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Supplementary Methods 

 

Compositional sequence patterns 

For compositional feature analysis, a given piece of DNA sequence s is mapped to a 

higher-dimensional space of nucleotide patterns � 
= {�1, �2,..., �q}, where � is defined by 

the pattern length w and the number of literals l
1
. In this space, s is represented by the 

compositional input vector � = (�1, �2,..., �q); where �i is the frequency of pattern �i in s. 

The method is a generalization of conventional compositional approaches and exhibits a 

number of desirable characteristics. First, nucleotide patterns of arbitrary lengths and 

densities can be computed, thus allowing the selection of the parameters with the most 

discriminatory power.
 
Second, the method extends composition-based schemes

 
in that it 

is able to ‘ignore’ certain nucleotide
 
positions:

 
this is achieved through the use of 

generating templates
 
that

 
include ‘gaps’ i.e. “wild-cards.” Third,

 
optionally the periodicity 

of the
 
genetic code is taken into account:

 
in particular, when collecting the instances of a

 

pattern, the constraint can be imposed that a pattern be position-specific. The input 

vectors are subsequently normalized by the total number of patterns for each sequence. 

 

Support Vector Machine (SVM) 

The SVM
2, 3

 is a maximum margin classifier that during training learns to optimally 

discriminate between the items of two classes. In the context of our work, the items are 

the compositional input vectors derived from DNA sequences, and the classes represent 

different phylogenetic clades. In the feature space, the algorithm implicitly learns a 

hyperplane which optimally separates the members of the two classes. Based on its 

position relative to the hyperplane an item is assigned to a class during the classification 

process. The confidence of the assignment is determined by the distance of the item from 

the hyperplane. The feature space can be different from the input space, which is 

determined by the employed kernel function. By use of a non-linear kernel such as the 

Gaussian kernel, a decision function can be learned that can accurately discriminate 

among items that are not linearly separable in the input space. 
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 For multi-class classification, we apply the ‘all-vs.-all’ technique, where 

N$ (N-1)/2 distinct binary classifiers, one for each possible pair of classes, are used to 

assign a sequence fragment to a class
4
. The predicted class is the one that receives the 

most ‘votes’ from the internal classifiers, and is assigned randomly in the case of a tie. 

During a second classification step with a binary ‘One-vs.-all’ SVM classifier, these 

assignments are either corroborated or rejected. Rejection of false positive assignments of 

sequences that truly belong to an unknown clade occur frequently, as the model has been 

better trained to identify these using data from all organisms (except from those 

belonging to the clade of interest) instead of only those from poorly sampled clades. For 

our prototype, we used the multi-class SVM implementation of the LIBSVM package 

(http://www.csie.ntu.edu.tw/~cjlin/libsvm). 

 

SVM  training  

The compositional input vectors for the training of the SVM are created by mapping the 

input sequences s to the feature space � that is defined by the pattern span w and the 

number of literals l (in this context, a literal is a character from the DNA alphabet). The 

input vectors are normalized per row and scaled across columns in the range [0, 1]. 

Similar numbers of sequences are used for each class in model training. If it was not 

possible to include exactly the same number of sequences for each class, the 

misclassification cost C was scaled by the number of items, such that the overall 

misclassification cost for every class was the same. This was necessary, as, depending on 

the number of genomes in a given clade, it is not always possible to sample each genome 

equally to obtain the specified number of sequences for a class, or to generate the number 

of necessary fragments from each genomic sequence. A Gaussian kernel defined by the 

parameter � is used with the SVM. The optimal values for C and � are determined prior to 

the training in a grid search of the parameter space with 5-fold cross-validation on a 

subset of the training data. For the phylum, class, order and genus levels, 200 sequences 

per class are used for the grid search and 1000 for the training of the classifier. For the 

domain level, 1000 sequences per clade are used for the grid search and 3000 for training 

of the classifier.  
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Combined metagenome classifier 

The Phylopythia framework includes several classifiers for each level that are built on 

fragments of different lengths. Based on results of the extensive evaluation, we decided 

to include classifiers trained on 5, 10, 15 and 50 kb fragments into the framework for the 

level of the phylum and class, and classifiers trained on 50 and 15 kb fragments for the 

lower levels, to maintain a high specificity level. Even though the inclusion of additional 

classifiers would lead to increased sensitivity, we opted for a setting with higher 

specificity. Beginning with the classifier that was trained on 50  kb fragments, a query 

sequence is tested with classifiers trained on successively shorter fragments, until an 

assignment is made, all classifiers have been applied, or a classifier is reached that has 

been trained with fragments shorter than the query. For the domain level, classifiers 

trained on 1, 3, 5, 10, 15, and 50 kb fragments are used, each for fragments with a similar 

size to the respective training fragments. For the classification of fragments from known 

organisms, 10 kb models are also included at the order and genus levels. For the 

metagenome sludge samples, additional 10, 15 and 50 kb (15 and 10 kb) models for the 

Accumulibacter (Thiothrix) genus are included in the framework, depending on the 

amount of available training data from the two sludge samples. Assignments at the 

different phylogenetic levels are checked for inconsistencies, which are resolved by 

choice of the lower level prediction. 

 

Sequences 

We used more than 1 billion bases worth of genomic sequence from 340 organisms with 

complete or nearly complete genome sequences. Genomic fragments were created by 

splitting the sequence of each organism into non-overlapping fragments of lengths 1, 3, 5, 

10, 15 and 50 kb. Fragmented draft genomes (available as multiple contigs) were joined 

together in arbitrary order. For initial explorations of the best sequence source for our 

technique, a set of 1,028,017 reliable organism-specific genes was used. In this set, only 

genes with homologs either within the set or in RefSeq
5
 were included, which also did 

not show the atypical sequence composition that is characteristic for certain types of 

laterally acquired sequence, which was determined using a previously described method
6
. 
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Evaluation procedures 

Each of the described experiments was evaluated by cross-validation with data that was 

withheld from the training procedures. To allow estimation of classification accuracy for 

genomic fragments of novel organisms, models were built using sequences from only 

some of the organisms, while others were withheld for evaluation. More specifically, the 

set of 340 organisms was split at random into 3 approximately equally-sized sets. Each of 

these sets in turn was set aside, while the other two were used to train the phylogenetic 

classifier. For nearly all of the available organisms, a model could be created that had not 

used any of the organism’s sequences in training. To estimate accuracy for fragments of 

known organisms, for any given fragment length, a section of the genomic sequence was 

set aside for evaluation, while the rest was used to create genomic fragments for the 

training of the classifier. The models for this test were created with sequences from all 

340 organisms and are also the ones used for the classification of the metagenome 

sequence samples. 

For classification, composition vectors were derived from the original sequence 

fragments, which were normalized per row and scaled across columns in the range [0, 1]. 

For the evaluation with genomic fragments, tests were run with 100 genomic sequence 

fragments from every genome, if that many were available. 

Measures of accuracy are the class-normalized sensitivity, or “micro-accuracy,” 
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, where itp  is the 

number of correctly assigned items to clade i, ip  is the total number of items assigned to 

clade i, and it  is the number of items of clade i. The specificity is averaged over the N 

clades whereas the sensitivity is averaged over (N + 1) clades as the latter set includes the 

class ‘Other’. The overall accuracy measures the success of assignment per item; the 

class-normalized sensitivity (micro-accuracy) measures the accuracy per class, which 

gives a performance measure that is not influenced by a skewed composition of a data set 

in terms of the contained classes. As metagenome samples are likely to differ in their 

class composition from the sequenced genomes, the class-normalized sensitivity gives a 

more generalized estimate of performance than the overall assignment accuracy on this 

test data set.  
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The Sargasso Sea sample 

The metagenome sample of the Sargasso Sea
7
  (Accession no. AACY00000000) was 

downloaded from Genbank. It comprises 811372 contigs (Accession no. 

AACY01000001 - AACY01811372); 2224 of these are part of an assembly of scaffolds 

of 3-fold coverage or more (CH004436-CH004736); 496417 are part of an assembly of 

low coverage scaffolds (CH004737-CH0236877); 312731 are individual reads or contigs 

not part of a scaffold. 

463 contigs with small subunit rRNAs have been annotated for the sample; these 

were used to generate a reference for the evaluation.  The rRNA genes were assigned to 

clades according to Bergey's Manual of Systematic Bacteriology with the 16S rRNA 

classifier of the ribosomal database project
8
, using a ≥90% confidence threshold. To 

extend the reference set, contigs located on the same scaffold were added to the 

reference, yielding a total of 982 taxonomically assigned contigs, described with varying 

degrees of specificity by clades between, and including, the levels of domain and species.  

For the four dominant sample populations of the high-coverage sequences, 

sample-specific PhyloPythia models (containing 5 classes – the dominant sample 

populations and the class ‘Other’) were generated using the marker-gene carrying contigs 

(Shewanella, Burkholderia, unidentified Gammaproteobacteria, and Prochlorococcus). In 

total, we used between 100 and 166 kb of training sequence to generate sequence 

fragments for each of the populations in model training. This procedure leaves many 

contigs of the dominant populations for evaluation (in addition to the training contigs, of 

which individual fragments – as opposed to the complete unit – were used for model 

creation). For Prochlorococcus, the available contigs were extended by the contigs 

located on a common scaffold, and several additional contigs identified based on blast 

homologies to known Prochlorocci genes. Similarly, for the unidentified 

Gammaproteobacteria, the training set was extended by contigs located on a common 

scaffold with the reference contigs. Training fragments for 3, 5, 10, 15 and 50 kb-trained 

PhyloPythia models were generated using a sliding window with a step size of 1/10
th

 of 

the generated fragment size (e.g. 5 kb for 50 kb fragments). The class ‘Other’ was created 

from fragments of the 340 completed genomes, minus Prochlorococcus, Shewanella and 
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Burkholderia genomes. Sequence fragments were extended by their reverse complement 

for the sample-specific models, as only a small part of the organisms’ genome was 

available for training (for the higher level models built with complete genomes, we found 

that this is not necessary, as presumably a shape can be learned in the feature space that 

accommodates both leading and lagging strand fragments for the organisms where this 

type of feature is apparent).  

 

Comparison to available techniques 

To compare PhyloPythia results with phylotype assignments generated with a 

Self-Organizing map (SOM)
9
, the available results for the Sargasso sample (for the 1 kb 

fragments of all contigs ≥ 1 kb) were downloaded. The SOM is an unsupervised 

classification technique (i.e. a clustering technique), which was used by Abe et al. to 

identify Sargasso Sea sequences that cluster with the sequences of known organisms 

(37596 of 134149 contigs). The results describe the known organisms in terms of 25 

higher-level phylotypes, which were manually chosen (3 order-level clades, 11 class- and 

11 phylum-level clades by NCBI taxonomy). The data gives for each tested 1 kb 

fragment the number of fragments of each phylotype that co-localize with the tested 

fragment on the SOM. As each order and class level assignment indicates a phylum level 

assignment, we were able to perform a consistent comparison of our assignments with all 

the SOM assignments at the phylum level (note that this under- not overestimates the 

error rate, as false assignments at class level to a clade within the same phylum is thus 

considered correct). 

 We tried two different methods of inferring contig assignments to ensure 

generating the best overall assignment per contig from the available predictions for 1 kb 

fragments. Either a contig was assigned to a phylotype based on the highest overall count 

for all fragments of a contig, or we tried assigning individual 1 kb fragments based on 

counts and using majority vote to decide the overall contig assignment – ties were broken 

through random selection among the possibilities. The first approach had a higher 

accuracy on the marker-gene carrying reference contigs of the Sargasso sample 

(Supplementary Table 5) and was thus used subsequently for comparison with 

PhyloPythia.  
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 For retrieval of fragments from the dominant sample populations, we compared 

PhyloPythia with TETRA
10

, a method that provides the user with pairwise correlations 

coefficients of the input sequences relatedness in terms of their tetranucleotide usage. 

TETRA computes a quadratic result matrix for all-versus-all pairwise comparisons of all 

input fragments, which quickly becomes intractable for larger sets of sequences. We 

adapted the method so that query sequences could be compared to reference sequences of 

interest only, using as a reference in the analysis of the Sargasso sea sample the same 

sequences that were used to generate the PhyloPythia models of the dominant sample 

populations. This allows a direct comparison between PhyloPythia and TETRA in terms 

of the binning accuracy for sample-derived models for the dominant sample populations. 

For analysis with the TETRA method, the sequences for each population were 

concatenated and reverse complemented to generate one reference per sample population. 

As we slightly deviated from the original procedure, we performed a micro-evaluation on 

the Sargasso reference contigs, to ensure that we used the best cut-off setting for 

discrimination between significant assignments and noise (Supplementary Table 5).  
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