Supplementary Information

"The femur of *Orrorin tugenensis* exhibits morphometric affinities with both Miocene apes and later hominins."

Sergio Almécija, Melissa Tallman, David M. Alba, Marta Pina, Salvador Moyà-Solà, William L. Jungers

Supplementary Figures

Supplementary Figure S1. Morphological comparison of BAR 1002'00 with selected proximal femora analyzed in this study (lateral view). (a) IPS 18800 (reversed), *Hispanopithecus laietanus*; (b) IPS 41724 (reversed), cf. *Dryopithecus fontani*; (c) BMNH-M-16331, *Equatorius africanus*; (d) KNM-MW 13142A (reversed), *Proconsul nyanzae*; (e) BAR 1002'00, *Orrorin tugenensis*; (f) SK 97 (reversed), *Paranthropus robustus*; (g) A.L. 288-1, *Australopithecus afarensis*; (h) KNM-ER 1481, early *Homo*; (i) *Homo sapiens*; (j) *Gorilla gorilla*; (k) *Pan troglodytes*; (l) *Pongo pygmaeus*; (m) *Hylobates*. The arrows indicate a laterally protruding gluteal tuberosity. All specimens were scaled to similar mediolateral breadth. Scale bars represent 5 cm.

Supplementary Figure S2. Landmarks used in this paper, as seen on a human left proximal femur in posterior (left) and anterior (right) views. See Supplementary Table S1 for description of the three-dimensional coordinates. Points from the head and neck give an accurate depiction of the relative size of the head as well as height and length of the femoral neck. These traits have been shown to be related to the degree of mobility that is possible at the hip joint^{31,42,71,72}. Points on the greater trochanter capture its maximal lateral and anterior projection, dimensions which probably reflect differences in gluteal function^{32,33,71,73}. Finally, two points were collected on the lesser trochanter to quantify its relative size and the direction of its projection from the femoral shaft. The lesser trochanter is the insertion site for the iliopsoas muscle, the major flexor of the hip, and changes in lesser trochanter position partially reflect differences in iliopsoas lever arm length⁷¹.

Supplementary Figure S3. Phylogenetic signal in the proximal femur shape of extant anthropoids. Phylogenetic tree mapped into the morphospace defined by the two first principal components (PCs) of our extant sample of: (a) anthropoids, tree length: 0.12264600, p<0.0001; (b) catarrhines only, tree length = 0.08988361, p<0.0001; (c) cercopithecids only, tree length: 0.01720490, p<0.05; and (d) hominoids only, tree length: 0.06267011, p=0.1187. Phylogenetic structure is found in all cases with the exception of extant hominoids, which might be partially caused by the large shape differences between the closely related *Pan* and *H. sapiens*. Tree lengths are in units of squared Procrustes distance. P-values refer to the permutation test against the null hypothesis of no phylogenetic signal (100,000 randomization rounds).

Supplementary Tables

Number	Туре	Description
Femora	l Head	
1	II	Middle of <i>fovea capitis</i> (a)
2	II	Most proximal point on the femoral head
3	II	Most proximal point on the facet margin
4	II	Most distal point of the facet margin
5	II	Most anterior point of the facet margin
6	II	Most posterior point of the facet margin
7	TT	Maximum point of constriction on ridge running from lesser trochanter to the
/	11	femoral head
Greater Trochanter		
8	II	Deepest point of the proximal neck
9	II	Deepest point of the trochanteric fossa
10	II	Most lateral point of greater trochanter (b)
11	п	Proximomedial extension of the greater trochanter on the anterior aspect of the
11	11	femur
Lesser Trochanter		
12	II	Tip of lesser trochanter
13	II	Most distal point of the lesser trochanter

Supplementary Table S1. Description of landmarks on the proximal femur used in this study.

The description of the landmark type is after Bookstein⁷⁴. (a) In *Pongo*, center of the femoral head as in Harmon²⁷. (b) Richmond and Jungers⁶ estimated that the lateral edge of the greater trochanter in BAR1002'00 was slightly abraded, lacking ca. 2-3 mm of bone. Our analysis is based on the actual point on the bone.

Supplementary Table S2. List of extant specimens $(n = 422)$ used for the	nis study
by species (subspecies for African apes) and sex.	

-Hominoids-					
		Males	Females	Unknown	Total
Homo sapiens (n = 76))				
	Andaman Islanders (d)	11	10	8	29
	Australian Aborigines (d)	3	3	8	14
	Late Stone Age South Africans (e)	8	4	1	13
	Point Hope Ipiutak (f)	15	15	0	30
<i>Gorilla</i> (n = 77)					
	Gorilla beringei beringei (a)	2	3	0	5
	Gorilla beringei graueri (c)	13	9	0	22
	<i>Gorilla gorilla</i> (b)	24	26	0	50
<i>Pan</i> (n = 88)					
	Pan paniscus (c)	7	9	0	16
	Pan troglodytes schweinfurthii (c)	7	7	14	28
	Pan troglodytes troglodytes (b)	19	25	0	44
<i>Pongo</i> (n = 16)					
	Pongo spp. (f)	9	6	1	16
Hylobatidae (n = 16)	(h)				
	Symphalangus syndactylus	1	1	1	3
	Hoolock hoolock*	3	6	0	9
	Hylobates klossii	1	1	0	2
	Hylobates agilis	1	1	0	2

*Due to the small sample size of hylobatids, in most analyses all the specimens were treated together at the family level. For the phylogenetic analyses, where the taxa and not the individuals constitute the real sample, and in order to inspect shape differences between the gibbons and the larger siamangs, we differentiated *Hylobates* and *Symphalangus* following a more traditional classification. However, current taxonomy based on molecular studies recognizes four different genera of hylobatids, the holoock gibbon having its own genus^{75,76}.

	(h)				
		Males	Females	Unknown	Total
<i>Macaca</i> (n = 26)					
	Macaca fascicularis	1	3	1	5
	Macaca fuscata	2	0	0	2
	Macaca nemestrina	3	1	0	4
	Macaca brunna	1	3	0	4
	Macaca arctoides	0	1	0	1
	Macaca mulatta	0	2	0	2
	Macaca nigra	0	1	0	1
	Macaca tonka	3	3	0	6
	Macaca thibetana	1	0	0	1
Mandrillus (n = 6)	Mandrillus sphinx	2	3	1	6
<i>Papio</i> (n = 10)	Papio hamadryas	4	2	4	10
Nasalis $(n = 8)$	Nasalis larvatus	6	2	0	8
<i>Procolobus</i> (n = 8)	Procolobus badius	5	0	3	8
Colobus $(n = 9)$					
	Colobus angolensis	3	1	0	4
	Colobus guereza	2	0	2	4
	Colobus sp.	0	0	1	1
		Males	Females	Unknown	Total
—Platyrrhine monkeys—	(h)				
Ateles $(n = 9)$					
	Ateles geoffroyi	1	2	1	4
	Ateles fuscieps	1	1	0	2
	Ateles paniscus	0	1	0	1
	Ateles belzebuth	1	1	0	2
Alouatta $(n = 30)$	Alouatta seniculus	9	12	9	30
<i>Callibebus</i> (n = 13)					
	Callicebus donacophilus	1	2	1	4
	Callicebus moloch	5	1	1	7
	Callicebus cupreus	1	1	0	2
<i>Aotus</i> (n = 30)					
	Aotus trivirgatus	8	10	0	18
	Aotus azarae	6	4	2	12

Supplementary Table S2. Continued.

(a) Virunga isolates (Royal Museum of Central Africa); (b) Cameroon and some gorilla males from Democratic Republic of Congo (Powel-Cotton Museum); (c) Democratic Republic of Congo (Royal Museum of Central Africa; American Museum of Natural History, Mammalogy); (d) Natural History Museum London, Anthropology; (e) University of Cape Town; (f) American Museum of Natural History, Matural History, Sumatra (American Museum of Natural History, Mammalogy; Natural History Museum London, Mammalogy); (h) American Museum of Natural History, Mammalogy, Natural History, Mammalogy.

Plio-Pleistocene hominins		
	Taxon	Age
AL 333-3	Australopithecus afarensis	3.2 Ma ⁷⁷
AL 288-1	Australopithecus afarensis	3.18 Ma ⁷⁷
KNM-ER 1472	Homo sp.	1.88 Ma ⁷⁸
KNM-ER 1481	Homo sp.	1.88 Ma ⁷⁸
KNM-ER 1503	Homo sp. / Paranthropus boisei	1.88 Ma ⁷⁸
SK 82	Paranthropus robustus	1.8–1.5 Ma ⁷⁹
SK 97	Paranthropus robustus	1.8–1.5 Ma ⁷⁹
KNM-WT 15000	Homo erectus/ergaster	1.6 Ma ⁷⁸
Miocene hominoids		
	Taxon	Age
KNM-MW 13142 A	Proconsul nyanzae	17.9 Ma ¹⁹
BMNH-M 16331	Equatorius africanus	ca. 15 Ma ⁸⁰
IPS 41724	cf. Dryopithecus fontani	11.9 Ma ⁸¹
IPS 18800	Hispanopithecus laietanus	9.6 Ma ⁸¹
BAR 1002'00	Orrorin tugenensis	ca. 6 Ma ⁸²

Supplementary Table S3. List of fossil specimens used in this analysis.

	th	ree first closest gi	oups	Procrustes distance			
	First	Second	Third	d1	d2	d3	
Hylobatidae	BMNH-M- 16331	KNM-MW 13142A	IPS41724	0.159	0.162	0.166	
Pongo	Pan	Gorilla	Hylobatidae	0.129	0.154	0.179	
Gorilla	BMNH-M 16331	Pongo	Pan	0.149	0.154	0.185	
Pan	Pongo	Gorilla	BMNH-M 16331	0.129	0.185	0.220	
H. sapiens	KNM ER1481	IPS41724	AL288-1	0.137	0.155	0.158	
KNM-MW 13142A	BAR1002'00	SK82	AL333-3	0.143	0.150	0.158	
BMNH-M 16331	IPS18800	Gorilla	Hylobatidae	0.145	0.149	0.159	
IPS41724	H. sapiens	BMNH-M 16331	IPS18800	0.155	0.164	0.165	
IPS18800	BMNH-M 16331	Hylobatidae	BAR1002'00	0.145	0.177	0.177	
BAR1002'00	KNM-MW 13142A	AL333-3	AL288-1	0.143	0.161	0.161	
AL333-3	SK82	KNM-MW 13142A	AL288-1	0.133	0.158	0.159	
AL288-1	KNM ER1472	H. sapiens	AL333-3	0.156	0.158	0.159	
SK82	AL333-3	SK97	KNM-MW 13142A	0.133	0.145	0.150	
SK97	SK82	AL333-3	KNM ER1481	0.145	0.162	0.167	
KNM ER1472	AL288-1	KNM ER1481	KNM WT15000	0.156	0.158	0.162	
KNM ER1481	H. sapiens	SK82	KNM ER1472	0.137	0.151	0.158	
KNM WT15000	KNM ER1481	AL333-3	KNM ER1472	0.158	0.159	0.162	

Supplementary Table S4. Minimum Procrustes distances amongst extant hominoid groups and fossil specimens.

The three closest centroids and respective Procrustes distances are shown. Caution is advised when making inferences involving KNM ER 1472, since the anterior portion of its greater trochanter is believed to be pathologic⁸³.

	Gorilla	Pan	H. sapiens	Pongo	Hylobatidae	Macaca	Mandrillus	Papio	Nasalis	Procolobus	Colobus	Ateles	Alouatta	Callicebus
Gorilla														
Pan	1.000													
H. sapiens	1.000	1.000												
Pongo	0.000	0.000	0.000											
Hylobatidae	1.000	1.000	0.884	0.000										
Macaca	0.000	0.000	0.000	0.000	0.000									
Mandrillus	0.000	0.000	0.000	0.000	0.000	1.000								
Papio	0.000	0.000	0.000	0.000	0.000	1.000	1.000							
Nasalis	0.000	0.000	0.000	0.000	0.000	1.000	1.000	1.000						
Procolobus	0.000	0.000	0.000	0.000	0.000	1.000	1.000	1.000	1.000					
Colobus	0.000	0.000	0.000	0.000	0.000	0.698	1.000	1.000	1.000	1.000				
Ateles	0.000	0.000	0.000	0.000	0.000	1.000	1.000	0.475	1.000	0.152	0.021			
Alouatta	0.000	0.000	0.000	0.000	0.000	0.081	1.000	0.005	0.678	0.001	0.000	1.000		
Callicebus	0.000	0.000	0.000	0.000	0.000	1.000	1.000	1.000	1.000	1.000	1.000	0.001	0.001	
Aotus	0.000	0.000	0.000	0.000	0.000	0.914	1.000	1.000	1.000	1.000	1.000	0.000	0.000	1.000

Supplementary Table S5. Bonferroni *post hoc* multiple comparison of femoral head size relative to neck height in extant anthropoids.

Significant differences (p<0.05) are marked in bold.

Supplementary Table S6. Bonferroni *post hoc* multiple comparison of biomechanical neck length relative to proximal femoral centroid size in extant anthropoids.

	Gorilla	Pan	H. sapiens	Pongo	Hylobatidae	Macaca	Mandrillus	Papio	Nasalis	Procolobus	Colobus	Ateles	Alouatta	Callicebus
Gorilla														
Pan	1.000													
H. sapiens	0.000	0.000												
Pongo	1.000	0.753	0.000											
Hylobatidae	0.015	0.002	0.007	1.000										
Macaca	1.000	1.000	0.000	1.000	1.000									
Mandrillus	0.021	0.006	1.000	1.000	1.000	0.814								
Papio	1.000	0.364	0.013	1.000	1.000	1.000	1.000							
Nasalis	1.000	1.000	0.001	1.000	1.000	1.000	1.000	1.000						
Procolobus	1.000	0.674	0.074	1.000	1.000	1.000	1.000	1.000	1.000					
Colobus	1.000	1.000	0.000	1.000	1.000	1.000	0.728	1.000	1.000	1.000				
Ateles	1.000	0.527	0.029	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000			
Alouatta	0.000	0.000	1.000	0.152	1.000	0.001	1.000	1.000	0.682	1.000	0.018	1.000		
Callicebus	0.000	0.000	1.000	0.830	1.000	0.036	1.000	1.000	1.000	1.000	0.099	1.000	1.000	
Aotus	0.000	0.000	0.739	0.205	1.000	0.001	1.000	1.000	0.835	1.000	0.024	1.000	1.000	1.000

Significant differences (p<0.05) are marked in bold.

Supplementary References

- 71 Aiello, L. & Dean, C. in *An Introduction to Human Evolutionary Anatomy* 457-482 (Academic Press, 1990).
- Anderson, J. Y. & Trinkaus, E. Patterns of sexual, bilateral and interpopulational variation in human femoral neck-shaft angles. *J. Anat.* 192, 279-285, (1998).
- 73 Lovejoy, O. C. The evolution of human walking. *Scientific American* **259**, 118-125, (1988).
- 74 Bookstein, F. L. *Morphometric Tools for Landmark Data: Geometry and Biology.*, (University Press, 1991).
- 75 Geissmann, T. Taxonomy and evolution of gibbons. *Evol. Anthropol.* **11**, 28-31, (2002).
- 76 Mootnick, A. & Groves, C. A new generic name for the hoolock gibbon (Hylobatidae). *Int. J. Primatol.* **26**, 971-976, (2005).
- 77 Walter, R. C. Age of Lucy and the First Family: Single-crystal 40Ar/39Ar dating of the Denen Dora and lower Kada Hadar members of the Hadar Formation, Ethiopia. *Geology* **22**, 6-10, (1994).
- 78 Feibel, C. S., Brown, F. H. & McDougall, I. Stratigraphic context of fossil hominids from the Omo group deposits: Northern Turkana Basin, Kenya and Ethiopia. *Am. J. Phys. Anthropol.* **78**, 595-622, (1989).
- 79 Delson, E. in *Evolutionary History of the "Robust" Australopithecines* (ed F.E. Grine) 317-324 (Aldine De Gruyter, 1989).
- 80 Feibel, C. S. & Brown, F. H. Age of the primate-bearing deposits on Maboko Island, Kenya. *J. Hum. Evol.* **21**, 221-225, (1991).
- Casanovas-Vilar, I., Alba, D. M., Garcés, M., Robles, J. M. & Moyà-Solà, S.
 Updated chronology for the Miocene hominoid radiation in Western Eurasia.
 P. Natl Acad. Sci. USA 108, 5554-5559 (2011).
- 82 Pickford, M. & Senut, B. The geological and faunal context of Late Miocene hominid remains from Lukeino, Kenya. *C. R. Acad. Sci. Paris* **332**, 145-152, (2001).
- 83 Day, M. H., Leakey, R. E. F., Walker, A. C. & Wood, B. A. New hominids from East Rudolf, Kenya, I. Am. J. Phys. Anthropol. 42, 461-476, (1975).