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Supplementary Note on Methods 
 

NIHR BioResource Rare Disease Collaboration (NIHR-RD) 
Study and cohort descriptions 

The National Institute for Health Research BioResource Rare Disease Collaboration study 

(NIHR-RD) involved whole-genome sequencing (WGS) of 13,037 individuals to a clinical 

standard. A detailed description of the study has been previously published1. The study 

participants included 7,388 individuals assigned to one of 15 rare disease domains, 4,835 

individuals recruited as part of the Rare Diseases Pilot of Genomics England, 764 individuals 

from the UK Biobank with extreme red blood cell indices and 50 control individuals. The 15 

rare disease domains include: bleeding / thrombotic / platelet disorders (BPD), cerebral small 

vessel disease (CSVD), Ehlers-Danlos syndrome (EDS), hypertrophic cardiomyopathy 

(HCM), intrahepatic cholestasis of pregnancy (ICP), Leber Hereditary Optic Neuropathy 

(LHON), multiple primary malignant tumours (MPMT), pulmonary arterial hypertension (PAH), 

primary immune disorders (PID), primary membranoproliferative glomerulonephritis (PMG), 

inherited retinal disorders (IRD), neurological and developmental disorders (NDD), 

neuropathic pain disorders (NPD), stem cell and myeloid disorders (SMD) and steroid 

resistant nephrotic syndrome (SRNS). 

The ICP patients were recruited from 14 UK consultant-led antenatal NHS clinics and 

from three international units in Argentina, Australia, and Sweden. All patients were recruited 

based on a diagnosis of severe ICP, defined as onset of pruritus prior to 32 weeks gestation 

and serum bile acids 40µmol/L. Women were excluded from the study if they had other known 

causes of hepatic dysfunction such as haemolysis, elevated liver enzymes and low platelets 

(HELLP) syndrome, preeclampsia, acute fatty liver of pregnancy, acute viral hepatitis, 

confirmed primary biliary cholangitis or any cause of biliary obstruction on ultrasound. No 

genetic pre-screening for causal variants in known genes was applied before enrolment. 

Controls were drawn from participants in the non-ICP NIHR-RD cohorts. Individuals in the 

non-ICP cohorts were not specifically screened to exclude ICP; the prevalence of ICP in these 

cohorts is not expected to exceed the baseline population prevalence of the disease. None of 

the other disease domains recruited were expected to have aetiopathological overlap with 

ICP. 

The NIHR-RD study conformed to the guidelines outlined by the 1975 Declaration of 

Helsinki and permission was obtained from the Ethics Committees of the East of England 

Cambridge South National Research Ethics Committee (REC 13/EE/0325), the Hammersmith 

Hospitals NHS Trust, London (REC 97/5197, 08/H0707/21���WKH�:RPHQ�DQG�&KLOGUHQ¶V�+HDOWK�

Network Human Research Ethics Committee South Australia (HREC/15/WCHN/189), the 
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Swedish Regional Ethics committee (dnr 162-16, 2016-04-����DQG�WKH�5DPyQ�6DUGi�0RWKHU¶V�

DQG�&KLOGUHQ¶V�+RVSLWDO�HWKLFV�FRPPLWWHH��0616)���-2016). 

 

Whole-genome sequencing, variant calling and quality control 

Full details of the methods employed for whole-genome sequencing (WGS), variant calling 

and quality control (QC) for the NIHR-RD dataset have been described previously1,4. In 

summary, DNA was extracted from whole blood, underwent QC assessment and was 

prepared using the Illumina TruSeq DNA PCR-Free sample preparation kit. 100-150 base pair 

paired-end sequencing was undertaken using an Illumina HiSeq 2500 or HiSeq X. Sequence 

reads were aligned to the Homo Sapiens NCBI GRCh37 assembly using the Illumina Isaac 

Aligner5 (version SAAC00776.15.01.27). The minimum coverage required per sample was at 

OHDVW�����RI�WKH�DXWRVRPDO�JHQRPH�DW����;�UHDG�GHSWK��6LQJOH�QXFOHRWLGH�YDULDQWV��619V��

and indels were called using the Illumina Starling software (version 2.1.4.2 2) and normalized 

and combined into gVCFs. For each variant, the overall pass rate (OPR) was enumerated as 

the product of the pass rate (the proportion of alternate genotype passing the original variant 

filtering) and the call rate (proportion of non-missing genotypes). A genotype quality (GQ) 

threshold of 20 and depth (DP) threshold of 10 were imposed per genotype per individual; 

calls failing to meet either of these criteria were set to missing. Sample duplicates (n = 136) 

and those with poor data quality (n = 14) were excluded. Variants were annotated using the 

Ensembl Variant Effect Predictor (https://www.ensembl.org/info/docs/tools/vep/index.html) 

(version 89)6 and their frequency in gnomAD7 (https://gnomad.broadinstitute.org/). Variants 

ZHUH�UHWDLQHG�LI�WKH\�SDVVHG�WKH�IROORZLQJ�TXDOLW\�ILOWHUV��235��������PLVVLQJQHVV���������PLQRU�
DOOHOH�IUHTXHQF\��0$)����������PLQRU�DOOHOH�FRXQW��0$&��!����JQRP$'�1RQ-Finnish European 

�1)(�� �� ����� DQG� �� ������ 9DULDQWV� ZHUH� ILOWHUHG� XVLQJ� EFIWRROV8 (version 1.8) 

(http://samtools.github.io/bcftools/) and further filtered using PLINK9,10 (version 1.9) 

(https://www.cog-genomics.org/plink/) and with custom scripts written in Python 

(https://www.python.org/) and R (https://www.r-project.org/). 

 

Ancestry and relatedness estimation 

A subset of 32,875 high-TXDOLW\� FRPPRQ� �0$)��������DXWRVRPDO�ELDOOHOLF�619V� LQ� OLQNDJH�

equilibrium (r2 < 0.2) was identified as previously described1 and genotype data extracted. An 

initial kinship matrix was computed using KING11 (https://www.kingrelatedness.com/), PC-

AiR12 and PC-Relate13 in the R Bioconductor package; GENESIS (https://bioconductor.org/ 

packages/release/bioc/vignettes/GENESIS/inst/doc/pcair.html) were then utilised to correct 

the kinship matrix for population structure. The resulting kinship matrix was analysed using 

PRIMUS14 (https://primus.gs.washington.edu/) to identify the maximal set of unrelated 

individuals (with relatedness defined by a pairwise kinship coefficient kinship coefficient > 

https://www.ensembl.org/info/docs/tools/vep/index.html
https://gnomad.broadinstitute.org/
http://samtools.github.io/bcftools/
https://www.cog-genomics.org/plink/
https://www.python.org/
https://www.r-project.org/
https://www.kingrelatedness.com/
https://bioconductor.org/%20packages/release/bioc/vignettes/GENESIS/inst/doc/pcair.html
https://bioconductor.org/%20packages/release/bioc/vignettes/GENESIS/inst/doc/pcair.html
https://primus.gs.washington.edu/
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0.09). The ancestry of all samples was estimated with GENESIS by calculating principal 

components (PC) using unrelated individuals of variable defined ancestry from the 1000 

Genomes Project15 (https://www.internationalgenome.org/) and projecting the NIHR-RD 

VDPSOHV�RQWR�WKLV�YHFWRU�VSDFH��$�PXOWLYDULDWH�PRGHO�ZDV�XVHG�WR�FODVVLI\�HDFK�LQGLYLGXDO¶V�

ancestry based on the 1000 Genomes populations. A total of 8,718 unrelated European 

individuals were identified of which 217 had ICP (Supplementary Fig. 2a). A further 66 

individuals, including one ICP case, were excluded due to a heterozygosity rate greater or 

less than 3 standard deviations from the mean (indicating sample contamination or evidence 

of inbreeding) or missingness > 0.005. The final dataset comprised 216 ICP cases and 8,436 

controls. 

 

The 100,000 Genomes Project (100KGP) 
Study and cohort descriptions 

The Genomics England dataset (https://www.genomicsengland.co.uk/initiatives/100000-

genomes-project) consists of whole-genome sequencing (WGS) data, clinical phenotypes 

encoded using Human Phenotype Ontology (HPO) codes, International Statistical 

Classification of Diseases and Related Health Problems (ICD) codes, and retrospective and 

prospectively-ascertained National Health Service (NHS) hospital records for 88,844 

individuals recruited with cancer, rare disease, and their unaffected relatives 

(https://figshare.com/articles/dataset/GenomicEnglandProtocol_pdf/4530893/5). Ethical 

approval for the 100KGP was granted by the Research Ethics Committee for East of England 

± Cambridge South (REC Ref 14/EE/1112). ICP was not a targeted recruitment cohort for the 

100KGP; however, given the size of the cohort, the population prevalence of ICP and the 

availability of detailed phenotypic coding, we hypothesised that a number of cases would be 

present within the dataset. By utilising the ICD-10 code O26.6 (https://icd.who.int/browse10/ 

2019/en#/O26.6�� �³/LYHU� GLVRUGHUV� LQ� SUHJQDQF\�� FKLOGELUWK� DQG� WKH� SXHUSHULXP´� LQFOXGLQJ�

³FKROHVWDVLV� �LQWUDKHSDWLF�� LQ�SUHJQDQF\´�DQG� ³REVWHWULF� FKROHVWDVLV´��ZH� LGHQWLILHG����� ,&3�

cases. No phenotypic exclusions were applied to the control cohort which consisted of 

individuals with rare disease, cancer and unaffected relatives without documented evidence 

of ICP. 

 

Whole-genome sequencing, variant calling and quality control 

DNA was extracted from whole blood, underwent QC assessment, and was prepared using 

the Illumina TruSeq DNA PCR-Free sample preparation kit. 150bp paired-end sequencing 

was undertaken using an Illumina HiSeq X and processed on the Illumina North Star Version 

4 Whole Genome Sequencing Workflow (NSV4, version 2.6.53.23). Sequence reads were 

aligned to the Homo Sapiens NCBI GRCh38 assembly using the Illumina Isaac Aligner 

https://www.internationalgenome.org/
https://www.genomicsengland.co.uk/initiatives/100000-genomes-project
https://www.genomicsengland.co.uk/initiatives/100000-genomes-project
https://figshare.com/articles/dataset/GenomicEnglandProtocol_pdf/4530893/5
https://icd.who.int/browse10/%202019/en#/O26.6
https://icd.who.int/browse10/%202019/en#/O26.6
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(version 03.16.02.19). The minimum coverage required per sample was at least 95% of the 

DXWRVRPDO�JHQRPH�DW����;�ZLWK�PDSSLQJ�TXDOLW\�!�����619V�DQG�LQGHOV�ZHUH�FDOOHG�XVLQJ�WKH�

Illumina Starling software (version 2.4.7). gVCFs were aggregated using Illumina 

gvcfgenotyper (version 2019.02.26) with variants normalised and multi-allelic variants 

decomposed using vt (version 0.57721). Variants were retained if they passed the following 

TXDOLW\� ILOWHUV�� PLVVLQJQHVV� �� ������ PHGLDQ� GHSWK� �� ���� PHGLDQ� *4� �� ���� SHUFHQWDJH� RI�

heterozygous calls not showing significant allele imbalance for reads supporting the reference 

DQG�DOWHUQDWH�DOOHOHV��$%UDWLR���������SHUFHQWDJH�RI�FRPSOHWH�VLWHV��FRPSOHWH*75DWLR���������

Variants were filtered using bcftools16 (version 1.10.2) and further filtered using PLINK9,10 

(version 2.00). 

 

Ancestry and relatedness estimation 

Broad genetic ancestry of the 100KGP samples was estimated using unrelated samples from 

the 1000 Genomes Project (Phase 3)15. A common subset of 62,523 high-quality autosomal 

biallelic SNVs with MAF > 0.05 in linkage equilibrium (r2 < 0.1) was used to calculate 20 

principal components (PCs) using GCTA17 (version 1.92.4) (https://cnsgenomics.com/ 

software/gcta/#Overview) The 100KGP data were projected onto the 1000 Genomes PC 

loadings and a random forest model trained to predict ancestries using the first eight PCs. 

Using this model with a probability threshold > 0.8, 62,349 individuals (183 ICP cases and 

62,166 controls) of European ancestry were identified (Supplementary Fig. 2b). A subset of 

unrelated samples was ascertained using a kinship coefficient threshold of 0.0884 (2nd degree 

relationships) estimated using KING11; one case and 16,336 controls were excluded. A further 

245 controls were removed due to a heterozygosity rate greater or less than 3 standard 

deviations from the mean. A cohort of 182 cases and 45,585 controls remained. The majority 

of these cases (n = 147, 80.8%) were unaffected relatives of rare disease participants. A 

smaller number had non-liver related rare disease (n = 23, 12.6%) or cancer (n = 12, 6.6%). 

Using this final unrelated European cohort, ten principal components were generated using 

PLINK10 (version 2.00) for use as covariates in the association analysis. 

 

  

https://cnsgenomics.com/%20software/gcta/#Overview
https://cnsgenomics.com/%20software/gcta/#Overview
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