to this comment, we have both simplified the uncertainty quantification by 
focusing on fractional uncertainty (e.g. the relative proportion attributable to each source; 
Hawkins and Sutton, 2009; Lehner et al., 2020) to make it more easily interpretable, and 
integrated it into the text where appropriate. 

The Methods section “Uncertainty partitioning of forced SWE changes” details the 
fractional uncertainty quantification: 

“To quantify the magnitude of uncertainty introduced by each source, we calculate the 
standard deviation of forced SWE trends across a single dimension, holding all others at their 
mean. For instance, the uncertainty due to differences in model structure is given by the 
standard deviation of forced SWE trends across the 12 climate models (considering only the 
first realization from each), taking the mean across all SWE-temperature-precipitation dataset 
combinations. 



To isolate the uncertainty from internal variability in temperature and precipitation, we 
use 50 pairs of historical and historical-nat simulations from the MIROC6 model, which differ 
only in their initial conditions. We take the standard deviation of forced SWE trends for all 50 
realizations of forced changes in temperature and precipitation separately, taking the mean 
across all SWE, temperature, and precipitation data product combinations. 

Consistent with previous work in uncertainty partitioning (Hawkins and Sutton, 2009, 
2011; Lehner et al., 2020), we consider total uncertainty T in the forced SWE trend in basin b 
to be the sum of all four sources: 

�� = �� + ��� + �� + ��    (3) 

where S is the uncertainty from SWE observations, TP is the uncertainty from temperature 
and precipitation observations, M is the uncertainty from model structure, and I is the 
uncertainty from internal variability. To assess which sources are the largest contributor to 
uncertainty in each basin, we consider the fractional uncertainty of each (e.g. ��

��
 gives the 

proportion of uncertainty in basin b attribution to SWE observational uncertainty). This 
fractional uncertainty is reported in Figure S12. For each source, we hatch out basins where 
the magnitude of uncertainty is insufficient to change the sign of the ensemble mean estimate 
of the forced SWE trend (i.e., the signal-to-noise ratio is >1).” (ll. 608-626) 

The presentation of the fractional uncertainty partitioning is presented in the revised 
Figure S12, reproduced below. We now more concretely draw on this analysis in our 
discussion of the value of uncertainty partitioning: 

“Additionally, there is value in identifying and quantifying these sources of uncertainty in 
forced snowpack changes (Fig. S12), as it can guide future scientific and operational decision-
making. For instance, uncertainty in the forced response of temperature and precipitation 
arising from structural differences between climate models is the dominant source of 
uncertainty in the magnitude of forced March SWE trends in over half (95 out of 169) of all 
basins (Fig. S12a, d), suggesting that improving the skill of climate models in capturing 
regional climate would go a long way towards constraining historical and future snow change. 
Uncertainty in SWE data products themselves is also a limiting factor in many basins where in 
situ observations are sparse or non-existent (Fig. S12a, b), suggesting that constraining 
observational estimates of SWE would be most valuable. Finally, identifying the contribution 
of irreducible uncertainty in SWE trends from internal variability in the climate system (Fig. 
S12e) also has considerable value, as it indicates the range of physically consistent snowpack 
trajectories for which water resource managers and stakeholders must be prepared.” (ll. 299-
310) 
Additionally, we draw on these insights in our discussion of the influence of internal 
variability on our results: 



“Interestingly, we are able to detect a forced SWE decline in major basins such as the 
Columbia (4.8% per decade) where historical observations suggest modest increases since 
1981 or the Saint Lawrence (6.9% per decade), where observed trends have been small and 
statistically insignificant. Together these examples suggest that internal variability in the 
climate system has been masking large forced snowpack reductions in some regions. Likewise, 
there are basins like the Rio Grande, which have suffered large historical snowpack declines 
of over 10% per decade, but for which there is little agreement that forced temperature and 
precipitation changes have caused those declines, reinforcing the notion that low-frequency 
variability can overwhelm forced signals in snow and hydroclimate, even on multidecadal 
timescales. Indeed, internal variability is the dominant source of uncertainty in the forced 
response—over climate model structural differences and observational uncertainty in SWE, 
temperature, and precipitation—in roughly 1 in 8 basins (Fig. S12).” (ll. 182-192) 
 
 
line 216-225: this is all discussion and nothing that resembles a conclusion. Please move to 
an appropriate section of the article. 
 
We have removed these points from the Conclusion, and have changed the title of this final 
section from “Conclusions” to “Managing and leveraging uncertainty” to make it clear that 
we are not simply summarizing our results, but synthesizing the lessons learned in the 
research. 
 



Figure S12. a, Dominant source of uncertainty in reconstruction-based estimates of forced March SWE 

trends from 1981 to 2020. b-e, Percentage of total uncertainty in forced SWE trends attributable to (b) 

observational uncertainty in gridded SWE products, (c) observational uncertainty in temperature and 

precipitation data products, (d) uncertainty in the forced response of temperature and precipitation across 

different climate models, and (e) uncertainty in the forced response of temperature and precipitation arising 

from internal variability (Methods). Hatching indicates basins where the uncertainty attributable to a given 

source is insufficient to change the sign of the ensemble mean estimate of the forced SWE trend. 

Figures: Please change the projection. The current projection focuses on mid-latitudes and 
"squeezes" much of the northernmost basins. 



 
All figures now use a projection in which the high-latitude basins are more easily 
discerned.  
 
- - - - - - - - - -  
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Referee #3 (Remarks to the Author): 
 
This study evaluates historical trends in basin-scale snowpack (SWE) and consequent 
snow-driven spring runoff over Northern Hemisphere during 1981-2020 using a statistical 
reconstruction approach. The authors argue that they have identified human-caused 
changes in SWE and consequent runoff (“attribution” in their definition) by comparing 40-
year trends in the observation-based SWE reconstructions (“historical”) with those in the 
counterfactual reconstructions without human influence (“NoACC”). 



I have focused on evaluating the attribution method as requested by the Editor. The 
attribution approach used in this paper has three steps: 

First, the authors construct a multiple linear regression model (Eq. 1) of reconstructing (or 
predicting) April 1 SWE at each basin using cold season (NDJFM) temperature (T) and 
precipitation (P). They train this regression model using observational datasets during 
2001-2020, where 8 SWE, 4 temperature (T), and 5 precipitation (P) datasets (including 
reanalyses and satellite measurements) are all combined to consider observational 
uncertainties, providing 160-member ensemble of observations and corresponding 
regression equations. 

Second, for each observational-based member, counterfactual SWE reconstructions are 
estimated by inserting adjusted T and P into the pre-defined regression model. Here, T and 
P values are adjusted by removing possible anthropogenic changes from the observations. 
The anthropogenic changes in T and P are obtained from differences between historical 
(ALL) and historicalnat (NAT) simulations of available CMIP6 multi-model simulations (86 
ALL-NAT values available). 

Finally, the authors compare a distribution of ‘historical’ SWE trends (consisting of 160 
observation-based estimates) with that of ‘NoACC’ SWE trends (consisting of 13,760 
estimates obtained from 160 corresponding estimates × 86 CMIP6 ALL/NAT runs). To 
claim that “historical SWE trends are attributable to human causes”, the authors assess the 
significance of difference of the two SWE trend distributions using a Kolmogorov-Smirnov 
test (5% level) and also check the sign agreement of trend difference (ALL-NAT > 0 in more 
than 75% of 86 runs) if my understanding is correct. 

Applying this procedure to all snow-dependent river basins, the authors conclude that they 
can “confidently attribute changes in April 1 SWE to human causes in roughly 40 percent of 
the world’s major river basins, including the 4 most populous snow-dominated basins in 
Europe and 3 of the top 4 in North America”. They employ a similar statistical approach (Eq. 
4) to further estimate snowpack-driven changes in spring runoff in the past and future
conditions.

I find this study interesting in that it comprehensively takes account of observational 
uncertainties through SWE-T-P data combinations at the river basin scales (step 1 above). 
However, with regard to its attribution analysis (steps 2 and 3 above), I do not think that this 
approach can provide a way to claim “robust attribution of human-forced changes”. 
Conventionally, attribution approaches quantify external forcing contributions to the 
‘observed’ changes by either checking if the model-simulated forced pattern is present in 
the ‘observations’ (typically based on regressions but also using similarity measures) or 



comparing the likelihoods of the ‘observed’ changes between real-world and counterfactual 
conditions (similar to event attribution types of assessments). In contrast to the usual 
definition of attribution, this study evaluates human influences by comparing two estimates 
of reconstructed SWE trends, differences of which are largely determined by CMIP6-
simulated T and P changes (ALL-NAT), irrespective of the significance and sign of 
‘observed’ trends. In particular, cold season mean T differences between ALL and NAT 
(using their 30-year means) will induce SWE differences almost linearly based on the 
statistical relation in Eq. (1). In this way, resulting SWE differences likely reflect model 
response patterns, not indicating that this pattern is present in the observations or 
contributes to the observed changes. Since no observational information is used in this 
trend comparisons, my interpretation of their ‘attribution’ results would be such that CMIP6-
simulated T and P responses to anthropogenic forcing are larger than observational 
uncertainties in T and P over many river basins or similar. 

We thank the Reviewer for their thorough and thoughtful synthesis and constructive 
comments about our attribution approach. In response to this and the above Reviewer 
comments, we make several important analytical changes.  

First, on the attribution approach: In the revised manuscript, we now perform a 
substantial new attribution analysis at the hemispheric scale, in which we compare model-
simulated SWE trends to observed trends. We use a widely-used model attribution 
approach (Qian and Zhang, 2015; Gudmundsson, Seneviratne, and Zhang, 2017; Padrón et 
al., 2020; Grant et al., 2021), asking the degree to which the observed pattern of March 
snowpack trends is consistent with the pattern from anthropogenic forcing as simulated by 
the models, while taking into account the uncertainty in the observations themselves. We 
describe this approach in detail in the new Methods section “Attributing SWE trends to 
anthropogenic forcing”, which we reproduce here: 

“Our hemispheric attribution approach tests whether the similarity between observed and 
climate model-simulated forced SWE trends exceeds what could be possible from natural 
climate variability alone. To evaluate the null hypothesis that the pattern of SWE trends in the 
HIST simulations could be the result of natural variability alone, we calculate the trend in 
March SWE from 1981 to 2020 in each model’s HIST simulation and for every unique 40-
year period from those same models’ unforced PIC simulations (e.g., for a 500-year PIC 
simulation, we generate 461 maps of 40-year trends). All trends are calculated using the Theil-
Sen estimator, a non-parametric technique for estimating a linear trend that is more robust to 
data that is skewed or contains outliers than ordinary least squares (OLS). Then, we calculate 
the Spearman (rank) correlation coefficient between the maps of HIST and PIC trends to 
quantify the pattern similarity. The resulting empirical distribution of 78,601 correlations 
(background histogram on Figure 2) represents the likelihood that the pattern in the forced 
historical simulations could have arisen from natural variability alone. 



We quantify the similarity between observed SWE trends and the model-estimated 
response to forcing by taking the Spearman correlation between each observational product 
(Table S1) and the multimodel mean of the HIST simulations (red symbols in Figure 2e). For 
this analysis, the in situ observations are aggregated to the same 2°x2° grid as the gridded 
observations and climate models by taking the mean trend of all stations within each grid cell 
(Figure 2a). If the correlations between the observations and HIST simulations are greater than 
almost all of the correlations between the HIST and PIC simulations, we can reject the null 
hypothesis that the observed historical pattern could have arisen from natural variability alone 
and claim that a response to historical forcing is present in the observed pattern. Furthermore, 
if we cannot reject the null hypothesis using the correlations between the observations and 
HIST-NAT simulations with only solar and volcanic forcing, then it is unlikely that the observed 
pattern is the result of natural radiative forcing. Combined, these two lines of evidence would 
strongly suggest that anthropogenic forcing is causing the observed pattern of SWE trends.” (ll. 
463-487) 
 
The results are presented in the revised Figure 2, which is reproduced below. These results 
make clear that anthropogenic emissions have contributed to the observed pattern of 
March SWE trends from 1981 to 2020, as it is exceedingly unlikely that such a pattern 
could have arisen from natural variability alone. Crucially, we show that this finding holds 
for both a dramatically expanded set of in situ observations and our long-term gridded 
SWE products, with the exception of the MERRA-2 reanalysis.  



Figure 2. Trend in March SWE from 1981-2020 in in situ observations (a), the ensemble mean of 5 long-

term gridded SWE products (b), and the multimodel mean of CMIP6 historical simulations with (c) and 

without (d) anthropogenic emissions. e, Spatial pattern correlation of 1981-2020 March SWE trends 

between the CMIP6 multimodel mean historical (red symbols) and historical-nat (blue symbols) 

simulations and each observational SWE product (see legend). The gray histogram indicates the empirical 

probability density function of spatial correlations between the historical trends and all possible 40-year 

trends from unforced pre-industrial control simulations (N=78,601). The red (orange) vertical dashed line 

indicates the 99th (95th) percentile of this empirical distribution. 



Second, we pursue an attribution at the river basin scale, as in the original manuscript, in 
which we employ a data-model fusion approach in which we empirically model SWE as a 
function of temperature and precipitation, then use climate models to estimate how 
anthropogenic forcing has affected regional temperature and precipitation, and by 
extension SWE. We feel it is necessary to move beyond the more traditional model-based 
attribution approach presented in the revised Fig. 2 to assess how anthropogenic climate 
change has affected basin-scale snow trends, as the climate models are limited in their 
ability to capture the detail of SWE change at these finer scales. We articulate this 
motivation more clearly as the text transitions to focus on the reconstruction-based 
analysis: 
 
“While coupled climate model experiments such as those presented in Figure 2 are a powerful 
tool for detecting and attributing human influence on the broad features of the hemispheric 
pattern of SWE trends, the ability of these models to capture the magnitude and detailed 
spatial structure of observed trends is limited (see the range of the x-axis in Figure 2e), 
undermining the ability to assess forced snow change and its consequences at impacts-
relevant scales.” (ll. 116-120) 
 
In addition to an expanded list of citations of papers that have used a similar “observations 
minus modeled forced response of independent variables” approach to attribution (e.g., 
(Abatzoglou and Williams, 2016; Williams et al., 2020; Williams, Cook, and Smerdon, 
2022; Yao et al., 2023; Diffenbaugh, Davenport, and Burke, 2021; Callahan and Mankin, 
2022), we have made key changes and perform additional analyses that strength the our 
confidence in the data-model fusion approach. In our original submission, the empirical 
model was a multivariate regression. As noted above, we now use a Random Forest model 
using monthly temperatures and precipitation from November through March to more 
flexibly and skillfully predict March SWE. Additionally, whereas the multivariate 
regression models were fit individually for each grid cell, we train the Random Forest 
model on the full spatiotemporal panel of data (i.e., all grid cell-years from 1981-2020). 
This significant expansion of the support of the data on which the model is trained results 
in much-improved model skill (see revised Figs. S3-S5), which reduces the uncertainty in 
the attribution that arises from deficiencies in the skill of the empirical model. As we 
discuss in greater detail shortly in response to the Reviewer’s insightful comments about 
the stability of the empirical models, the expanded support of the data seems to result in 
estimates that are quite statistically stable (revised Fig. S4).  
 
Finally, we take the additional step of showing that the empirical approach can produce 
reliable estimates of a forced SWE response by using the climate model simulations (in 
which we know the “true” counterfactual, unlike the real world): 
 



“For each model, we fit the model described in Equation 1 using SWE, temperature, and 
precipitation data from the HIST simulations over the 1981-2020 period. Then, we use the 
empirical model trained on HIST data to predict counterfactual SWE using temperature and 
precipitation from the HIST-NAT simulations. Finally, we compare the forced (HIST minus 
HIST-NAT) trends calculated from the reconstruction approach to the “true” forced trends 
calculated using climate model SWE from the HIST and HIST-NAT experiments (Fig. S13). 
The strong similarity in the patterns of the “true” and reconstructed forced responses suggests 
that using observations with forced changes in temperature and precipitation removed 
produces reasonable estimates of a forced SWE change.” (ll. 590-598) 

Both of these attribution changes (hemispheric and basin scale) are possible due to the 
expanded in situ data we use, and our change to using a very skillful Random Forest 
algorithm trained on all data rather than locally-fit linear regression for our 
reconstructions. 



Figure S3. Basin-scale cross-validated R2 (a-e) and root-mean-square error (RMSE; f-j) for 5 gridded SWE 

data products over the period 1981-2020. Each metric shows the skill of the mean of all reconstructions 

for a single SWE product versus the observed values from that product. Insets show the distribution of skill 

across basins, with the red line and value indicating the median. See Methods for cross-validation 

procedure.



 
Figure S4. RMSE in the 10 coldest, 10 warmest, and 20 “average” years in each basin from 1981-2020. 

Boxplots show the distribution of skill across basins in each temperature category, with the line indicating 

the median basin skill, the box the interquartile range, and the whiskers the 2.5th and 97.5th percentiles. 



 
Figure S5. Observed (a-f) and reconstructed (g-l) 1981-2020 March SWE trends for 5 gridded SWE data 

products and their mean. M-r, Scatterplot of reconstructed versus observed trends, where each dot 

represents a river basin. Dashed line denotes perfect reconstruction. Pearson’s correlation is shown in 

bottom right corner. 

 





Figure S14. Forced (HIST minus HIST-NAT) trends in March SWE from 1981-2020 based on (a) climate 

model SWE output and (b) counterfactual SWE estimated using HIST-NAT temperature and precipitation 

and Random Forest model. C, Scatterplot of reconstructed versus original trends, where each dot 

represents a grid cell. Points are colored by their density. Dashed line denotes perfect agreement between 

reconstructed and original trends. Pearson’s correlation is shown in upper left corner.

I have another concern about the stability of their statistical models. The statistical 
reconstruction method assumes that SWE dependence on T and P will not change with time 
but the validity of this assumption is not discussed. Statistical models are trained using 
recent SWE, T, and P datasets for 2001-2020, from which regression coefficients (betas) 
are estimated. In this setting, SWE variations will be mainly associated with inter-annual 
variabilities in T and P during the short period. The authors, however, use the same betas to 
estimate observed SWE reconstructions for the early period for 1981-2000 as well as to 
estimate SWEs for much colder pre-industrial (for NoACC) and much warmer future 
conditions (+1 degree and even near the late 21st century). This extrapolation of statistical 
relation may induce large errors in SWE estimates. Same issue applies to spring runoff 
reconstructions in Eq. (4). 

The Reviewer is right to note that the relationship between snow and its drivers may not be 
time invariant. In response to this comment, we have made several important analytical 
changes to better accommodate the varying relationship between snow and its drivers in 
space and time. First, to avoid needing to extrapolate back in time, we use only datasets 
with complete coverage over the 1981-2020 period (ERA5-Land, JRA-55, MERRA-2, 
TerraClimate, Snow-CCI, and in situ data). Additionally, in the empirical modeling, we no 
longer fit a multiple regression model at each grid cell; instead, we use a Random Forest 
machine learning algorithm trained on the full spatiotemporal panel of data (i.e., all grid 
cell-years from 1981 to 2020). This significant expansion of the support of the data on 
which the model is trained results not only in much-improved model skill (Fig. S3-S5), but 
estimates that appear to be quite stable. To quantify this, we look at the RMSE in the 
hottest and coldest 10 winters in each basin, as well as the 20 “average” years in between, 
and find no differences in skill across this temperature gradient (revised Fig. S4). 



Figure S3. Basin-scale cross-validated R2 (a-e) and root-mean-square error (RMSE; f-j) for 5 gridded SWE 

data products over the period 1981-2020. Each metric shows the skill of the mean of all reconstructions 

for a single SWE product versus the observed values from that product. Insets show the distribution of skill 

across basins, with the red line and value indicating the median. See Methods for cross-validation 

procedure.



Figure S4. RMSE in the 10 coldest, 10 warmest, and 20 “average” years in each basin from 1981-2020. 

Boxplots show the distribution of skill across basins in each temperature category, with the line indicating 

the median basin skill, the box the interquartile range, and the whiskers the 2.5th and 97.5th percentiles.



Figure S5. Observed (a-f) and reconstructed (g-l) 1981-2020 March SWE trends for 5 gridded SWE data 

products and their mean. M-r, Scatterplot of reconstructed versus observed trends, where each dot 

represents a river basin. Dashed line denotes perfect reconstruction. Pearson’s correlation is shown in 

bottom right corner. 

The other issue related to attribution is about the datasets used. Since many observational 
datasets are based on estimates from reanalyses and satellite measurements rather than 
real observations, it looks difficult to attribute historical changes. 



As noted in response to comments from Reviewers 1 and 2, we employ a much larger set of 
in situ observations in our hemispheric attribution analysis, as well as in the empirical 
reconstructions.  
 
In addition to the SNOTEL data used in the original manuscript, we include in situ SWE 
measurements from the Canadian historical Snow Water Equivalent (CanSWE) dataset 
(Vionnet et al., 2021), as well as the recently-published NH-SWE dataset. The latter makes 
use of more widely-available ground observations of snow depth (SD) and an SD-to-SWE 
conversion model that uses a regional parameterization based on climate variables to 
provide daily time series of SWE across the Northern Hemisphere (Fontrodona-Bach et al., 
2023). Combined, these data give us near-hemispheric coverage (save Asia south of Russia) 
of about 3,000 in situ measurements, which allows us to evaluate whether we can detect an 
anthropogenic fingerprint on the spatial pattern of those observed trends. The consistency 
of the attribution analysis using these in situ observations and the gridded products is 
strong evidence that we have detected and attributed a shared anthropogenic signal. 
 
Regarding climate model simulations, the authors do not evaluate model performances at 
all. Depending on locations and seasons, models can systematically overestimate or 
underestimate T and P climatology and their responses to anthropogenic forcing. 
 
For our estimate of counterfactual temperature and precipitation, we use a “delta” method 
where we calculate the difference between the HIST and HIST-NAT simulations and 
remove that from the observations; as such, biases in climatology should not matter, as 
each model is benchmarked to its own climatology.  We now include an expanded list of 
references that have used a similar delta approach to estimate a forced response to be 
removed from observations in an attribution context (Abatzoglou and Williams, 2016; 
Williams et al., 2020; Williams, Cook, and Smerdon, 2022; Yao et al., 2023; Diffenbaugh, 
Davenport, and Burke, 2021; Callahan and Mankin, 2022) and have clarified the approach 
in the Methods text: 
 
“We calculate the temperature response to anthropogenic forcing as the difference between 
the 30-year rolling mean average temperature for each month in the HIST and HIST-NAT 
runs. For precipitation, we calculate the forced response as the percentage difference between 
30-year rolling mean monthly precipitation in HIST versus HIST-NAT. By differencing 
experiments from the same model, we hope to limit the influence of model biases in 
climatological temperature and precipitation, as each model is benchmarked to its own 
climatology [ . . . ] Having estimated anthropogenically-forced changes in gridded temperature 
and precipitation, we create counterfactual time series of temperature and precipitation by 
downscaling the output to the 0.5°x0.5° resolution of the observational ensemble using 
conservative regridding and removing the forced response from each model realization from 



each gridded temperature and precipitation dataset. Temperature is adjusted by subtracting 
the forced change from the observations and precipitation is adjusted by the forced percentage 
change.” (ll. 556-575) 

Systematic biases in the model-simulated trends (e.g., too rapid warming or wetting) could 
be a problem not addressed by the delta method we use. For example, trend biases could 
lead us to over- or under-estimate the forced response. To address this possibility, we now 
evaluate model biases in the 1981-2020 trends in winter temperature and precipitation 
(revised Fig. S9), and report the results in the main text when introducing the 
counterfactual SWE reconstruction: 

“We note that the CMIP6 models tend over-estimate the historical warming trend compared to 
observations in some regions, particularly over Central North America and Eastern Europe 
(Fig. S9c, S10). At the same time, however, fewer than 1% of apparent biases over the 
hemisphere fall outside the range of model internal variability, suggesting that models are 
skillfully capturing North Hemisphere wintertime land temperature trends38We note that the 
CMIP6 models tend to simulate slightly too strong of a historical warming trend compared to 
observations, most notably over Central North America and Eastern Europe (Fig. S9c, S10), 
though fewer than 1% of apparent biases over the hemisphere fall outside the range of model 
internal variability, which is an important consideration in model evaluation (Jain et al., 
2023). The models also underestimate the drying in the Southwestern U.S., which has seen 
historical precipitation declines driven by both internal ocean-atmosphere variability and 
anthropogenic forcing (Williams et al., 2020), and underestimate observed wetting over the 
Tibetan Plateau (Fig. S9f, S10), though once again, fewer than 3% of precipitation biases are 
inconsistent with model internal variability (Jain et al., 2023). The models also underestimate 
the drying in the Southwestern U.S., which has seen historical precipitation declines driven by 
both internal ocean-atmosphere variability and anthropogenic forcing11, and underestimate 
observed wetting over the Tibetan Plateau (Fig. S9f, S10), though once again, fewer than 3% 
of precipitation biases lie outside that possible from modeled internal variability, suggesting 
these biases do not undermine our attribution.” (ll. 167-175) 

Additionally, we have added text to the Methods detailing how we evaluate model biases 
and their influence on SWE changes: 

“Systematic biases in the model-simulated trends (e.g., too rapid warming or wetting), 
however, could potentially lead to over- or under-estimate the forced response. To address this 
possibility, we evaluate model biases in the 1981-2020 trends in winter temperature and 
precipitation against observed trends by taking the difference between the CMIP6 HIST 
ensemble mean and the mean of the observational products for each quantity (Fig. S9). To test 
whether the observed and modeled trends are consistent, we ask whether the observed trend 



falls within a plausible range of forcing plus internal variability, given as the 2.5-97.5th 
percentile of the CMIP6 HIST trends. Only 1% (3%) of grid cells fall outside this range for 
temperature (precipitation), suggesting that the climate models capture realistic historical 
climate trends at these scales.” (ll. 561-569) 

Figure S9. Observed trends in November-March average temperature (a)  and total precipitation (d) 

from 1981 to 2020. B, e. Ensemble mean of historical CMIP6 simulations. C, f. Average bias in trends 

across all observation-model combinations. Hatching indicates regions where the observed trend falls 

outside the 2.5-97.5th percentile range of the CMIP6 trends. 

In this respect, Table S2 indicates that a single model provides 50 members out of total 86 
members, potentially influencing results depending on the model’s biases. 

In response to this comment, we repeated the analysis using only the first realization from 
each climate model and found virtually identical results (revised Fig. S12), suggesting a 
limited influence of realization numbers in disproportionately weighting a single model in 
the overall response. 



Figure S13. As in Figure 3, but using only the first ensemble member from each climate model to estimate 

counterfactual. 

Overall, while detailed and useful information on snowpack and associated runoff changes 
due to warming is provided at river basin scales, I do not agree that this study provides 
robust attribution results due to the limitation of the statistical reconstruction approach. 

We thank the Reviewer for their comments as they have greatly strengthened the analysis 
and the clarity and robustness of our original claims.  
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Reviewer Reports on the First Revision: 

Referees' comments: 

Referee #1 (Remarks to the Author): 

The manuscript is now substantially improved and all concerns that I have raised are well 
considered. In particular, the in situ observational data set of the revised paper includes 2,961 
stations whereas the geographically limited data set in the original submission only incorporated 
some 550 stations. This makes the validity of the analysis much more convincing than that in the 
original submission. The temporal coverage of the new data set is also better, which tackles the 
problem of extrapolation, especially related to the long-term trends. 

The methodology is also revised, apparently providing better overall confidence. One can argue, e.g., 
about the limitations and problems of ensemble analysis. Nevertheless, I think that this issue is 
better addressed and analyzed in the paper. Especially in complex terrain the use of ensemble 
approach is probably desirable, and it is useful to consider the consistency of different gridded 
dataset in the analysis. I am quite convinced that the conclusions of the paper regarding the human-
forced changes in the snow cover are now justified new findings, and hence the paper deserves to 
be published. 

Referee #2 (Remarks to the Author): 

I would like to commend the authors on the revisions made to the analysis of this paper. All of my 
previous comments have been satisfactorily addressed with the new approach. I believe that the 
manuscript is now acceptable for publication from my perspective. 

Referee #3 (Remarks to the Author): 

I thank the authors for their thorough response to my previous points. They have made substantial 
improvements in the methods as well as datasets, and I think that the revised manuscript provides a 
robust attribution of snowpack changes to human influences. First, they made an observation-model 
comparison of hemispheric patterns of SWE trends and showed a clear emergence of anthropogenic 
signal in the observed SWE changes from the noise range of internal variability. Second, for the river-
basin scale attribution, they reconstructed SWE by training a Random Forest model using all 
spatiotemporal data of temperature and precipitation rather than using local fitting. This technique 
greatly improved the reconstruction skill of their empirical model, which helps to increase the 
attribution confidence at river-basin scales. Furthermore, they performed a “perfect model” 
evaluation to check the validity of their approach to counterfactual reconstructions. The test results 
show that forced responses of SWE estimated based on temperature and precipitation changes can 
capture the “true” values reasonably. The authors also supported the robustness of their findings by 



adding a few in situ observations and checking the stability of their empirical model. I have a couple 
of minor suggestions that the authors can consider for further clarification. 

1. It would be useful to provide some references that support (1) the use of Random Forest
algorithm compared to other methods if any and (2) the advantage of using all data rather than local
data. I think that the authors can discuss the latter by showing how reconstruction skills change
when using local data only in the same Random Forest model.

2. Using the “perfect model” analysis, the authors compared the forced trends in SWE estimated
from the reconstruction model with the corresponding “true” forced trends (Fig. S16). However,
they did not show whether their reconstruction approach works well in the future projections. I
think a similar “perfect model” test can be done for future SWE estimates using SSP3-7.0
simulations.



We thank the Reviewers and the Editor for their thoughtful engagement with this work. This 
Response to the Reviewers file provides a complete documentation of the changes that have 
been made in response to each individual Reviewer comment.  

Reviewer comments are shown in plain text. Author responses are shown in bold text. 
Quotations from the revised manuscript are shown in bold italics. Line numbers in the 
author responses refer to locations in the revised manuscript. 

********************************************** 

Referee #1 (Remarks to the Author): 

The manuscript is now substantially improved and all concerns that I have raised are well 
considered. In particular, the in situ observational data set of the revised paper includes 
2,961 stations whereas the geographically limited data set in the original submission only 
incorporated some 550 stations. This makes the validity of the analysis much more 
convincing than that in the original submission. The temporal coverage of the new data set 
is also better, which tackles the problem of extrapolation, especially related to the long-term 
trends. 

The methodology is also revised, apparently providing better overall confidence. One can 
argue, e.g., about the limitations and problems of ensemble analysis. Nevertheless, I think 
that this issue is better addressed and analyzed in the paper. Especially in complex terrain 
the use of ensemble approach is probably desirable, and it is useful to consider the 
consistency of different gridded dataset in the analysis. I am quite convinced that the 
conclusions of the paper regarding the human-forced changes in the snow cover are now 
justified new findings, and hence the paper deserves to be published. 

We thank the Reviewer again for the suggestions to incorporate more long-term in situ 
data into the analysis, which has strengthened the methods and results.  

Referee #2 (Remarks to the Author): 

I would like to commend the authors on the revisions made to the analysis of this paper. All 
of my previous comments have been satisfactorily addressed with the new approach. I 
believe that the manuscript is now acceptable for publication from my perspective. 

We thank the Reviewer for their thoughtful feedback that has improved the clarity and 
robustness of our methods, findings, and their interpretation.  

Author Rebuttals to First Revision:



Referee #3 (Remarks to the Author): 

I thank the authors for their thorough response to my previous points. They have made 
substantial improvements in the methods as well as datasets, and I think that the revised 
manuscript provides a robust attribution of snowpack changes to human influences. First, 
they made an observation-model comparison of hemispheric patterns of SWE trends and 
showed a clear emergence of anthropogenic signal in the observed SWE changes from the 
noise range of internal variability. Second, for the river-basin scale attribution, they 
reconstructed SWE by training a Random Forest model using all spatiotemporal data of 
temperature and precipitation rather than using local fitting. This technique greatly 
improved the reconstruction skill of their empirical model, which helps to increase the 
attribution confidence at river-basin scales. Furthermore, they performed a “perfect model” 
evaluation to check the validity of their approach to counterfactual reconstructions. The 
test results show that forced responses of SWE estimated based on temperature and 
precipitation changes can capture the “true” values reasonably. The authors also supported 
the robustness of their findings by adding a few in situ observations and checking the 
stability of their empirical model. I have a couple of minor suggestions that the authors can 
consider for further clarification. 

We thank the Reviewer for their thoughtful suggestions, which alongside the other 
Reviewer comments have increased the robustness and clarity of our original conclusions. 

1. It would be useful to provide some references that support (1) the use of Random Forest
algorithm compared to other methods if any and (2) the advantage of using all data rather
than local data. I think that the authors can discuss the latter by showing how
reconstruction skills change when using local data only in the same Random Forest model.

We agree. We now add additional references supporting the use of a Random Forest model 
in the Methods section: 

“As another means of attributing historical SWE change, and to better understand its patterns 
and drivers at scales more commensurate with the impacts of snow loss, we generate a large 
observations-based ensemble of historical March SWE with and without the effects of 
anthropogenic forcing. We do so by using the common Random Forest machine learning 
algorithm, which fits randomized regression trees on bootstrapped samples of the data and 
averages their predictions together. The decision tree framework is particularly well-suited to 
pick up nonlinear interactions, such as that between temperature and precipitation in the 
context of snow, as well as correlated predictors.  The Random Forest algorithm has been 
applied to reconstruct a wide variety of biogeophysical variables that are shaped by temperature, 
precipitation, and their interaction, including historical runoff (Ghiggi et al., 2019), crop yields 



(Vogel et al., 2019), and climate-induced species range shifts (Lawler et al., 2006). In each 
instance, the Random Forest model was found to significantly outperform both other machine 
learning algorithms and more traditional approaches such as linear regression. Additionally, 
for this particular application of reconstructing historical snowpack, the model imposes no prior 
assumptions about temperature thresholds for rain-snow partitioning or snowmelt, which can 
vary substantially in space and are themselves a contributor to uncertainty in modeled estimates 
of SWE (Kim et al., 2021; Jennings et al., 2018).” (ll. 570-585) 

We agree with the Reviewer’s second point about the relative value of using all data versus 
local data. We have retrained Random Forest models for each basin using only local data 
and compared the local model skill to that from the full panel. We now report the sensitivity 
analysis in the Methods section. We find that in most basins there are no significant 
differences in skill between the local and global models (based on the same significance 
criteria in the main). The local model does exhibit substantial degradations in skill in many 
of the highly-populated basins of the Western U.S., Western Europe, and High Mountain 
Asia, however. Combined with the fact that a panel model offers more data support for out-
of-sample prediction, we feel the case for the full panel we use in the manuscript is strong. 
We have updated the Methods text to better communicate this important point: 

“We fit the model using the full spatiotemporal panel of 0.5°x0.5° gridded data (i.e., all grid 
cell-years from 1981 to 2020), then aggregate the predicted gridded values to the river basin 
scale. We find that training a single model on the full panel of data offers two main advantages 
over training multiple models on more local data (e.g., a model for each river basin). First is 
that the out-of-sample prediction skill of the full panel model is significantly higher in many 
highly-populated mid-latitude basins of the Western U.S., Western Europe, and High Mountain 
Asia; local models are more skillful in fewer than 20 percent of basins, concentrated in sparsely-
populated high-latitude basins where the skill of the full panel model is already high (Extended 
Data Fig. 3). Second, training a single model on data from the entire hemisphere provides 
greater statistical stability of projections made with large perturbations to the input variables, 
such as adding an end-of-century climate change signal (Extended Data Fig. 8), which could 
exceed the support of local historical observations as records fall at an increasing rate (Coumou, 
Robinson, and Rahmstorf, 2013; Rahmstorf and Coumou, 2011).” (ll. 591-603) 

2. Using the “perfect model” analysis, the authors compared the forced trends in SWE
estimated from the reconstruction model with the corresponding “true” forced trends (Fig.
S16). However, they did not show whether their reconstruction approach works well in the
future projections. I think a similar “perfect model” test can be done for future SWE
estimates using SSP3-7.0 simulations.



We thank the Reviewer for this suggestion and have plans to pursue a thorough analysis of 
the snowpack projections given our reconstructions in future work. 
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