Supplementary information

Subaqueous foraging among carnivorous dinosaurs

In the format provided by the authors and unedited

Subaqueous foraging among carnivorous dinosaurs

Matteo Fabbri^{1*}, Guillermo Navalón^{2,3,4}, Roger B. J. Benson³⁺, Diego Pol⁵, Jingmai O'Connor¹, Bhart-Anjan S. Bhullar⁶, Gregory M. Erickson⁷, Mark A. Norell⁸, Andrew Orkney³, Matthew C. Lamanna⁹, Samir Zouhri¹⁰, Justine Becker¹¹, Amanda Emke^{11,12}, Cristiano Dal Sasso¹³, Gabriele Bindellini^{13,14}, Simone Maganuco^{13,15}, Marco Auditore¹³, Nizar Ibrahim¹⁶

¹Nagaunee Integrative Research Centre, Field Museum of Natural History, Chicago, IL, USA

²Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, UK

³Department of Earth Sciences, University of Oxford, Oxford, UK

⁴Unidad de Paleontología, Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain ⁵CONICET, Museo Paleontológico Egidio Feruglio, Trelew, Argentina

⁶ Department of Hearth and Planetary Sciences and Peabody Museum of Natural History, Yale University, New Haven, USA

⁷Department of Biological Science, Florida State University, Tallahassee, USA

⁸Division of Vertebrate Paleontology, American Museum of Natural History, New York, NY, USA

⁹Section of Vertebrate Paleontology, Carnegie Museum of Natural History, Pittsburgh, PA, USA

¹⁰Department of Geology and Health and Environment Laboratory, Hassan II University of Casablanca, Casablanca, Morocco

¹¹Department of Biology, University of Detroit Mercy, Detroit, MI, USA

¹²Department of Physician Assistant Studies, Wayne State University, Detroit, MI, USA

¹³Sezione di Paleontologia dei Vertebrati, Museo di Storia Naturale di Milano, Milan, Italy

¹⁴Dipartimento di Scienze della Terra 'A. Desio', Università degli Studi di Milano, Milan, Italy

¹⁵Associazione Paleontologica Paleoartistica Italiana, Parma, Italy

¹⁶School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth, UK Corresponding author*: <u>mfabbri@fieldmuseum.org</u>

Co-corresponding authors⁺: <u>gn315@cam.ac.uk</u>; <u>roger.benson@earth.ox.ac.uk</u>.

Contents:

- 1. Supplementary Table 1: Taxa shared between the datasets of femoral and dorsal rib density
- 2. Supplementary Table 2: List of spinosaurid taxa, investigated skeletal elements, and type of data collected.
- 3. Supplementary Table 3: Phylogenetic regressions comparing explanations of femoral shaft density using size and ecological traits (all values)
- 4. Supplementary Table 4: Phylogenetic regressions comparing explanations of dorsal rib density using size and ecological traits (all values)
- 5. Supplementary Table 5: List of graviportal and pelagic taxa in the femoral dataset
- 6. Supplementary Table 6: List of graviportal and pelagic taxa in the dorsal rib dataset
- 7. Phylogenetic character coding of the *Spinosaurus* neotype (Malafaia et al. 2020) and *Spinosaurus* OTU (Rauhut and Pol 2019)
- 8. Phylogenetic analyses
- 9. Supplementary Figure 1: Phylogenetic analyses of Tetanurae based on Malafaia et al. (2020) and Rauhut and Pol (2019)
- 10. Osteohistological description of Condorraptor, Suchomimus, Baryonyx, and Spinosaurus
- 11. Supplementary Figure 2: Ontogenetic assessment of carnosaurs sampled in this study
- 12. Taxonomic and systematic implications of the ontogenetic assessment of *Baryonyx* and *Suchomimus*
- 13. Skeletal reconstructions
- 14. Supplementary Figure 3: CT scan of the femoral diaphysis of *Baryonyx* and corrected translation in binary image for compactness analyses
- 15. Supplementary Table 7: Results of the phylogenetically flexible discriminant analysis based on femoral data for selected extinct taxa
- 16. Supplementary Table 8: Results of the phylogenetically flexible discriminant analysis based on femoral data for selected extinct taxa excluding pelagic and graviportal taxa from the dataset
- 17. Supplementary Table 9: Results of the phylogenetically flexible discriminant analysis based on dorsal rib data for selected extinct taxa
- 18. Supplementary Table 10: Results of the phylogenetically flexible discriminant analysis based on dorsal rib data for selected extinct taxa excluding pelagic and graviportal taxa from the dataset
- 19. Supplementary references

Taxa				
Alca torda	Spinosaurus			
Anarosaurus	Strigiops_habroptilus			
Anas discors	Sula dactylatra			
Anas erythroincha	Tachybaptus ruficollis			
Anhinga anhinga	Trybonix ventralis			
Anser fabalis	Turdus_olivater			
Anseranas semipalmata	Uria			
Aptenodytes	Xenicus longipes			
Apteryx owenii	Mammuthus sp.			
Aramus guarauna	Elephas maximus			
Atlantisia rogersi	Felis felis			
Baryonyx	Vulpes vulpes			
Basilosaurus	Ursus maritimus			
Callophoca obscura	Tapirus terrestris			
Caloenas nicobarica	Ceratotherium simum			
Chauna chavaria	Rhinoceros sondaicus			
Cinclus cinclus	Sus scrofa			
Crypturellus tataupa	Giraffa camelopardalis			
Cygnus olor	Rangifer tarandus			
Gavia immer	Capreolus capreolus			
Glareola pratincole	Bison bonasus			
Goura cristata	Castor fiber			
Leptophoca proxima	Choeropsis liberiensis			
Maiacetus	Hippopotamus amphibius			
Metryorhynchus	Dasyurus maculatus			
Nanophoca vitulinoides	Desmana moschata			
Nestor notabilis	Diplomesodon pulchellum			
Neusticosaurus	Euroscaptor micrura			
Nothosaurus	Hemiechinus azurites			
Pelagodroma marina	Lutra vulgaris			
Pelecanoides urinatrix	Monodelphis domestica			
Phaethon aethereus	Musetla nivalis			
Phalacrocorax harrisi	Noemys fodiens			
Phoenicopterus ruber	Ornithorhynchus anatinus			
Podica senegalensis	Procavia capensis			
Porphyrio Poliocephalus	Rhynchocyon petersi			
Porzana_carolina	Taxidea taxus			
Psophia_crepitans_napensis	Tenrec ecaudatus			
Rodhocetus	Rattus rattus			
Sarothrura rufa	Microgale thomasi			
Serpianosaurus	Hydromys chrysogaster			
Spheniscus humboldti				

Supplementary Table 1. List of taxa (n=83) shared between the femoral and dorsal rib datasets

Taxon	Catalogue	Skeletal elements	Side	Technique
	number	sampled		
Baryonyx	NHM R	Femur and dorsal rib	Right femur and	Femur: CT scan
	9951		right dorsal rib	Dorsal rib: thin section
Suchomimus	G5; G94	Femur	Right	Thin section
Spinosaurus	FSAC KK	Femur and dorsal rib	Right femur and	Thin sections
_	11888		right dorsal rib	

Supplementary Table 2. Specimen number, skeletal elements and techniques applied for collection of ontogenetic data, and bone density among spinosaurid taxa.

Model	AICc	AIC weights	R2	Lambda	Variable	Coefficient	Std.Error	t value	p value
compactness ~ subaqueous foraging	-283.64/ -278.27 /-272.84	0.664/ 0.673 /0.681	0.166/ 0.172 /0.176	0.91/ 0.919 /0.929	Intercept subaqueous foraging	0.621/ 0.6 3/ 0.637 0.161/ 0.164 /0.166	0.104/ 0.108 / 0.112 0.023/ 0.023 /0.024	5.623/ 5.8585 /6.067 6.9/ 7.0225 /7.12	0.00
compactness ~ subaqueous foraging + sustained flight	-280.81/- 275.35/- 269.83	0.162/ 0.156 /0.1 51	0.163/ 0.168 /0 .173	0.905/ 0.915 /0.925	Intercept subaqueous foraging	0.623/ 0.6315 / 0.639 0.161/ 0.163 /0 .166 -0.058/-	0.102/ 0.105 /0. 11 0.023/ 0.023 /0. 024 0.025/ 0.026 /0.	5.746/ 6.0075 /6 .231 6.921/ 7.039 /7. 162 -2.227/ -2.151 /-	0.00 0.00 0.0271/ 0.0
compactness ~ subaqueous foraging + flight	-280.76/- 275.33/- 269.82	0.157/ 0.154 /0.1 5	0.163/ 0.168 /0 .173	0.901/ 0.912 /0.923	sustained flight Intercept subaqueous foraging	0.056/-0.053 0.624/0.633/0 .64 0.159/0.162/0 .164 -0.06/-0.057/-	026 0.101/ 0.104 /0. 0109 0.023/ 0.023 /0. 024 0.026/ 0.027 /0.	2.057 5.813/6.089/6. 321 6.826/6.945/7. 066 -2.234/-2.14/- 2.055	326 /0.041 0.00 0.0266/0.0 225 /0 0.411
compactness ~ midshaft diameter + subaqueous foraging	-275.9/ - 270.5 /- 264.94	0.0138/ 0.0138 / 0.0131	0.143/ 0.148 /0 .153	0.911/ 0.921 /0.931	Intercept midshaft diameter subaqueous forsaging	0.634 0.61/ 0.621 /0. 631 0.003/ 0.009 /0 .015 0.161/ 0.163 /0	0.107/ 0.11 /0.1 15 0.02/ 0.021 /0.0 21 0.023/ 0.023 /0. 024	5.387/ 5.6235 /5 .875 0.14 /0.4305 /0. 72 6.826 /6.949 /7. 04	0.00 0.4726/0.6 674/0.8891
compactness ~ subaqueous foraging + sustained flight + midshaft diameter	-272.81/- 267.39/- 261.97	0.00296/ 0.029 / 0.00296	0.139/ 0.144 /0 .149	0.904/ 0. 915 /0.926	Intercept subaqueous foraging sustained flight midshaft	0.621/ 0.632 /0 .642 0.161/ 0.163 /0 .166 -0.059/- 0.056 /0.053 -0.007/-	0.104/ 0.107 5/ 0.112 0.023/ 0.023 /0. 024 0.026/ 0.027 /0. 027	5.609/5. 87 7/6. 151 6.886/7/7.116 -2.2/- 2.107 5/- 2.012 -0.336/- 0.057 /-	0.00 0.00 0.029/ 0.03 63 /0.0455 0.7369/ 0.9 3065 /0 995
compactness ~ infrequent subaqueous foraging	-261.62/- 256.98 /- 252.32	0.000011/ 0.000 0159 /0.000023	0.078/ 0.081 /0 .085	0.885/ 0.896 /0.907	diameter Intercept infrequent subaqueous formaing	0.001/-0.005 0.661/0.669/0 .676 0.116/0.118/0	0.102/ 0.105 /0. 109 0.023/ 0.024 /0. 024	0.22 6.11/ 6.3525 /6. 573 4.889/ 4.9795 /5	0.00
compactness ~ midshaft diameter + infrequent subaqueous foraging	-253.99/- 249.34/- 244.53	2.41/ 3.508 /4.86	0.053/ 0.056 /0 .059	0.886/ 0.897 5/0.908	Intercept midshaft diameter infrequent subaqueous foraging	.12 0.65/ 0.659 /0. 668 0.005/ 0.01 /0. 015 0.114/ 0.117 /0 .119	0.105/ 0.108 /0. 112 0.021/ 0.022 /0. 022 0.024/ 0.024 /0.	5.85/ 6.094 /6.3 39 0.211/ 0.462 /0. 777 4.804/ 4.8895 /4 .99	0.00 0.4804/ 0.6 448 /0.833
compactness ~ flight	243.793/- 239.667/- 235.449	1.477/ 2.783 /5.1 74	0.002/ 0 /0.003	0.892/ 0.902 /0.912	Intercept Flight	0.761/ 0.77 /0. 776 0.074/ - 0.07 /-0.066	0.107/ 0.11 /0.1 14 0.029/ 0.03 /0.0 3	6.708/ 6.9905 /7 .251 -2.45/ -2.35 /- 2.235	0.00 0.0149/ 0.0 197 /0.0265
compactness ~ sustained flight	-241.71/- 238.54/- 234.35	8.59/ 1.584 /2.98	-0.007/- 0.005 /-0.003	0.9/ 0.909 /0. 918	Intercept Sustained flight	0.761/ 0.769 /0 .776 -0.063/ -0.06 /- 0.057	0.11/ 0.113 /0.1 17 0.029/ 0.029 /0. 029	6.551/ 6.816 /7. 051 -2.17/ -2.071 /- 1.98	0.00 0.0312/ 0.0 396 /0.0482
compactness ~ midshaft diameter	-239.12/- 234.78/- 230.12	1.429/ 2.427 / 3.608	-0.026/- 0.024 /-0.021	0.911/ 0.919 / 0.927	Intercept midshaft diameter	0.734/ 0.745 / 0.756 0.015/ 0.021 / 0.027	0.117/ 0.12 / 0.124 0.023/ 0.023 / 0.023	5.98/ 6.1985 / 6.438 0.664/ 0.9175 / 1.183	0.00 0.2381/ 0.35975 / 0.5074
compactness ~ midshaft diameter + flight	-236.22/- 232.067/- 227.75	3.35/ 6.22 /1.10	-0.03/- 0.027 /- 0.025	0.893/ 0.904 /0.914	Intercept Midshaft diameter Flight	0.748/ 0.759 / 0.77 0.003/ 0.009 / 0.014 -0.071/- 0.067 /-0.061	0.11/ 0.114 /0.1 18 0.023/ 0.023 / 0.024 0.03/ 0.031 / 0.031	6.397/ 6.6775 / 6.967 0.126/ 0.3695 / 0.614 -2.291/- 2.181 /- 2.041	0.00 0.54/ 0.7124 / 0.8998 0.023/ 0.0303 / 0.0425
compactness ~ midshaft diameter + sustained flight	-235.24/- 231.04/- 226.69	2.05/ 3.73 / 6.51	-0.034/- 0.032/-0.03	0.901/ 0.911 / 0.92	Intercept midshaft diameter Sustained flight	0.745/ 0.756 / 0.767 0.005/ 0.011 / 0.017 -0.06/- 0.057 /- 0.053	0.113/ 0.117 /0. 12 0.023/ 0.023 /0.024 0.029/ 0.03 /0.0 3	6.246/ 6.4995 / 6.763 0.224/ 0.4725 / 0.725 -1.994/- 1.9045 /-1.794	0.00 0.4695/ 0.63715 / 0.8226 0.0475/ 0.0582 / 0.0743

Supplementary Table 3. Phylogenetic regressions comparing explanations of bone density among femora using size and ecological traits (all values). Explanatory variables are combined in all possible ways in different linear models. Linear models are ordered from best to worst. Values organized as minimum/median/maximum from the 100 phylogenies used for the phylogenetic regressions. Akaike weights are derived from summarized maximum, median, and minimum values of AICc. These analyses are two-sided and no adjustments were applied for multiple comparisons.

Model	AICc	AIC weights	R2	Lambda	Variable	Coefficient	Std.Error	t-value	p value
compactness ~ subaqueous foraging	-168.805/ -164.167 /-157.891	0.671/ 0.638 /0.641	0.102/ 0.108 /0.113	0.963/ 0.969 /0.975	Intercept	0.612/ 0.648 /0.668	0.059/ 0.061 /0.063	9.812/ 10.652 /11.113	0
					subaqueous foraging	0.149/ 0.154 /0.159	0.032/ 0.033 /0.033	4.597/ 4.7195 /4.818	0
compactness ~ subaqueous foraging + sustained flight	-165.848/ -161.538	0.153/ 0.171	0.096/ 0.104	0.964/ 0.97	Intercept	0.614/ 0.651	0.059/ 0.06	9.961/ 10.8315	0
	/-155.209	/0.16/	/0.111	/0.976	subaqueous foraging	/0.67 0.146/ 0.152	/0.062 0.031/ 0.032	/11.299 4.598/ 4.735	0
					sustained flight	/0.157 -0.058/	/0.033 0.024/	/4.837 -2.369/ -2.2595	0.0193/
compactness ~ subaqueous	-165.77/	0.147/	0.096/	0.962/	Intercept	/-0.051 0.618/	/0.025 0.058/	/-2.139 10.049/	/0.0343 0
foraging + flight	-161.421 /-155.063	0.161 / 0.155	0.104 /0.111	0.968 /0.974	auho ausono founciu a	0.655 /0.673	0.06 /0.062	10.9355 /11.406	0
					subaqueous foraging	0.143/ 0.148 /0.153	0.032 0.032 /0.033	4.443/ 4.575 /4.671	U
					Flight	-0.059/ -0.056	0.025/ 0.025	-2.353/ -2.234	0.0201/ 0.0271
compactness ~ midshaft	-161.771/	0.019/	0.071/	0.962/	Intercept	0.636/	0.067/	9.007/	0.037
diameter + subaqueous foraging	-157.201 /-151.343	0.019 /0.024	0.076 /0.083	0.967 /0.974		0.6705 /0.697	0.069 /0.071	9.7115 /10.257	
					midshaft diameter	-0.031/	0.028/	-1.048/	0.2964/
						-0.019 /-0.008	0.029 /0.03	-0.672 /-0.286	0.5027 0.7754
					subaqueous foraging	0.15/	0.032/	4.606/	0
						/0.16	/0.033	/4.817	
compactness ~ subaqueous	-159.617/	0.0067/	0.069/	0.962/	Intercept	0.654/	0.067/	9.367/	0
midshaft diameter	/-149.508	/0.0096	/0.088	/0.974		/0.714	/0.07	/10.653	
					subaqueous foraging	0.147/	0.032/	4.589/	0
						/0.154	/0.032	/4.843	
					sustained flight	-0.064/	0.024/	-2.564/	0.0115/
						-0.061 /-0.057	0.025 /0.025	-2.424 /-2.304	0.0167 /0.0228
					midshaft diameter	-0.045/	0.028/	-1.542/	0.1255/
						-0.033 /-0.021	0.029 /0.03	-1.1415 /-0.743	0.25575 /0.4589
compactness ~ flight	-153.683/	0.00035/	0.001/	0.951/	Intercept	0.762/	0.05/	14.177/	0
	-149.212	0.00036	0.006	0.9585		0.802	0.052	15.546	
	/-143.207	/0.00042	/0.01	/0.907	Flight	-0.074/	0.034	-2.639/	0.0093/
					0	-0.07	0.028	-2.514	0.0131
compactness ~ sustained flight	-152.502/	0.00019/	-0.007/	0.954/	Intercept	/-0.066 0.762/	/0.028 0.051/	/-2.391 13.961/	/0.0182 0
, i i i i i i i i i i i i i i i i i i i	-148.011	0.00019/	-0.003	0.961		0.802	0.052	15.2815	
	/-142.191	0.00025	/0	/0.969	sustained flight	/0.823	/0.055	/16.001	0.0201/
					Subtanieu ingite	-0.061	0.027	-2.2335	0.02715
comportness infrequent	152 225/	0.00017/	0.011/	0.05/	Intercent	/-0.057	/0.028	/-2.128	/0.0352
subaqueous foraging	-132.235/ -147.676	0.00017/	-0.011/ -0.006	0.957 0.957	intercept	0.735	0.039/	11.29/ 12.166	U
	/-141.739	0.00019	/-0.003	/0.966		/0.756	/0.062	/12.621	0.0207/
					foraging	0.061/ 0.067	0.031/ 0.032 /0.032	2.103	0.0297/ 0.03735
compactness ~ midshaft	-148.352/	2.43E-05/	-0.038/	0.957/	Intercept	0.784/	0.063/	11.748/	0.0333
diameter	-143.656	2.24E-05	-0.036	0.963		0.8215	0.065	12.616	
	/-138.36	/3.68E-05	/-0.032	/0.97	midshaft diameter	/0.85 -0.029/	/0.06/ 0.03/	-0.909/	0.365/
						-0.017	0.031	-0.5345	0.5941
compactness ~ midshaft	-147.695/	1.75E-05/	-0.026/	0.947/	Intercept	/-0.005 0.811/	/0.032	/-0.153	/0.8787
diameter + flight	-143.5885	2.17E-05	-0.02	0.954		0.8495	0.062	13.6175	v
	/-138.059	/3.17E-05	/-0.01	/0.964	midshaft dia	/0.876	/0.065	/14.451	0.0077/
					mosnart diameter	-0.053/ -0.0405	0.03/ 0.031	-1.008/ -1.282	0.09777 0.20195
						/-0.027	/0.033	/-0.877	/0.3818
					Flight	-0.086/	0.028/	-2.981/	0.0034/
						-0.075	/0.029	-2.778 /-2.656	/0.0089

compactness ~ midshaft diameter + sustained flight	-146.096/ -141.875 /-136.412	7.87E-06/ 9.21E-06 /1.39E-05	-0.038/ -0.033 /-0.025	0.951/ 0.958 /0.967	Intercept	0.803/ 0.841 /0.868	0.061/ 0.063 /0.066	12.318/ 13.29 /14.085	0
					midshaft diameter	-0.045/ -0.033 /-0.02	0.03/ 0.031 /0.032	-1.427/ -1.05 /-0.658	0.1558/ 0.2956 /0.5114
					sustained flight	-0.072/ -0.068 /-0.063	0.027/ 0.028 /0.029	-2.579/ -2.4025 /-2.307	0.011/ 0.01765 /0.0226
compactness ~ midshaft diameter + infrequent subaqueous foraging	-145.299/ -140.9405 /-135.251	5.29E-06/ 5.77E-06 /7.78E-06	-0.045/ -0.041 /-0.036	0.949/ 0.955 /0.964	Intercept	0.727/ 0.758 /0.786	0.068/ 0.069 /0.071	10.225/ 10.9115 /11.521	0
					midshaft diameter	-0.033/ -0.021 /-0.009	0.03/ 0.031 /0.032	-1.063/ -0.688 /-0.296	0.2898/ 0.49245 /0.7674
					infrequent subaqueous foraging	0.063/ 0.069 /0.072	0.031/ 0.032 /0.033	1.991/ 2.144 /2.241	0.0267/ 0.0338 /0.0485

Supplementary Table 4. Phylogenetic regressions comparing explanations of bone density in dorsal ribs using size and ecological traits (all values). Explanatory variables are combined in all possible ways in different linear models. Linear models are ordered from best to worst. Values organized as minimum/**median**/maximum from the 100 phylogenies used for the phylogenetic regressions. Akaike weights are derived from summarized maximum, median, and minimum values of AICc. These analyses are two-sided and no adjustments were applied for multiple comparisons.

Taxon	Ecology
Antetonitrus	Graviportal
Callophoca obscura	Deep diver
Ichthyosaur sp	Deep diver
Ichthyosaurus	Deep diver
Leptophoca proxima	Deep diver
Alamosaurus	Graviportal
Stegosaurus sp.	Graviportal
Mammuthus sp.	Graviportal
Elephas maximus	Graviportal
Loxodonta africana	Graviportal
Ceratotherium simum	Graviportal
Dicerorhinus sumatrensis	Graviportal
Rhinoceros sondaicus	Graviportal
Rhinoceros unicornis	Graviportal
Brachyodus onoideum	Deep diver
Hexaprotodon garyam	Graviportal
Metryorhynchus	Deep diver

Supplementary Table 5. List of deep diving and graviportal taxa included in the dataset of femoral bone density.

Taxon	Ecology
Dallasaurus turneri	Deep diver
Clidastes sp.	Deep diver
Tylosaurus sp.	Deep diver
Platecarpus sp.	Deep diver
Metriorhynchid indet.	Deep diver

Phoca vitulina	Deep diver
Balaenoptera brydei	Deep diver
Elephas maximus	Graviportal
Rhinoceros sondaicus	Graviportal
Ceratotherium simum	Graviportal
Orcinus orca	Deep diver
Lissodelphis borealis	Deep diver
Monodon monoceros	Deep diver
Delphinapterus leucas	Deep diver
Behemotops katsuiei	Deep diver
Desmostylus hesperus	Deep diver
Mollesaurus	Graviportal
Alamosaurus	Graviportal
Callophoca obscura	Deep diver
Spinophorosaurus nigerensis	Graviportal
Apatosaurus sp.	Graviportal
Diplodocus sp.	Graviportal
Brachiosaurus sp.	Graviportal
Miragaia longicollum	Graviportal
Mammuthus primigenius	Graviportal
Rhinoceros unicornis	Graviportal

Supplementary Table 6. List of deep diving and graviportal taxa included in the dataset of dorsal rib bone density.

Phylogenetic character coding of the *Spinosaurus* **neotype** for the two analyses (neotype as a separate OTU [in the phylogenetic dataset published by Malafaia et al.¹] or included in the *Spinosaurus* OTU [in the dataset published by Rauhut and Pol²]).

Spinosaurus (neotype only; Malafaia et al.¹)

Spinosaurus (OTU; Rauhut and Pol²)

Phylogenetic analyses

The dataset published by Malafaia et al.¹ was chosen because it includes the majority of all known spinosaurid taxa scored on the basis of individual specimens rather than amalgamated into genera or species. This dataset is the latest iteration of that which was originally presented by Evers et al.³. The neotype skeleton of *Spinosaurus* (FSAC-KK 11888) was coded and included as a separate OTU in this dataset. The analysis found 1,150 most parsimonious trees (MPTs) with a length of 1,101 steps. The strict consensus is largely unresolved. The majority rule consensus shows the clade Spinosauridae as the sister taxon of other megalosaurs. The 'traditional' dichotomy between Baryonychinae and Spinosaurinae is recovered. Baryonychinae is composed of Suchomimus, Baryonyx, and Sigilmassasaurus, whereas all other spinosaurids, including the holotype and neotype of *Spinosaurus*, are recovered within Spinosaurinae. These results, in combination with the multiple anatomical apomorphies shared between the holotype and neotype, support the previous attribution of FSAC-KK 11888 to Spinosaurus *aegyptiacus*^{4,5,6,7}. Although these results might superficially appear to support the validity of the taxon Sigilmassasaurus, we suggest that taphonomic bias and minimal overlapping remains with the Spinosaurus neotype coincidentally relates Sigilmassasaurus—the holotype of which is a cervical vertebra—with the only other spinosaurids that preserve relatively complete cervical series (Baryonyx and Suchomimus).

Based on these results and observations, we used the dataset recently published by Rauhut and Pol² to revisit the phylogenetic relationships of Spinosauridae within Tetanurae. *Vallibonavenatrix*¹, a spinosaurine from Eurasia, was added to the data matrix, and the neotype of *Spinosaurus aegyptiacus* was incorporated into the *Spinosaurus* OTU. The analyses resulted in 3,210 MPTs with a length of 1,371 steps. Our phylogenetic results found a major rearrangement of tetanuran relationships, as recently recovered by other studies². Averostra, Ceratosauria, and Tetanurae are recovered as monophyletic. Within Tetanurae, a monophyletic Carnosauria is found to be the sister group of Coelurosauria. Megalosauroidea is divided into subclades that are found as subsequent outgroups of a monophyletic Allosauroidea. Spinosauridae is recovered as the basal-most clade within Tetanurae.

Bremer and bootstrap support values are generally found to be weak, leading multiple nodes to collapse and providing only minimal support for others. In order to identify the reasons behind the instability of multiple nodes within the phylogeny, we applied tree pruning to identify unstable taxa in the dataset. We identified 16 unstable taxa, as follows: *Irritator*, *Angaturama*, *Coelurus*, *Piveteausaurus*, *Megalosaurus*, *Magnosaurus*, *Leshansaurus*, *Duriavenator*,

Saurophaganax, Poekilopleuron, Lourinhanosaurus, Concavenator, Carcharodontosaurus, Acrocanthosaurus, Neovenator, and Metriacanthosaurus. Low support for the phylogenetic results therefore arises from a combination of fragmentary taxa, the high degree of homoplasy among early tetanurans, and the rapid divergence of the major clades composing Tetanurae, as previously quantified in other studies⁵. On the other hand, Spinosauridae and the dichotomy between Baryonychinae and Spinosaurinae are relatively well supported. Synapomorphies of Spinosauridae include the following: (26) promaxillary foramen present (0->1); (35) nasal participation in antorbital fossa (0->1); (41) morphology of lateral lamina of ventral process of lacrimal invaginated dorsally and convex ventrally (0->1); (49) anterior end of jugal excluded from internal antorbital fenestra (0->1); (66) frontal comprises one third or more of dorsal margin of orbit (0->1); (125) morphology of posterior margin of dentary posteroventrally sloping with incision for mandibular fenestra (0->1); (155) anterior articular facet of cervical vertebrae flat (0>1); (194) centrum length relative to height in dorsal vertebrae less than 2 (0>1); (201) anterior morphology of ventral surface of caudal vertebrae grooved (0->1); (229) longitudinal torsion of humerus present (0->1); (256) proximal end of metacarpal III triangular (0->1); and (302) ischia distally fused in adults (0->1). Baryonychinae is supported by a single synapomorphy: (227) prominent fossa on ventral surface of coracoid posteroventral to glenoid (0->1). Members of Spinosaurinae share the following characters: (30) posterior end of maxillary tooth row positioned anterior to orbit (0->1); (81) quadrate anteroventrally inclined in lateral view (0->1); (84) ventral rim of base of paraoccipital process situated at mid-height of occipital condyle or more ventrally (0->1); (86) dorsoventral depth of median ridge of supraoccipital greater than occipital condyle length (0>1); (208) anterior process of cervical ribs short (1>0); (239) radius shaft straight (0>1); (301) distal end of ischium expanded (0>1); (312) development of medial epicondylar ridge of femur (0 > 1); (332) orientation of distal condyle of astragalus 30–45 degrees anterior (0->1). The phylogenetic relationships found in these analyses were used to build the informal consensus tree.

Supplementary Figure 1. Phylogenetic relationships of Spinosauridae. Strict and majority rule (50% cutoff) consensus trees representing the phylogenetic relationships of Spinosauridae based on the modified datasets of Malafaia et al.¹ and Rauhut and Pol², respectively. Bremer (>1) and bootstrap (>50%) support values are reported in the strict consensus trees.

Osteohistological description of Condorraptor, Suchomimus, Baryonyx and Spinosaurus.

Condorraptor

The femur shows an open medullary cavity, a plesiomorphic condition among predatory dinosaurs. Woven-fibrolamellar bone composes the cortical tissue. The primary vascularization is radial in its arrangement. Rare secondary osteons are present in the innermost cortex. At least six lines of arrested growth (LAGs) are present and decrease in spacing towards the outer surface of the bone. An external fundamental system (EFS) is not present. We suggest that this individual of *Condorraptor* is somatically immature.

<u>Baryonyx</u>

The dorsal rib of *Baryonyx* shows a remarkably rounded outline. Dinosaur ribs are usually ellipsoidal or triangular in section. Rounded outlines are generally found in osteosclerotic animals, such as marine mammals and reptiles. A clear medullary cavity is absent, being filled with trabecular bone. The transition from the inner spongiosa to the compact cortex is gradual. The cortex microstructure is composed of woven-fibrolamellar bone. Vascularization is longitudinally oriented and decreases in density towards the outer cortex. Remodeling and secondary osteons are present in the innermost cortex and decrease towards the outer surface of the rib. LAGs rapidly decrease in spacing towards the surface of the bone, culminating in an EFS. The holotype of *Baryonyx* was somatically mature at the moment of death.

Suchomimus

The femora of specimens G51 and G94 were investigated. Both show an open medullary cavity. Whereas G94 exhibits a sudden transition between the medullary cavity and the bony cortex, G51 is characterized by a gradual transition due to heavy remodeling and erosional cavities in the inner cortex. The bone tissue is composed of woven-fibrolamellar bone. Primary vascularization shows a mix of laminar and reticular orientation, with increasing and decreasing organization and density, respectively, towards the outer surface. Remodeling, including secondary osteons, is present in both femora, but is much more accentuated and widespread in G51. The distance between LAGs tends to decrease towards the surface of both femora. An early EFS, potentially represented by a single non-vascularized zone in the outermost part of the cortex, is present in G51 but absent in G94. Our data suggest that G51 and G94 were somatically mature and immature, respectively.

<u>Spinosaurus</u>

The ontogenetic analysis performed for FSAC-KK 11888 has been published as supplementary information by Ibrahim et al.^{4,7}. Here, we report a general description of the osteohistology characterizing the neotype specimen. Osteohistological analyses were performed on a dorsal vertebral neural spine, dorsal rib, femur, and fibula. In general, none of these skeletal elements shows an open medullary cavity. A dense network of trabeculae is present in the dorsal rib and neural spine. Woven-fibrolamellar bone characterizes all investigated skeletal elements. Vascularization varies from reticular to longitudinal and decreases in density towards the surface of the bone in all investigated samples. Remodeling and haversian systems are common in the inner bone cortex and reach the bone surface in the fibula. Spacing between LAGs tends to decrease towards the outer cortex. An EFS is not found in any of the investigated skeletal elements.

Supplementary Figure 2. Ontogenetic assessment of carnosaurs sampled in this study. (a) Thin section of outer cortex of femur of *Condorraptor* (MPEF-PV 1691)⁸; (b) Thin section of outer bone tissue in dorsal rib of holotype of *Baryonyx* (NHM R 9951)⁹; (c) Thin section of fibula of *Spinosaurus* neotype (FSAC-KK 11888)^{4,7}; (d) Thin section of femur of somatically immature individual of *Suchomimus* (G94)¹⁰; (e) Thin section of femur of somatically mature *Suchomimus* (G51)¹⁰. Abbreviations: EFS, external fundamental system; LAGs, lines of arrested growth; po, primary osteons; so, secondary osteons. Arrows indicate LAGs.

Taxonomic implications of ontogenetic assessment of Baryonyx and Suchomimus

Osteohistological examination of the holotypes of *Baryonyx* (dorsal ribs)⁹ and *Suchomimus* (femur)¹⁰ and the neotype of *Spinosaurus* (dorsal rib, dorsal neural spine, femur, fibula)^{4,7} was undertaken to infer their ontogenetic stages (Supplementary Figure 5). It has been previously argued that *Baryonyx* and *Suchomimus* represent different ontogenetic stages of the same taxon^{*e.g.*14} and that anatomical differences observed between them are the result of ontogeny; other studies have maintained the two forms as distinct taxa^{*e.g.*10,11}. Our results show that the holotype of *Baryonyx* and at least one individual referred to *Suchomimus* (G51) are somatically mature, strengthening – in line with recent publications⁵ - their taxonomic and systematic validity. The neotype of *Spinosaurus* is immature close to somatic maturity (see above for discussion and ontogenetic inference of these and other tetanuran specimens). These results also confirm the smaller body sizes of stratigraphically older spinosaurids, such as *Baryonyx*, with a progressive increase towards gigantism having its highest expression in the most derived taxon, *Spinosaurus*.

Skeletal reconstructions

The skeletal reconstruction of *Spinosaurus* is based on the neotypic and holotypic skeletons, whereas that of *Baryonyx* is based only on the holotype. The reconstruction of *Suchomimus* is based on three previously published individuals (G51, G94, and G70)^{4,7,10}. As in *Baryonyx*, the caudal series of *Suchomimus* is highly fragmentary; therefore, the reconstruction of this region is speculative and inspired by Ibrahim et al.⁷ and Barker et al.¹².

Supplementary Figure 3: Femur of *Baryonyx* in different views (a-c) and corrected translation in binary image for density analyses of three different cross sections (d-f). Because the femoral diaphysis is eroded and partially crushed, the selected cross section for the analyses performed in this study (e) was taken closer to the epiphyses of the femur. Overall, our quantification remains conservative for this taxon: regions closer to the epiphyses generally show a lower degree of bone density among amniotes^{13,14,15}. Additionally, all bone densities quantified throughout the femur never decreased below 0.8, a value that distinguishes modern osteosclerotic archosaurs, such as penguins and crocodilians, from other terrestrial and volant taxa.

Predicted class	LAMBDA-> 0.06			
Taxa	Median probability - subaqueous forager	N predicted as subaqueous forager (100 trees)		
Iberosuchus	0.95	100		
Tenontosaurus	0.47	0		
Unnamed noasaurid from Kem Kem group	0	0		
Unnamed averostran from Kem Kem group	0.57	100		
Spinosaurus	1	100		
Suchomimus	0.31	0		
Baryonyx	0.98	100		
Eustreptospondylus	0	0		
Megalosaurus	0.35	0		
Gallimimus_sp	0.23	0		
Rativates	0.09	0		
Halszkararaptor	0.03	0		
Mirusavis	0.05	0		
Iteravis	0.04	0		
Vegavis	0.67	100		

Supplementary Table 7. Results of the phylogenetically flexible discriminant analysis based on femoral data for selected extinct taxa. *Baryonyx* and *Spinosaurus* are the only taxa consistently found to be subaqueous foragers. Correct classification rate varies between 84 and 85% (87% and 80% accuracy rate for subaqueous foraging and non-subaqueous foraging, respectively).

Predicted class	LAMBDA-> 0.07		
Таха	Median probability - subaqueous forager	N predicted as subaqueous forager (100 trees)	
Iberosuchus	0.99	100	
Tenontosaurus	0.46	0	
Unnamed noasaurid from Kem Kem group	0	0	
Unnamed averostran from Kem Kem group	0.58	100	
Spinosaurus	1	100	
Suchomimus	0.25	0	
Baryonyx	1	100	
Eustreptospondylus	0	0	
Megalosaurus	0.32	0	
Gallimimus_sp	0.1	0	
Rativates	0.01	0	
Halszkararaptor	0	0	
Mirusavis	0	0	
Iteravis	0	0	
Vegavis	0.63	100	

Supplementary Table 8. Results of the phylogenetically flexible discriminant analysis based on femoral data for selected extinct taxa excluding pelagic and graviportal taxa from the dataset. *Baryonyx* and *Spinosaurus* are the only taxa consistently found to be subaqueous foragers. Correct classification rate equal to 90% (88% and 91% accuracy rate for subaqueous foraging and non-subaqueous foraging, respectively).

Predicted class	LAMBDA-> 0.07				
Taxa	Median probability - subaqueous	N predicted as subaqueous forager			
	forager	(100 trees)			
Baryonyx	0.96	100			
Spinosaurus	0.95	100			

Supplementary Table 9. Results of the phylogenetically flexible discriminant analysis based on dorsal rib data for selected extinct taxa. *Baryonyx* and *Spinosaurus* are the only taxa consistently found to be subaqueous foragers. Correct classification rate varies between 83% and 84% (69% and 88% for subaqueous foraging and non-subaqueous foraging, respectively).

Predicted class	LAMBDA-> 0.02				
Taxa	Median probability - subaqueous	N predicted as subaqueous forager			
	forager	(100 trees)			
Baryonyx	1	100			
Spinosaurus	1	100			

Supplementary Table 10. Results of the phylogenetically flexible discriminant analysis based on dorsal rib data for selected extinct taxa excluding pelagic and graviportal taxa from the dataset. *Baryonyx* and *Spinosaurus* are the only taxa consistently found to be subaqueous foragers. Correct classification rate equal to 90% (74% and 94% for subaqueous foraging and non-subaqueous foraging, respectively).

Supplementary references

- 1. Malafaia, E., et al. A new spinosaurid theropod (Dinosauria: Megalosauroidea) from the upper Barremian of Vallibona, Spain: Implications for spinosaurid diversity in the Early Cretaceous of the Iberian Peninsula. *Cretaceous Research* **106**, 104221 (2020).
- 2. Rauhut, O. W. M., & Pol, D. Probable basal allosauroid from the early Middle Jurassic Cañadón Asfalto Formation of Argentina highlights phylogenetic uncertainty in tetanuran theropod dinosaurs. *Scientific Reports* **9**, 1-9 (2019).
- 3. Evers, S. W., Rauhut, O. W. M., Milner, A. C., McFeeters, B., & Allain, R. A reappraisal of the morphology and systematic position of the theropod dinosaur *Sigilmassasaurus* from the "middle" Cretaceous of Morocco. *PeerJ* **3**, e1323 (2015).
- 4. Ibrahim, N., et al. Semiaquatic adaptations in a giant predatory dinosaur. *Science* **345**, 1613-1616 (2014).
- 5. Ibrahim, N., et al. Geology and paleontology of the Upper Cretaceous Kem Kem Group of eastern Morocco. *ZooKeys* **928**, 1-216 (2020).
- 6. Smyth, R. S., Ibrahim, N., & Martill, D. M. *Sigilmassasaurus* is *Spinosaurus*: a reappraisal of African spinosaurines. *Cretaceous Research* **114**, 104520 (2020).

- 7. Ibrahim, N., et al. Tail-propelled aquatic locomotion in a theropod dinosaur. *Nature* **581**, 67-70 (2020).
- 8. Rauhut, O. W. M. Osteology and relationships of a new theropod dinosaur from the Middle Jurassic of Patagonia. *Palaeontology* **48**, 87-110 (2005).
- 9. Charig, A. J., & Milner, A. C. *Baryonyx*, a remarkable new theropod dinosaur. *Nature* **324**, 359-361 (1986).
- Sereno, P. C., et al. A long-snouted predatory dinosaur from Africa and the evolution of spinosaurids. *Science* 282, 1298-1302 (1998).
- Sues, H. D., Frey, E., Martill, D. M., & Scott, D. M. *Irritator challengeri*, a spinosaurid (Dinosauria: Theropoda) from the Lower Cretaceous of Brazil. *Journal of Vertebrate Paleontology* 22, 535-547 (2002).
- 12. Barker, C. T., et al. New spinosaurids from the Wessex Formation (Early Cretaceous, UK) and the European origins of Spinosauridae. *Scient. Rep.* **11**, 1-15 (2021).
- 13. Erickson, G. M. Assessing dinosaur growth patterns: a microscopic revolution. *Trends in Ecology* & *Evolution* **20**, 677-684 (2005).
- 14. Houssaye, A. Bone histology of aquatic reptiles: what does it tell us about secondary adaptation to an aquatic life?. *Biological Journal of the Linnean Society* **108**, 3-21 (2013).
- 15. Houssaye, A. "Pachyostosis" in aquatic amniotes: a review. *Integrative Zoology*, **4**, 325-340 (2009).