In the format provided by the authors and unedited.

The amplitude and origin of sea-level variability during the Pliocene epoch

G. R. Grant^{1,2}*, T. R. Naish¹, G. B. Dunbar¹, P. Stocchi³, M. A. Kominz⁴, P. J. J. Kamp⁵, C. A. Tapia⁶, R. M. McKay¹, R. H. Levy^{1,2} & M. O. Patterson⁷

¹Antarctic Research Centre, Victoria University of Wellington, Wellington, New Zealand. ²GNS Science, Lower Hutt, New Zealand. ³Coastal Systems Department, Royal Netherlands Institute for Sea Research, and Utrecht University, Den Burg, The Netherlands. ⁴Department of Geological and Environmental Sciences, Western Michigan University, Kalamazoo, MI, USA. ⁵School of Science, University of Waikato, Hamilton, New Zealand. ⁶Departamento de Obras Civiles y Geologia, Facultad de Ingenieria, Universidad Catolica de Temuco, Temuco, Chile. ⁷Binghamton University, State University of New York, Binghamton, NY, USA. *e-mail: g.grant@gns.cri.nz

Supplementary Fig. 1 Detailed stratigraphy of the PlioSeaNZ record. A Sequence stratigraphic and lithostratigraphic framework of the Siberia-1 core and Rangitikei River Section, with magnetostratigraphic and tephrochronological age datums. A Lithology, **b** Percentage sand, and water depth estimates from **c** benthic foramininferal Modern Analogue Technique ⁶ and **d** the grain size -water depth technique presented in this paper, with **e** sediment cycle numbers and **f** grain size histograms of each lithology.

Supplementary Fig. 2. Sedimentary and climatic cyclicity of the Siberia-1 core ⁶. Cyclicity is highlighted by a lithology, b lithofacies, c grain size, physical property logs d Natural gamma-ray (NGR) and e Magnetic susceptibility, f percentage planktic foraminifera, g pollen assemblages and h water depth. All are described in ref. 7.

Supplementary Fig. 3 Geologic map of central-northern part of Whanganui Basin and cross-sections through Siberia-1 core and the Rangitikei pseudo-well. Stratigraphic

thickness of mapped units from core top to Mesozoic basement are given for Siberia-1 and for the Rangitikei pseudo-well. An estimate of the section eroded from the top of

Siberia-1 is shown in the upper cross-section (see Methods).

Supplementary Fig. 4 Location map⁴² of the wave buoy used and modern transect of Monterey Bay. Used to determine wave height (Hs) and peak wave period (Tp) for sea floor near-bed velocity calculations⁴¹ and modern grain size transect for the Monterey Bay dataset³⁵ (Extended Data Fig. 1).

Supplementary Fig. 5. Location map⁴² of the hindcast wave models and modern transects of Whanganui and Manawatu. Used to determine wave height and period for sea floor near-bed velocity calculations^{40,42} and grain size transects for the Whanganui³⁹ and Manawatu³⁶ coastlines (Extended Data Fig. 1).