Supplementary Protocol

Here we provide details on the implementation of five analyses in Thunder, explaining
for each the goal of the analysis, how it can be run from the Python shell (e.g. in
iPython) (“shelfl’), how it can be run as a standalone app from the terminal
(“standalone’), and a walkthrough of the implementation with reference to some of the
underlying code (“walkthrough’). Further materials available at http:/freeman-
lab.github.io/thunder/ and http://research.janelia.org/zebrafish.

Nature Methods: doi:10.1038/nmeth.3041

http://freeman-lab.github.io/thunder/
http://freeman-lab.github.io/thunder/
http://freeman-lab.github.io/thunder/
http://freeman-lab.github.io/thunder/
http://research.janelia.org/zebrafish
http://research.janelia.org/zebrafish

Direction selectivity

Mass univariate tuning curve analyses describe individual responses as tuned to
particular stimulus attributes. Estimating tuning requires two steps: a regression
analysis to estimate the response to each orientation, and a calculation of preferred
direction and tuning width.

shell

>> from thunder.io import load

>> from thunder.regression import RegressionModel

>> from thunder.regression import TuningModel

>> data = load(sc, 'data')

>> regressmodel = RegressionModel.load(modelfile="designmatrix’,
regressmode="bilinear")

>> tuningmodel = TuningModel.load(modelfile="stimparams’,
tuningmode="circular")

>> betas, stats, resid = regressmodel.fit(data)

>> params = tuningmodel.fit(betas)

standalone

$ spark-submit tuning.py <master> <data> <stimparams> <result> --
regressmodelfile <designmatrix> --regressmode bilinear

walkthrough

First we create a regression model by specifying the design matrix, and the form of
regression. The design matrix can be a numpy array (if you are already handling your
stimulus parameters in Python) or it can be the location of a file (e.g. a MAT file if you
are a Matlab user)

regressmodel = RegressionModel.load('designmatrix', 'bilinear")
Now fit the model to each voxel

betas, stats, resid = regressmodel.fit(data)

(Note: you'll realize that this operation took no time. That's because in Spark all RDD
transformations, inclduing the map operation underlying this step, are lazy; nothing is
executed until we try and return a result to the user, or write a result to disk. For now,
think of what we're doing as constructing a list of operations we want to perform.)

Nature Methods: doi:10.1038/nmeth.3041

Fitting the model applied the following function to each voxel in parallel (found in
regression/util.py). A variety of other models could be fit simply by replacing this
snippet with a different operation.

def get :
b = dot(self.x_hat, y)
predic = dot(b, self.x)
resid = y - predic
sse = sum((predic - y) ** 2)
sst = sum((y - mean(y)) ** 2)
r2 = - sse / sst
return b[1:], r2, resid

Finally, we use the output of the regression to estimate tuning curve parameters, by
first constructing a tuning curve model, and then doing the fit, as for regression.

tuningmodel = TuningModel.load('stimparams', ‘circular")
params = tuningmodel.fit(betas)

The result is an RDD with the tuning curve parameters for each voxel, which can be
collected into a numpy array (for immediate inspection), or saved to disk.

Nature Methods: doi:10.1038/nmeth.3041

Principal component analysis

Principal component analysis (PCA) aims to describe whole-brain spatio-temporal
responses using a low-dimensional factorization, with spatial and temporal factors that
best capture the joint dynamics. The temporal factors capture common profiles of
temporal response, and the corresponding spatial factors show to what extent individual
voxels exhibit those temporal profiles.

shell

>> from thunder.io import load

>> from thunder.factorization import PCA
>> data = load(sc, 'data')

>> pca = PCA(k=3)

>> pca.fit(data)

standalone

$ spark-submit pca.py <master> <data> <result>

walkthrough
We perform PCA using the singular value decomposition, after subtracting the mean of
each response. To subtract the mean, we use a map operation

data = data.mapValues(lambda x: x - mean(x))

Our implementation of the SVD is a class that lets you specify the number of singular
vectors to return, and whether to use a direct or iterative method, e.g.

svd = SVD(k=3, method="direct")
svd.calc(data)

svd now has as attributes v (the right singular vectors, as a numpy array), s (the
singular values, as a numpy array), and u (the left singular vectors as an RDD).

Under the hood, the algorithm is using one of two strategies for estimating singular
vectors. The first strategy is to compute the gramian matrix (the outer product of the
matrix with itself), do a local eigendecomposition on the resulting small matrix, then
project back into the raw data:

Nature Methods: doi:10.1038/nmeth.3041

mat = RowMatrix(data)

c = mat.gramian() / mat.nrows

eigw, eigv = eig(c / n)

eigw = real(eigw)

eigv = real(eigv)

inds = argsort(eigw)[::-1]

s = sqrt(eigw[inds[@:k]]) * sqrt(n)
v = transpose(eigv[:, inds[9:k]])

u = mat.times(v.T / s)

The initial step creates a RowMatrix (a class from the util package). A RowMatrix is
backed by an RDD of (key, numpy array) pairs, and a variety of common matrix
operations can be performed on it. For example, the gramian method computes the
outer product of a matrix with itself by computing and aggregating rank 1 outer
products, and the times method uses a map (and broadcasting) to multiply the large
matrix row-wise by a smaller one. An alternative strategy, which can be much faster
when the dimensionality of the data is large but the number of desired singular vectors
is small, is to initialize a set of components with random values, and then iteratively
apply a sequence of matrix updates, reformulated as distributed operations:

iter =

¢ = random.rand(k, m)

while (iter < maxiter) & (error > tol):
c_inv = dot(c.T, inv(dot(c, c.T)))

xx = mat.times(c_inv).gramian()

cx = dot(c_inv, xx_inv)

c = mat.rows().map(lambda x: outer(x, dot(x, cx))).reduce(add)
¢ = transpose(c)

Local post processing, followed by a final map, recovers the singular vectors.

Nature Methods: doi:10.1038/nmeth.3041

Low-dimensional trajectories

Principal component analysis can be used to recover a dynamical portrait or
trajectoryshowing how whole-brain neural activity evolves through a low-dimensional
state space. The analysis uses regresion and an SVD to estimate a three-dimensional
space on trial-averaged responses, and then projects individual trial data into that
space.

shell

>> from thunder.io import load

>> from thunder.regression import RegressionModel

>> from thunder.factorization import PCA

>> data = load(sc, 'data')

>> model = RegressionModel.load(modelfile="designmatrix’,
regressmode="mean")

>> betas, stats, resid = model.fit(data)

>> pca = PCA(k=3, svdmethod="direct")

>> pca.fit(betas)

>> traj = model.fit(data, pca.comps)

standalone

$ spark-submit regresswithpca.py <master> <data> <designmatrix>
<result> mean

walkthrough

Before doing dimensionality reduction, we want to average responses across repeated
trials. This can be implemented using a regression, where the regressor matrix is
constructed to compute the average. Although trial averaging is simple, this
formulation would support more complex regressions.

model = RegressionModel.load('designmatrix', 'mean')
betas, stats, resid = model.fit(data)

betas is an RDD that contains the trial-averaged responses of each voxel. We perform
dimensionality reduction on this matrix using principal components analysis, using the
direct method for the underlying singular value decomposition, which is appropriate
assuming the trial duration is relatively short

pca = PCA(k=3, svdmethod="direct")
pca.fit(betas)

Nature Methods: doi:10.1038/nmeth.3041

pca now contains as attributes comps (a basis for a low dimensional space, as an
array) and scores (the representation of the data in the low dimensional space, as an
RDD). We keep the scores as an RDD because they are likely to be large, whereas the
comps are small. Finally, to project the trial-by-trial data into the space spanned by
these components, we can use the fit method from the regression, passing the
components as an additional argument.

traj = model.fit(data, pca.comps)

Where traj is simply a numpy array containing the trial-by-trial low dimensional
trajectories.

Low-dimensional trajectories

Cross correlation can be used to relate stimulus or behavioral variables to individual
voxel responses. To capture the fact that the relationships may depend on the relative
timing between predictor and response, the analysis examines multiple time lags (with
the predictor preceding or following the response), and then uses dimensionality
reduction to capture the most common temporal relationships.

shell

>> from thunder.io import load

>> from thunder.timeseries import CrossCorr
>> data = load(sc, 'data')

>> crc = CrossCorr(sigfile="behavior', lag=17)
>> corr = crc.calc(data)

standalone

$ spark-submit ica.py <master> <data> <result>

walkthrough

Create a cross-correlation model to correlate the voxel responses with the behavioral
variable at time lags of up to 17 time points. The signal to correlate against can be a
numpy array (if you are already processing your behavior in Python) or can be loaded
from a file (e.g. a MAT file if you are using Matlab)

crc = CrossCorr(sigfile="behavior', lag=17)

Compute the cross-correlations

coeffs = crc.calc(data)

(Note: you'll realize that this operation took no time. That's because in Spark all RDD
transformations are lazy; nothing is executed until we try and return a result to the user,
or write a result to disk. Think of what we're doing here as constructing a list of the
operations we want to perform.)

Computing the cross-correlations applied the following function to each voxel (found in
timeseries/base.py). A variety of other functions could be used simply by extending or
replacing this with a different operation.

Nature Methods: doi:10.1038/nmeth.3041

def get :
y =y - mean(y)
n = norm(y)
y /= norm(y)
b = dot(self.x, y)
return b

We now have an RDD where each record is a long vector of cross-correlations for that
voxel. To reduce dimensionality, we can pass the result to PCA

pca = PCA(k=2).fit(data)

pca now as attributes comps (a small numpy array containing the principal
components, the two patterns of cross-correlation that together explain the most
variance in the data), and scores (an RDD containing the projection of each data point
onto these components).

Nature Methods: doi:10.1038/nmeth.3041

Independent component analysis

Independent component analysis is an unsupervised learning algorithm that aims to
decompose a dataset into a set of underlying additive signals, assuming they are
statistically independent. The signals are found by optimizing an objective function that
measures their non-Gaussianity. The result is a set of spatial weight maps and
corresponding temporal profiles. It is particularly useful for data lacking other well-
defined stimulus or behavioral structure.

shell

>> from thunder.io import load

>> from thunder.factorization import ICA
>> data = load(sc, 'data').cache()

>> ica = ICA(k= , €=20)

>> ica.fit(data)

standalone

$ spark-submit ica.py <master> <data> <result>

walkthrough

As is common, before performing ICA, we reduce the dimensionality of the data, and
whiten (decorrelate) it, using the SVD. First, create a RowMatrix (because we will be
doing repeated matrix operations), and compute the SVD

mat
svd

RowMatrix(data)
SVD(k).calc(mat)

We can compute the whitening transform locally (because the matrix is small), and then
apply it using a map

whtmat = real(dot(inv(diag(latent/sqrt(n))), svd.v))
whtdata = mat.times(whtmat.T)

The core of ICA is a fixed-point algorithm that iteratively updates and orthgonolizes a
matrix. The update depends on a gradient that can be computed through one map-
reduce operation on the whitened data

Nature Methods: doi:10.1038/nmeth.3041

b = orth(random.randn(k, c))
iter = 0
err = 0

while (iter < maxiter) & ((1 - err) > tol):

b = whtdata.rows().map(lambda x: outer(x, dot(x, b) ** 3)).sum() /
wht.nrows - 3 * b

b = dot(b, real(sqrtm(inv(dot(transpose(b), b)))))

err = min(abs(diag(dot(transpose(b), b _old))))

iter += 1

We post-process the result by reapplying the whitening transform (locally, because the
matrix is small), and then using a final map to apply the unmixing matrix and estimate
the components.

Nature Methods: doi:10.1038/nmeth.3041

