
Supplementary Information for the paper

Warning of a forthcoming collapse of the Atlantic meridional
overturning circulation

by Peter Ditlevsen and Susanne Ditlevsen

S1 Maximum likelihood estimators of the Ornstein-Uhlenbeck process

To obtain eq. (4) in the paper, we need the maximum likelihood estimator (MLE) of the approximate model.
The approximate model is an Ornstein-Uhlenbeck (OU) process, defined as the solution to the equation

dXt = −α(Xt − µ)dt+ σdBt. (S1)

This is a Gaussian process with well-known properties [1, 2]. The variance is γ2 = σ2/2α and the ∆t-lag
autocorrelation is ρ = e−α∆t. The likelihood function of the parameters given observations (x0, x1, . . . , xn)
is the product of the transition densities

Ln(θ) =
n∏

i=1

p(△, xi−1, xi; θ) (S2)

where θ = (µ, ρ, γ2). Here, xi = x(ti) and ∆t = ti − ti−1. The transition density is normal with conditional
mean E(Xi|Xi−1 = xi−1) = xi−1ρ+ µ(1− ρ) and conditional variance γ2(1− ρ2),

p(△, xi−1, xi; θ) =
1√

2πγ2(1− ρ2)
exp

(
− (xi − xi−1ρ− µ(1− ρ))2

2γ2(1− ρ2)

)
, (S3)

see [1, 2] for details. The likelihood function is the joint probability of the observed data viewed as a function
of the parameters of the statistical model, in this case discrete observations from the Ornstein-Uhlenbeck
process. Considering the observed sample as fixed, the likelihood is a function of the parameters. The
likelihood principle states that all the information about the parameter θ is given in the likelihood function.
The maximum likelihood estimator is the value of θ which maximizes the probability of observing the given
sample. In practice, the maximum of the likelihood function is found by taking the derivative with respect
to the parameters (the score) and equate it to zero (the likelihood equation). For further details about
likelihood theory, see any textbook in mathematical statistics, for example [3].

The maximum likelihood estimators (MLEs) derived from eqs. (S2) and (S3) are

µ̂ =
1

n

n∑
i=1

xi +
ρ̂

n(1− ρ̂)
(xn − x0) ≈

1

n+ 1

n∑
i=0

xi ≡ x̄, (S4)

ρ̂ =

∑n
i=1(xi − µ̂)(xi−1 − µ̂)∑n

i=1(xi−1 − µ̂)2
, (S5)

γ̂2 =

∑n
i=1 (xi − xi−1ρ̂− µ̂(1− ρ̂))

2

n (1− ρ̂2)
, (S6)

the symbol ˆ indicates an estimator. These are obtained as follows. The score function is the vector of
derivatives of the log-likelihood function with respect to the parameters. The MLE is given as solution to
the likelihood equations ∂θk logLn(θ) = 0, where θk is either µ, ρ or γ2. The score function is

∂

∂µ
logLn(θ) =

(1− ρ)

γ2(1− ρ2)

n∑
i=1

(xi − xi−1ρ− µ(1− ρ)),

∂

∂ρ
logLn(θ) =

nρ

1− ρ2
+

∑n
i=1(xi − xi−1ρ− µ(1− ρ))(xi−1 − µ)

γ2(1− ρ2)

−
ρ
∑n

i=1(xi − xi−1ρ− µ(1− ρ))2

γ2(1− ρ2)2
,

∂

∂γ2
logLn(θ) = − n

2γ2
+

∑n
i=1(xi − xi−1ρ− µ(1− ρ))2

2γ4(1− ρ2)
,
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whose zeros provide the MLEs in equations (S4)–(S6). It requires that
∑n

i=1(xi− µ̂)(xi−1− µ̂) > 0, otherwise
the MLE does not exist.

The Fisher Information I of the MLEs equals minus the expectation of the Hessian H of the log-likelihood
function. For the OU log-likelihood, the elements of H are given by

∂2

∂µ2
logLn(θ) = − n(1− ρ)

γ2(1 + ρ)
,

∂2

∂µρ
logLn(θ) =

n∑
i=1

(C1(xi−1 − µ) + C2(xi − xi−1ρ− µ(1− ρ))) ,

∂2

∂µγ2
logLn(θ) = C3

n∑
i=1

(xi − xi−1ρ− µ(1− ρ)),

∂2

∂ρ2
logLn(θ) =

n(1 + ρ2)

(1− ρ2)2
+ C4

n∑
i=1

(xi − xi−1ρ− µ(1− ρ))(xi−1 − µ)− 1

γ2(1− ρ2)

n∑
i=1

(xi−1 − µ)2

− 1 + 3ρ2

γ2(1− ρ2)3

n∑
i=1

(xi − xi−1ρ− µ(1− ρ))2,

∂2

∂ργ2
logLn(θ) = C5

n∑
i=1

(xi − xi−1ρ− µ(1− ρ))(xi−1 − µ) +
ρ

γ4(1− ρ2)2

n∑
i=1

(xi − xi−1ρ− µ(1− ρ))2,

∂2

∂(γ2)2
logLn(θ) =

n

2γ4
−

∑n
i=1(xi − xi−1ρ− µ(1− ρ))2

γ6(1− ρ2)
,

where Ci, i = 1, . . . , 5, are deterministic constants that will disappear when taking expectations. Using that
E(Xi − µ)2 = γ2, E(Xi −Xi−1ρ− µ(1− ρ))2 = γ2(1− ρ2) and E(Xi −Xi−1ρ− µ(1− ρ))(Yi−1 − µ) = 0, we
obtain the Fisher Information

I = −EH = n


(1−ρ)

γ2(1+ρ) 0 0

0 1+ρ4

(1−ρ2)2
ρ

γ2(1−ρ2)

0 ρ
γ2(1−ρ2)

1
2γ4

 .

The inverse of the Fisher Information provides the asymptotic covariance matrix,

1

n


γ2(1+ρ)
(1−ρ) 0 0

0 1− ρ2 2ργ2

0 2ργ2 2γ4(1+ρ4)
1−ρ2

 .

The diagonal elements provide the asymptotic variances of µ̂, ρ̂ and γ̂2, respectively. For α∆t ≪ 1 we
approximate (1 + ρ4)/(1− ρ2) ≈ 1/(α∆t) and 1− ρ2 ≈ 2α∆t and obtain

Var(γ̂2) ≈ 2(γ2)2

αTw
=

σ4

2α3Tw
; Var(ρ̂) ≈ 2α∆t2

Tw
,

where Tw = n∆t is the observation window.

S2 Estimator of the tipping time

The process is given as solution to

dXt = −(A(Xt −m)2 + λt)dt+ σdBt, (S7)

λt = λ0(1−Θ[t− t0](t− t0)/τr). (S8)

and we wish to estimate the parameters θ = (A,m, λ0, τr, σ) from observations (x0, x1, . . . , xn) before time
t0 and observations (y0, y1, . . . , yn) after time t0, of process Xt defined by (S7). This equation cannot
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be explicitly solved, and the exact distribution is not explicitly known. A standard way to solve this is
approximating the transition density by a Gaussian distribution obtained by the Euler-Maruyama scheme.
However, the estimators obtained from the Euler-Maruyama pseudo-likelihood are known to be biased,
especially in non-linear models [4]. Instead we use a two-step procedure: First we estimate α0 = 2

√
A|λ0|,

µ0 = m +
√
|λ0|/A and σ2 from the stationary part before time t0, using estimators (S4) – (S6), where

α0 = − log(ρ)/∆t and σ2 = 2α0γ
2. This yields estimates λ0(A) = −α2

0/4A and m(A) = µ0 − α0/2A as
a function of parameter A and the estimated parameters. The two remaining parameters A and τr are
then estimated from the data after time t0, where we no longer can use the OU process, since the linear
approximation breaks down when the tipping point is approached. Simplifying by assuming that λ is constant
between observations, i.e., piecewise constant and jumping every month where new AMOC observations are
available, we obtain transition densities that are non-linear transformations of Gaussian densities, making the
inference problem tractable as follows. We use a pseudo-likelihood induced by the Strang splitting scheme,
shown to be robust for highly non-linear models [4]. Consider the two subsystems

dX
(1)
t = −α(λ)(X

(1)
t − µ(λ))dt+ σdBt, (S9)

dX
(2)
t = −A(X

(2)
t − µ(λ))2dt, (S10)

where α(λ) = 2
√

A|λ| and µ(λ) = m +
√

|λ|/A. The drift of subsystem (S9) is the Taylor expansion of
the drift in eq. (S7) to first order around the fixed point µ(λ) and is an OU process, of which we know
the distribution and the likelihood (see S1). Eq. (S10) is a deterministic equation with the non-linear part,
which solution is also known. We obtain the following two flows:

ϕ
(1)
∆ (x) := (X

(1)
t+∆ | X(1)

t = x) = xe−α(λ)∆ + µ(λ)(1− e−α(λ)) + ξt

ϕ
(2)
∆ (x) := (X

(2)
t+∆ | X(2)

t = x) =
µ(λ)A∆(x− µ(λ)) + x

A∆(x− µ(λ)) + 1

where ξt ∼ N(0,Ω∆), Ω∆ = σ2

2α(λ) (1− e−2α(λ)∆).

The Strang splitting [4] then approximates by

(Xt+∆ | Xt = x) =
(
ϕ
(2)
∆/2 ◦ ϕ

(1)
∆ ◦ ϕ(2)

∆/2

)
(x) = ϕ

(2)
∆/2

(
e−α(λt)∆ϕ

(2)
∆/2(x) + µ(λt)(1− e−α(λt)∆) + ξt

)
, (S11)

which is defined for all x > µ(λt)− 2/A∆. Since we are only interested in simulating the process up to the
time where Xt crosses the separatrix between the two attractors, which happens for x < m, we require that
m > m +

√
|λt|/A − 2/A∆ ≥ m +

√
|λ0|/A − 2/A∆, i.e., ∆ < 2/

√
A|λ0| = 4/α0. This is always fulfilled,

since ∆ = 1/12 and α0 is estimated to be less than 4.
The transition density (S11) is a nonlinear transformation of a Gaussian random variable, leading to the

pseudo-loglikelihood function (up to a constant)

− logLn(A, τr) =
1

2

n∑
i=1

log(Ω∆) +

n∑
i=1

Z2
i

2Ω∆
−

n∑
i=1

log | d
dx

(ϕ
(2)
∆/2)

−1(yi)| (S12)

where
Zi = (ϕ

(2)
∆/2)

−1(yi)− e−α(λti−1
)∆ϕ

(2)
∆/2(yi−1) + µ(λti−1)(1− e−α(λti−1

)∆),

see [4] for details. The first two terms in (S12) are the standard terms from a Gaussian likelihood, the last
term originates from the non-linear transformation. Estimates of parameters A, τr are then obtained by
minimizing (S12). Since division by A enters the calculations of λ0 and m and thus the pseudo-likelihood,
estimates are sensitive to small values of A. We therefore regularize the optimization problem by adding a
penalization term on small values of A. The term −pn(1/A − 1) is added to (S12) for A < 1, where p ≥ 0
is a penalization parameter determined by cross-validation on simulated data sets by minimizing the mean
squared distance between the estimated ramping time on each data set to the value of the ramping time
used in the simulation. The optimal value was p = 0.004.

The parameter estimates are found numerically by minimizing − logLx(θ). For this we apply the opti-
mizer optim in R, using the Nelder-Mead algorithm.

Confidence intervals are obtained by parametric bootstrap: 1000 repetitions of the model are simulated
with the estimated parameters, and on each synthetic data set, parameters are estimated. The empirical
quantiles of the 1000 estimates thus obtained are used to construct confidence intervals.
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