SUPPLEMENTARY INFORMATION

Supplementary Figure 1. Hamming distance frequency distributions of sequences at (a) week 4 and (b) week 14. A model of the best fit Poisson distribution is shown as a red line. Analysis of the sequence diversity in the first available sample (a) from subject CH505 using the Poisson Fitter tool (ref below) indicates that the sequences were a consistent with a star phylogeny and that the mutations were accumulating according to a Poisson distribution (goodness of fit p = 0.11). This is consistent with a single founder virus establishing the infection, with random accumulation of mutations prior to selection. The lambda parameter was 1.325, and assuming the mutation rate of 2.16 10^{-05} , the estimated time from the most recent common ancestor was 22 days (95% CI, 18-27). Given that the outer bound of this confidence interval is 27 days, it is highly like this sample was taken within 4 weeks of infection, thus we are calling this sampling time "week 4" as a conservative estimate. This timing estimate is further supported by Feibig staging at time of enrollment. By week 14 (b), the tree was no longer consistent with a star phylogeny or a Poisson distribution ($p << 10^{-10}$), indicating selection was well underway. Of note, although the mutation data at week 4 (a) is statistically consistent with a Poisson distribution, the observed number of pairwise sequence identities was somewhat reduced relative to expectation, and the observed number of Hamming distances of 1 and 2 are slightly more than expected. This is of interest as this shift is the a result of a single mutation in loop D, in a CH103 contact residue (N279K) -- so although the deviation from the Poisson was not significant, given its location it is possible that the site is a very early indicator of selection.

Reference: Giorgi EE, Funkhouser B, Athreya G, Perelson AS, Korber BT, Bhattacharya T. Estimating time since infection in early homogeneous HIV-1 samples using a Poisson model. BMC Bioinformatics 2010 Oct 25;11:532. PMID: 20973976 http://www.hiv.lanl.gov/content/sequence/POISSON FITTER/poisson fitter.html

Supplementary Figure 2. Plasma neutralization of CH505 patient over time to autologous transmitted/founder (T/F) and heterologous HIV-1 viruses. Plasma samples were longitudinally collected from HIV-1 patient CH505 starting from time of infection(in x axis) and tested for neutralization activity against the autologous transmitted/founder (T/F) virus and heterologous HIV-1 Env pseudoviruses including subtype B (B) SF162, JRFL and BG1168) and subtype A (Q168 and 842) in TZM-bl cell-based neutralization assays. Results were expressed as IC50 (reciprocal plasma dilution) (in y axis).

Supplementary Figure 3. Reactivity of antibodies in CH103 clonal lineage to HIV-1 Env resurfaced core3 (RSC3) and RSC3 mutant. Antibodies in CH103 clonal lineage were tested in dose range from 100ug to 0.0005ug/ml for binding to (a) HIV-1 Env RSC3 and (b) RSC3 mutant with P363N and D371I mutations in ELISA. Results are expressed as EC50 (ug/ml) and are indicated next to the individual antibodies. NB = no detectable binding.

b а CH505.w78.env16 CH505.w78.env38 CH0505.w30.e16 CH0505.w30.e23 CH505.w53.e16 gp140 CH505.w78.e7 MW markers CH505.T/F CH505.w78.env16 CH505.w78.env38 CH0505.w30.e16 CH0505.w30.e23 CH505.w53.e16 63521 1086 427299 gp120 9021 CH505.w78.e7 MW **MW markers** kDa CH505.T/F 1,048-63521 1086 9021 MW Trimer kDa 480-Dimer 250 -242-150 -Monomer 100 -146 75 -66-SDS-PAGE, reducing Blue native PAGE

Supplementary Figure 4. SDS-PAGE analysis of recombinant HIV-1 Env gp140 and gp120 proteins. HIV-1 Env gp140 and gp120 proteins were analyzed on SDS-PAG under reducing condition (**a**) and gp140 proteins were analyzed on blue negative PAGE (**b**). Individual HIV-1 Env proteins are identified on the top of gels. **a**, The HIV-1 gp120 and gp140 used in the study had no degradation under reducing condition in SDS-PAGE. **b**, Most heterologous HIV-1 Env gp140 Envs and all autologous CH505 gp140 Envs migrated predominantly as trimers and also contain dimer and monomer forms.

Supplementary Figure 5. Polyreactivity analysis of antibodies in CH103 clonal lineage by HEp-2 staining, ANA assays and protein array microchip analysis. Reactivity of antibodies in CH103 clonal lineage was assayed by indirect immunofluorescence HEp-2 staining (a) and by ANA assays (b). Pictures at magnification x 200 of immunofluorescence staining for individual antibodies are presented next to the antibody ID. Results of the reactivity of individual antibodies with panel of autoantigens assayed by ANA are indicated (b). The intermediate antibody (II) and CH106 were identified as reactive with HEp-2 cells and then selected for further testing for reactivity with human host cellular antigens (c and d) using Invitrogen ProtoArraysTM. We found that II (c) and CH106 ((d) exhibit specific autoreactivity and robust polyreactivity. Bound antibody was determined by immunofluorescence and relative fluorescence intensities for 9,400 recombinant human proteins in the 151K array (y-axis) that were plotted against (x-axis) the homologous intensities in IA1 (c) and CH106 (d) arrays. All proteins were printed in duplicate on each array and each data point represents one fluorescence measurement. The diagonals in each graph represent equal fluorescence intensities (equivalent binding) by the I1, CH106 and 151K control Ab. Self-antigens bound by the I1 and CH106 are identified by high fluorescence intensity versus 151K and are indicated by circles. Polyreactivity was indicated by significant and general skewing from the diagonal. Autoantigens identified: BHMT2 (betaine-homocysteine methyltransferase 2); CENP-R (centromere protein R) [151K]; eEF-2K (eukaryotic elongation factor-2 kinase); UBE3A (ubiquitin-protein ligase E3A) [IA1 and CH106]; TGM2 (transglutaminase 2) [CH106]; NFKBIA (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha); FAM184A (family with sequence similarity 184, member A) [I1].

Complex I: gp120: chain I CH103: chain A and chain B

Complex II: gp120: chain G CH103: chain H and chain L

Supplementary Figure 6. Crystal packing of the CH103-gp120 complex in P21 space group. a, A view of the crystal lattice. The two complexes in each asymmetric unit are marked with red and blue dashed lines and are shown in cartoon diagrams with gp120 in red and salmon, CH103 heavy chain in green and palegreen, and CH103 light chain in light blue and cyan. b, A close-up view of the lattice between two neighboring complexes. When extended core gp120 of clade C ZM176.66 from the VRC01 complex is superposed with its ordered corresponding portions in the CH103 complex, the inner domain shown in magenta clashes with the neighboring complex, indicating inner domain of gp120 is not present in the CH103-gp120 crystal due to proteolytic degradation during crystal growth.

Supplementary Figure 7. **CH103 paratope, critical residues, and required immune precursors. a**, Overall structure of complex with variable domains of CH103 depicted in ribbon representation and gp120 shown as a molecular surface. The color scheme is the same as in Fig. 3a. **b**, CH103 paratope surface displayed on top of an underlying polypeptide ribbon. The surface is colored and labeled by contributing antibody components. **c**, CH103 paratope surface colored by maturation states of the underlying residues. Unmutated residues are colored magenta while affinity matured residues are colored green and light blue for heavy and light chains respectively. **d**, Sequence alignment of heavy and light chains of CH103 clonal lineage members. Framework and CDR residues are labeled, as are residues that interact with the gp120 (open circle, main chain interaction; open circle with rays, side chain interactions; filled circle, both main chain and side chain interactions). The unmutated paratope residues are highlighted in magenta and the maturation-gained paratope residues are highlighted in green for heavy chain and blue for light chain.

Supplementary Figure 8. Pixel map and phylogenetic tree of HIV-1 *env* gene evolution over time in CH505. The pixel tool (http://www.hiv.lanl.gov/content/sequence/pixel/pixel.html) was used to illustrate the amino acid changes in the V1 to V5 region of the envelope. we focused on this region as it is most critical for CD4bs antibody susceptibility, and includes all known CD4 binding contacts, which are indicated as black tic marks along the top of the figure. Blue tic marks indicated CH103 contact residues, and the horizontal blue line indicates that part of gp120 that was used for the CH103 crystal structure (although the contact surface is mostly there, still quite a bit is missing that is important for CD4 and VRC01, which is why we use CD4 contacts to help define bits that may be important for CH103 binding in those missing regions). Each row represents one sequence, and they are ordered according to the phylogeny. Red bits indicate amino acid changes relive to the TF virus, which was inferred as previously described [1,2]. Black bits indicate either an insertion or a deletion. The phylogenetic tree on the right was made with PhyML v2 [3] and the JTT substitution model [4] from the translated Env sequences. The tree was configured as a ladder and the TF virus was reconstructed from the first time point sequences obtained at week 4 after transmission. Colors indicate the estimated number of weeks from infection. The tree was rendered with APE v3.0-6 [5] and both used R v2.15.1 [6]. The arrow indicates the week 30-53 selective bottleneck.

1. Keele BF et al. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc. Natl. Acad. Sci. USA, 105: 7552-7557 (2008).

2. Salazar-Gonzalez JF et al. Genetic identity, biological phenotype and evolutionary pathways of transmitted founder viruses in acute and early HIV-1 infection. J. Exp. Med. 206:1273-1289 (2009).

Guindon S, Gascuel O. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696–704 (2003).
 Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Applic Biosci 8: 275–282 (1992).

5. Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290 (2004).

6. R Core Team. 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.

Supplementary Figure 9. Entropy map illustrating the per site diversity within each time point sampled in CH505. Full gp160 is shown, and CD4 and CH103 contact residues are highlighted. Shown is the Shannon entropy of each position in the alignment, where the observed frequency of all in a position characters is considered, and a gap is treated as a character (Korber J Virol. 1994;68(11):7467-81). This provides a map of regional within-time point diversity spanning Env, and illustrates where mutations are concentrated and the relative diversity of key regions over time.

Supplementary Figure 10. A comparison of the pace of viral sequence evolution in CH505 (indicated here by the 9-digit anonymous study-participant identifier 703010505) in regions relevant to the CH103 epitope with other subjects. The regions of interest include the CH103 contacts defined by the structure in this paper, as well as VRC01 contacts and CD4bs contacts¹, and the V1 and V5 loops immediately adjacent to these contacts. a, The distribution of sequence distances expressed as the percentage of amino acids that are different between two sequences, resulting from a pair-wise comparison of all sequences sampled in a given time point. Because these are all homogeneous (single-founder) infection cases, very few mutations appear in the CH103 relevant regions or other sites in the virus during acute infection (left hand panels). By 24 weeks after enrollment (week 30 from infection in (A) 703010505, labeled month 6 here as it is approximate), extensive mutations have begun to accrue, focused in CH103 relevant regions (top middle panel), but not in other regions of Env (bottom middle panel). Subject 703010505 has the highest ranked diversity among 15 subjects² (B-Q) sampled in this time frame (p=0.067), indicating a focused selective pressure began unusually early in this subject. By 1 year (month 12 indicates samples taken between 10-14 months from enrollment, due to variation in timing of patient visits), this region has begun to evolve in many individuals, possibly due to autologous NAb responses active later in infection. b, Phylogenetic trees based on concatenated CH103 relevant regions (MXB2 sites 124-127, 131, 132, 279-283, 364-371, 425-432, 455-465, 471-477) were created with PhyML3.0³, using HIVw⁴, a within-subject HIV protein substitution model, which was selected to be the optimum model for these sequences using ProTest⁵. Indels were treated as an additional character state, rather than as missing information. In this view, the extensive evolution away from the T/F virus by month 6, shown i

1. Zhou, T., et al. Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01. Science 329, 811-817 (2010).

2. Liu MK, et al. Vertical T cell immunodominance and epitope entropy determine HIV-1 escape, J Clin Invest. 123, 380-93 (2013).

3. Guindon, S., et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59, 307-321 (2010).

4. Nickle, D.C., et al. HIV-specific probabilistic models of protein evolution. PLoS ONE 2, e503 (2007).

5. Abascal, F., Zardoya, R. & Posada, D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21, 2104-2105 (2005).

Supplementary Figure 11. Co-evolution of virus and antibody - interplay between maturation of antibody CH103 and sequence variability epitope in gp120. The sequence variability (within sample) at each time point is mapped on a gp120 structure that tracks the viral evolution over time from 14 weeks through 100 weeks post-transmission. Entropy at each residue is color-coded as green to white to red to indicate no sequence variation to slight variation to high sequence variation. This extensive virus within-time point diversity coincides with maturing antibody lineages that ultimately develop breadth. Here we capture the somatic mutations along the CH103 clonal lineage beginning with unmutated common ancestor (UCA) to 1-8 to 1-4 to 1-3 to 1-2 to 1-1 and to mature CH103. The color balls in heavy (violet) and light (cyan) chains of antibody indicate the appearance/disappearance of somatic mutations during the evolutionary path according to the following scheme. Red balls: mutations appeared in 1-8 and remained all the way thru maturation to CH103, orange balls: mutations that appeared very late in maturation. Structure of Fab CH103-gp120 from ZM176.66 complex determined in this work is used to map these mutations. The sequence entropy at week 100 is used to pair with CH103 to simply illustrate the relative spatial locations of somatic mutations and sequence variability in gp120. As discussed in the text, viral evolution with time tracks with neutralization breadth and this simple mapping supports that (i) T/F virus began to diversify very early in regions in or proximal to the epitope, and (ii) Somatic mutations that occur early in evolution and remain fixed in heavy chain tend to cluster near the gp120 contact region unlike those mutations that appear later.

	EC50, reciprocal dilution							
CH505 Plasma Week after Infection	MuLV	CH505	B.SF162	B.JRFL	A.Q168	A.842	B.BG1168	
6	<20	<20	<20	<20	<20	<20	<20	
7	<20	<20	<20	<20	<20	<20	<20	
8	<20	<20	<20	<20	<20	<20	<20	
14	<20	45	<20	<20	<20	<20	<20	
20	<20	157	29	<20	<20	<20	<20	
22	<20	267	28	<20	<20	<20	<20	
30	<20	1,291	60	<20	<20	<20	<20	
41	<20	1,636	154	56	<21	53	<20	
53	<20	1,701	237	244	32	183	<20	
66	<20	3,193	401	701	69	367	<20	
78	<20	6,428	1,172	806	83	345	<20	
92	<20	3,396	1,534	522	92	293	25	
100	<20	2,464	1,066	619	94	473	35	
136	<20	4,985	4,651	2,085	172	433	56	
138	<20	3,586	5,081	1,368	138	326	51	
140	<20	3,374	13,407	1,287	148	237	56	
144	<20	4,665	8,354	905	118	237	40	
152	<20	1,789	3,122	1,612	108	234	35	
160	<20	2,684	9,761	2,482	144	230	55	
176	<20	2,003	5,148	2,243	91	150	58	
208	<20	1,353	5,850	1,303	60	95	31	
233	<20	3,279	3,612	895	107	151	37	
234	<20	3,033	4,887	1,712	103	232	60	
236	<20	1,969	4,417	1,354	107	299	57	
mAb 2F5*	>50	>50	0.69	2.26	1.62	11.71	1.43	

Supplementary Table 1. Plasma neutralization activity developed over time of in patient CH505 against the autologous transmitted/funder (T/F) and heterologous viruses.

*EC50 values for positive control antibody 2F5 are presented as ug/ml. MuLV = murine leukemia virus as negative control.

Antibody ID	lgH_ID	VH	DH	JH	Mutation frequency	CDRH3 length ¹	lsotype	VL ID	VL	JL	Mutation frequency	CDRL3 length ¹
UCA	UCAVH	4-59*01	3-16*01	4*02	0.0%	15	lgG1	UCAVL	3-1*01	1*01	0%	10
18	I8VH	4-59*01	3-16*01	4*02	3.6%	15	lgG1	UCAVL	3-1*01	1*01	0%	10
17	I7VH	4-59*01	3-16*01	4*02	5.0%	15	lgG1	UCAVL	3-1*01	1*01	0%	10
14	I4VH	4-59*01	3-16*01	4*02	6.9%	15	lgG1	UCAVL	3-1*01	1*01	0%	10
13	I3VH	4-59*01	3-16*01	4*02	9.1%	15	lgG1	I2VL	3-1*01	1*01	10.0%	10
12	I2VH	4-59*01	3-16*01	4*02	14.9%	15	lgG1	I2VL	3-1*01	1*01	10.0%	10
11	I1VH	4-59*01	3-16*01	4*02	15.2%	15	lgG1	I2VL	3-1*01	1*01	10.0%	10
1AZCETI5	1AZCETI5VH	4-59*01	3-16*01	4*02	15.2%	15	lgG1	I2VL	3-1*01	1*01	10.0%	10
1AH92U	1AH92UVH	4-59*01	3-16*01	4*02	8.3%	15	lgG1	UCAVL	3-1*01	1*01	0%	10
1A102RI6	1A102RI6VH	4-59*01	3-16*01	4*02	7.7%	15	lgG1	I2VL	3-1*01	1*01	10.0%	10
CH106	CH106VH	4-59*01	3-16*01	4*02	16.0%	15	lgG1	CH106VL	3-1*01	1*01	11.2%	10
CH103	CH103VH	4-59*01	3-16*01	4*02	16.8%	15	lgG1	CH103VL	3-1*01	1*01	10.6%	10
CH104	CH104VH	4-59*01	3-16*01	4*02	14.9%	15	lgG1	CH104VL	3-1*01	1*01	10.6%	10
CH105	CH105VH	4-59*01	3-16*01	4*02	12.7%	15	lgG1	I2VL	3-1*01	1*01	10.0%	10

Supplementary Table 2. V(D)J rearrangement of the matured, and reverted unmutated ancestor and intermediate antibodies in CH103 clonal lineage.

¹The HCDR3 and LCDR3 lengths of the CH103 lineage are similar to the median of HCDR3 and LCDR3 lengths of unrelated antibodies in pyrosequencing database or Genbank. Using the same 454 pyrosequencing dataset derived from three HIV infected subjects unrelated to the CH505 patient as the source of comparison, we find that the CH103 CDRH3 length of 45 nucleotides (15 aa) is the median value. The interquartile range is 39-54 nucleotides (13-18 aa). 9% of all heavy chains in this database have HCDR3 length = 45 nucleotides, this is the second most-frequent length, after 42 nucleotides. We used human L\lambda rearrangements from Genbank to compare the light chain. The CH103 light chain CDR3 is 30 nucleotides (10 aa) long. The median among Genbank hu man lambda chains is 33 nucleotides (11 aa). 24% of all human lambda chains have HCDR3 length = 30 nt, second-most frequent after 33nt.

Supplementary Table 3a. Comparison of neutralization activity of CH103, and other CD4bs mAbs against 25 clade A Env-pseudoviruses. IC50^a IC80^a IC80^a Virus ID Clade VRC01 CH103 VRC01 CH103

Virus ID	Clade	VRC01	CH31	b12	CH103	VRC01	CH31	b12	CH103
0260.v5.c36	А	0.53		>50	>50	1.48		>50	>50
0330.v4.c3	А	0.06		>50	7.84	0.23		>50	31.30
0439.v5.c1	А	0.05	0.06	>50	8.37	0.24	0.26	>50	>50
3365.v2.c20	A		0.01	18.90	4.00		0.03	>50	40.00
3415.v1.c1	А	0.09	0.06	6.93	2.46	0.26	0.18	13.70	4.73
3718.v3.c11	А	0.22	0.13	12.10	29.60	4.99	0.41	43.80	>50
398-F1_F6_20	А	0.06		0.06	>50	0.32		1.30	>50
BB201.B42	А	0.34	0.04	0.52	9.19	1.11	0.13	3.77	40.50
BB539.2B13	А	0.09	>50	1.42	22.20	0.33	>50	7.40	>50
BI369.9A	A	0.15	0.01	14.90	>50	0.66	0.04	>50	>50
BS208.B1	А	0.03	0.02	0.04	>50	0.10	0.05	0.33	>50
KER2008.12	A	0.56	0.11	>50	>50	1.74	0.41	>50	>50
KER2018.11	A	0.07	0.39	49.20	40.00	0.40	2.32	>50	>50
KNH1209.18	А	0.09	0.02	0.79	>50	0.30	0.10	3.39	>50
MB201.A1	А	0.24	0.02	>50	17.70	0.48	0.07	>50	>50
MB539.2B7	А	0.54	0.16	14.00	3.70	1.48	0.45	>50	14.20
MI369.A5	А	0.16	0.03	1.58	>50	0.77	0.08	36.40	>50
MS208.A1	A	0.15	0.07	0.13	>50	0.67	0.21	0.98	>50
Q23.17	А	0.09		>50	10.40	0.25		>50	12.90
Q259.17	А	0.05	5.09	>50	10.60	0.25	>50	>50	33.90
Q769.d22	А	0.02	0.03	>50	1.00	0.07	0.16	>50	2.67
Q842.d12	А	0.01	0.003	>50	1.46	0.02	0.01	>50	5.10
QH209.14M.A2	А	0.02	0.01	>50	1.16	0.08	0.07	>50	5.75
RW020.2	А	0.30	0.004	10.70	23.60	0.87	0.03	21.60	47.40
UG037.8	А	0.04	0.02	>50	1.76	0.13	0.09	>50	11.90
Breadth	N=25 Titer <50	96	80	56	68	96	76	40	48
Geometric Mean ^b		0.095	0.038	2.180	6.569	0.373	0.12	5.34	0.39

^aValues <1µg/ml are indicated in red and values 1-50 µg/ml are in green.

^bGeometric means were calculated for neutralization sensitive viruses with an IC_{50} or IC_{80} value <50µg/ml.

*Results of 118 isolates summarized in Tables 3a, b and c are representatives of total of 196 isolates tested.

		IC50 ^a				IC80 ^ª			
Virus ID	Clade	VRC01	CH31	b12	CH103	VRC01	CH31	b12	CH103
3988.25	В	2.10		2.21	9.84	>50		12.40	11.68
5768.04	В	0.10	0.10	5.62	7.08	0.94	2.37	>50	7.03
6101.10	В	0.10		>50	1.80	0.33		>50	2.25
6535.3	В	2.16		0.87	4.67	6.27		18.50	3.90
7165.18	В	>50		>50	>50	>50		>50	>50
45_01dG5	В				0.80				1.10
89.6.DG	В	0.46	0.06	0.08	1.40	1.58	0.33	0.49	1.56
AC10.29	В	1.43		1.86	>50	3.83		16.30	>50
ADA.DG	В	0.42	0.21	0.13	1.49	1.40	1.07	0.73	1.82
Bal.01	В	0.10		0.09	0.68	0.32		0.45	2.01
BG1168.01	В	0.45	0.65	>50	21.70	1.43	2.50	>50	>50
BL01.DG	В	>50	>50	>50	>50	>50	>50	>50	>50
BR07.DG	В	1.67	2.01	0.19	9.67	4.67	8.06	1.30	>50
BX08.16	В	0.28		0.92	1.15	0.68		8.16	1.07
CAAN.A2	В	1.06	>50	>50	>50	2.63	>50	>50	>50
CNE10	В	0.78		>50	26.90	1.87		>50	>50
CNE12	В	0.79		>50	26.40	2.19		>50	>50
CNE14	В	0.39		8.28	0.52	0.98		24.50	0.60
CNE4	В	0.87		>50	43.50	2.36		>50	>50
CNE57	В	0.54		16.60	>50	1.34		>50	>50
HO86.8	В	>50	>50	>50	>50	>50	>50	>50	>50
HT593.1	В	0.44	0.17	0.25	40.00	1.72	0.76	4.51	>50
HXB2.DG	В	0.04		0.00	0.12	0.08		0.01	0.23
JRCSF.JB	В	0.23		0.22	0.91	0.80		1.56	1.96
JRFL.JB	В	0.03		0.02	0.02	0.12		0.10	0.05
MN.3	В	0.03		<0.0006	0.19	0.07		0.002	0.54
PVO.04	В	0.39		>50	>50	0.99		>50	>50
QH0515.01	В	0.52	0.03	0.80	10.20	3.66	0.38	12.50	4.93
QH0692.42	В	1.16		0.79	25.20	3.00		3.05	>50
REJO.67	В	0.05		1.70	2.15	1.47		>50	5.38
RHPA.7	В	0.05		0.13	8.53	0.21		0.58	9.20
SC422.8	В	0.13		0.20	2.44	0.16		2.19	3.08
SF162.LS	В	0.24		0.03	0.84	0.33		0.15	1.19
SS1196.01	В	0.28		0.78	1.34	0.63		5.51	1.08
THRO.18	В	4.42		0.96	>50	0.65		8.76	>50
TRJO.58	В	0.08		>50	>50	15.10		>50	>50
TRO.11	В	0.34		>50	5.34	0.24		>50	5.15
WITO.33	В	0.11		9.67	7.35	1.09		>50	8.53
YU2.DG	В	0.06	0.072	1.46	1.80	0.27	0.23	6.34	2.00
Breadth Geometric Mean ^b	N=39 Titer <50	90 0.30	21 0.17	64 0.46	77 2.84	87 0.92	21 1.01	56 1.47	59 1.91

Supplementary Table 3b. Comparison of neutralization activity of CH103, and other CD4bs mAbs against 39 clade B Env-pseudoviruses.

^aValues <1μg/ml are indicated in red and values 1-50 μg/ml are in green. ^bGeometric means were calculated for neutralization sensitive viruses with an IC₅₀ or IC₈₀ value <50μg/ml.

			IC5	50 ^a			IC8	80 ^a	
Virus ID	Clade	VRC01	CH31	b12	CH103	VRC01	CH31	b12	CH103
286.36	С	0.10		0.90	8.36	1.36		3.18	18.80
288.38	С	1.52		>50	8.45	0.38		>50	19.10
0013095-2.11	С	0.14		>50	5.71	5.86		>50	25.00
001428-2.42	С	0.01		>50	1.51	0.32		>50	4.64
0077 V1.C16	С	1.04		0.16	>50	0.04		2.42	>50
00836-2.5	С	0.13		>50	28.60	3.65		>50	>50
0921.V2.C14	С			3.30	>50	0.52		12.70	>50
16055-2.3	С	0.11		>50	>50			>50	>50
16845-2.22	С	2.41	4.55	>50	>50	0.37	27.80	>50	>50
16936-2.21	С	0.11		>50	5.57	9.07		>50	34.10
25710-2.43	С	0.55		>50	>50	0.47		>50	>50
25711-2.4	С	0.71		23.40	17.20	1.56		>50	46.00
25925-2.22	С	0.56		>50	26.70	1.70		>50	>50
26191-2.48	С	0.20		1.44	>50	1.39		7.25	>50
3168 V4 C10	C	0.13		>50	10.30	0.65		>50	>50
3637 V5 C3	C	4 09		>50	>50	0.28		>50	>50
3873 V1 C24	C.	0.95		>50	>50	11.00	1	>50	>50
6322 V4 C1	Č	>50		>50	>50	0.33		>50	>50
6471 V1 C16	Č	>50		>50	>50	>50		>50	>50
6631 V3 C10	Č	>50		>50	>50	>50		>50	>50
6644 V2 C33	C.	0.16		0.03	0.38	>50		0.36	1 51
6785 V5 C14	C C	0.33		16.50	8.95	0.53		>50	27.60
6838 V1 C35	C	0.00		>50	29.00	0.87		>50	>50
967M651 02	C C	0.53		>50	8 99	0.07		>50	>50
BR025.9	C C	0.00	1 13	>50	>50	1 94	49 00	>50	>50
CAP210 F8	C	>50	1.10	>50	>50	1.01	10.00	>50	>50
CAP244 D3	Č	0.86		>50	>50	>50		>50	>50
CAP45 G3	C	9.66		0.11	>50	2.36		3.65	>50
CNE30	C	0.93		3.81	>50	>50		18 10	>50
CNE31	C C	0.96		18 40	>50	2 59		>50	>50
CNE53	C	0.00		>50	6.92	2.00		>50	>50
CNE58	C C	0.12		>50	0.54	0.28		>50	1 46
DU123.06	C C	13.60		0.40	>50	0.31		5.02	>50
DU151 02	C	7 70		16.00	>50	>50		>50	>50
DU156 12	C C	0.08		1 41	>50	>50		4 90	>50
DU172 17	C	>50		0.55	>50	0.24		2.95	>50
DU422.01	Č	>50		0.00	>50	>50		2.00	>50
MW965.26	Č	0.04		0.002	0.01	>50		2.34	0.09
SO18 18	C.	0.07	0.07	14.30	1.88	0.12	0.32	47.20	7 48
TV1.29	Č	>50	>50	>50	>50	0.17	>50	>50	>50
T7A125 17	Č	>50	>50	>50	>50	>50	>50	>50	>50
TZBD 02	Č	0.07	0.09	>50	5 55	>50	0.34	>50	23 70
ZA012 29	Č	0.25	0.02	>50	28.00	0.23	0.10	>50	>50
ZM106.9	Č	0.25	0.02	>50	4.82	0.83	0.10	>50	8.11
ZM109.4	C	0.13		>50	21.20	0.64		>50	>50
ZM135.10a	Č	1.28		>50	>50	0.39		>50	>50
ZM176.66	C	0.04	0.01	>50	0.23	6.16	2 27	>50	1 25
ZM197 7	Č	0.62	0.01	>50	35.40	1.62	0.06	>50	>50
ZM214 15	č	0.88		4 78	41.40	0.25	0.00	>50	>50
ZM215.8	č	0.28		>50	2.57	1.55		>50	>50
ZM233.6	C.	4 25		>50	7.35	3.04		>50	>50
ZM200.0	C.	0.08		2 73	7 23	0.83		14.80	37.60
ZM53 12	C.	0.84	4 76	>50	>50	23.10		>50	>50
ZM55 28a	C.	0.04	1.70	>50	4 59	0.24	17.00	>50	14.30
Breadth	N=54 Titer <50	81	13	35	52	76	15	26	30
Geometric Mean ^b		0.366	0.219	1.224	5.23	0.870	1.574	4.881	8.11

Supplementary Table 3c. Comparison of neutralization activity of CH103, and other CD4bs mAbs against 54 clade C Env-pseudoviruses.

^aValues <1 μ g/ml are indicated in red and values 1-50 μ g/ml are in green.

^bGeometric means were calculated for neutralization sensitive viruses with an IC₅₀ or IC₈₀ value <50 μ g/ml.

	Binding to heterologous HIV-1 Env, EC ₅₀ (ug/ml)						
Antibody ^a	AE.427299 gp120	B.9021 gp140	C.1086 gp140				
UCA	NB^{b}	NB	NB				
I8	NB	NB	NB				
I7	NB	NB	NB				
1A102RI6	NB	NB	NB				
I4	NB	NB	36.2				
1AZCETI5	NB	>10	4.5				
I3	NB	0.086	0.11				
I2	NB	0.03	0.06				
I1	NB	0.066	0.12				
1AH92U	NB	3.2	0.16				
CH104	NB	0.063	0.06				
CH103	NB	0.5	0.07				
CH106	NB	0.06	0.22				
CH105	NB	0.09	0.11				

Supplementary Table 4.	Binding of antibodies in C	CH103 clonal lineage to heterologous
HIV-1 Env proteins.		

^aThe amino acid sequences and alignments of V_H and V_L gene segments of CH103 clonal lineage antibodies are shown in Supplementary Figure 7; DNA sequences and alignments of V_H and V_L gene segments of CH103 clonal lineage antibodies are shown below. ^bNB = No dateable binding.

V _H sequences ar	d alignment:
-----------------------------	--------------

1	U						
UCA VH	CAGGTGCAGC	TGCAGGAGTC	GGGCCCAGGA	CTGGTGAAGC	CTTCGGAGAC	CCTGTCCCTC	
I8 VH							
I7 VH							
I4 VH			G	T			
I3 VH			G	T			
I2 VH		-A	G	GT			
I1 VH		-A	G	GT			
1AZCETI5 VH							
1A102RI6 VH							
1AH92U VH			G	T			
CH106 VH		-A	G	GT			
CH103 VH		-A	G	GT			
CH104 VH		-A	G	GT			
СН105_VH		G	G	T			60
UCA VH	ACCTGCACTG	TCTCTGGTGG	CTCCATCAGT	AGTTACTACT	GGAGCTGGAT	CCGGCAGCCC	
I8 VH			G	T		T	
I7 VH	G		G-C-	T	T	A	
I4 VH			GG	GT		T	
I3 VH			GG	G-GTT-	C-	T	
I2 VH			GG	G-GACTT-	C-	GC-T-T	
I1 VH			GG	G-GACTT-	C-	GC-T-T	
1AZCETI5 VH	G	G	G-C-	GAG-CT	AT	GT-A	
1A102RI6 VH	G		G-C-	T	TTT	A	
1AH92U VH			GG-A	GT		T	
CH106 VH	T		GG	G-GACTT-	C-	GC-T-T	
CH103 VH	T		GG	G-GACTT-	C-	GC-T-T	
CH104 VH			GG	G-GACTT-	TC-	GC-T-T	

CH105_VH	G		GG	G-GTT-	C-	TT	120
UCA_VH	CCAGGGAAGG	GACTGGAGTG	GATTGGGTAT	ATCTATTACA	GTGGGAGCAC	CAACTACAAC	
18_VH	C		C		CAGA		
I'/_VH	C		C		CAGA		
14_VH	C-T		C	C	CAGA	G	
I3_VH	C-T		C	T-C	CACA	G	
I2_VH	C		C	T-C	CACA	T	
I1_VH	C		C	T-C-T-	CACA	GT	
1AZCETI5_VH	CAC-GG		C	T-C-TT	CCA	T	
1A102RI6_VH	C		C		CAGAG	-C	
1AH92U_VH	CCT		C	G	CAGA	GT	
CH106_VH	C		C	T-C-T-	CACA	GT	
CH103_VH	C	A	C	T-C-T-	CAGAG	TGT	
CH104_VH	C		C	T-C	CACA	T	
CH105_VH	C-T		T	GT-C	CACA	G	180
UCA VH	CCCTCCCTCA	AGAGTCGAGT	CACCATATCA	GTAGACACGT	CCAAGAACCA	ATTCTCCCTG	
I8 VH				G	G	G	
I7 VH				GC	G	G	
I4 VH	G	C	G-C	G	G	G	
I3 VH	G	C	G-C	G	G	G	
10_VH	G	G	-T	G	GG	G	
12_VII T1_VH	C-	G	-T	C		G G	
	C	G	1 C		G G	G	
1ALCEIIS_VH	G	((GGC	GG		
IAIUZRI6_VH		~		GC	GC	G	
IAH92U_VH	G	C	G-C	G			
CHI06_VH	G-	G	-1'	G	GG	G	
CH103_VH	G-	G	-T	G	GG	G	
CH104_VH	GG	G	-T	G	GG	G	
CH105_VH	G	CC	TGG-C	GA	G	G	240
UCA_VH	AAGCTGAGCT	CTGTGACCGC	TGCGGACACG	GCCGTGTATT	ACTGTGCGAG	CCTGCCCAGG	
I8_VH	G-						
I7 VH	G-						
I4 VH	G-						
I3 VH	-GG-						
I2 VH	-GAG-			C	TTC	Т	
I1_NH	-GAG-			C	TTC	Т	
1AZCETI5 VH	CGAT-AG-	C		ACA	ТС-	G	
1A102RI6_VH	G-			-G	GG		
1 AHQ2II VH	G						
CU106 VU	-C7C-C-			<u>_</u>	ΨΨC	Ψ	
	-GAC-G-			C	TTC	Π	
	-GAG-			C			
CHIU4_VH	-GAG-			(TTC	T	200
CHIU5_VH	-G-AG-						300
TICA VU	CCCCACMMAC	<u>таллессел</u> л	СПППСХСПХС	ТСССССА СС		CACCERCECO	
UCA_VH	GGGCAGTTAG	TCAATGCCTA	CITITGACTAC	TGGGGGCCAGG	GAACCCTGGT	CACCGICICC	
TS_AH							
I/_VH							
I4_VH		T					
I3_VH	A	T	A			G	
I2_VH	CA		CG-A-T	GC-		-TA	
I1_VH	CA		CG-A-T	GC-		-TA	
1AZCETI5_VH		C	GT-C-	C	T		
1A102RI6 VH	A	C	C		G		
1AH92U VH		T	C				
CH106 VH	CA		CG-A-T	GC-	T	-TA	
CH103 VH	CA		CG-A-T	GC-	T-T	-TA	
CH104 VH	CA		CG-A-T	GC-		-TA	
CH105 VH	AA	т	CA	C		G	360
		±		0		6	
UCA VH	TCA						
I8 VH							
I7 VH							
I4 VH							
_							

I3_VH		
I2_VH	G	
I1_VH	G	
1AZCETI5_VH		
1A102RI6_VH		
1AH92U_VH		
CH106_VH	G	
CH103_VH	G	
CH104_VH	G	
CH105_VH		363

V_L sequences and alignment:

UCA_VL PT1_VL	TCCTATGAGC	TGACTCAGCC	ACCCTCAGTG	TCCGTGTCCC	CAGGACAGAC	AGCCAGCATC
T2 VI.						A
CH103 VL						A
CH106 VL						A
CH104_VL						A 60
UCA VL	ACCTGCTCTG	GAGATAAATT	GGGGGATAAA	TATGCTTGCT	GGTATCAGCA	GAAGCCAGGC
PI1_VL	G	-GG-	CAAG	AT	GT	G
I2_VL	G	-GG-	CAAG	AT	GT	G
CH103_VL	G	-G-CA	AGC-	AT	GT	G
CH106_VL	G	-GG-	CAAG-GT-	AT	GT	G
CH104_VL	G	-GG-	CAAG	ATT-	GT	120
UCA_VL	CAGTCCCCTG	TGCTGGTCAT	CTATCAAGAT	AGCAAGCGGC	CCTCAGGGAT	CCCTGAGCGA
PI1_VL		A-G	GA	TAT		G
I2_VL		A-G	GGA	TAT		CG
CH103_VL		A-G	T-G-GA	TAT		G
CH106_VL		ACG	GGA	TAT		G
CHI04_VL		A-G	GGA	TATG		C-G 180
UCA_VL	TTCTCTGGCT	CCAACTCTGG	GAACACAGCC	ACTCTGACCA	TCAGCGGGAC	CCAGGCTATG
PI1_VL		G	G		C	A
I2_VL		G	G		C	CA
CH103_VL		G	G		C	A
CH106_VL		G	G		C	CA
CH104_VL		G	G		C	CA 240
UCA_VL	GATGAGGCTG	ACTATTACTG	TCAGGCGTGG	GACAGCTTCT	CCACCTTCGT	CTTCGGAACT
PI1_VL			T			T
I2_VL			T			T
CH103_VL		-T	T			T
CHIU6_VL		-G	T			'I' m 200
CHIU4_VL			<u>T</u>			300
UCA_VL	GGGACCAAGG	TCACCGTCCT	С			
PI1_VL	C		-			
I2_VL	C		-			
CH103_VL	C		-			
CH106_VL	C		-			
CH104_VL	C		- 321			

	В	inding affinity to autologous Envs	
CH103UCAs	k _a (x 10 ³ M ⁻¹ s ⁻¹)	k _d , (x 10 ⁻³ s ⁻¹)	K _d , nM
CH103UCA	26.7	0.926	37.5
CH103UCA-2,3,5 ^b	20.5	2.9	141.5
CH103UCA-4	27.2	1.0	36.8
CH103UCA-6	25.0	6.6	264.0

Supplementary Table 5. Affinity and kinetics of CH103 UCAs binding to autologous T/F CH505 gp140^a.

^a SPR binding rate constants and dissociation constant (K_d) was measured with each antibody captured on an anti-IgG (Fc specific) antibody surface and CH505 gp140 was injected in solution at concentrations ranging from 2 to 100 ug/mL and as described in the online Methods section. Data is representative of at least two independent measurements.

^bAmino acid sequences encoded by V_HDJ_H of CH103UCAs-2, 3 - 5 are the same amino acid as shown in the alignment below.

DNA sequence alignment of V_HDJ_H CH103 UCAs:

CHIUJUCA	CAGGTGCAGC	TGCAGGAGTC	GGGCCCAGGA	CTGGTGAAGC	CTTCGGAGAC	CCTGTCCCTC	ACCTGCACTG	TCTCTGGTGG	CTCCATCAGT	AGTTACTACT	GGAGCTGGAT	CCGGCAGCCC	CCAGGGAAGG	j .
CH103UCA-2														
CH103UCA-3														-
CH103UCA-4														-
CH103UCA-5														-
CH103UCA-6														- 130
CH103UCA	GACTGGAGTG	GATTGGGTAT	ATCTATTACA	GTGGGAGCAC	CAACTACAAC	CCCTCCCTCA	AGAGTCGAGT	CACCATATCA	GTAGACACGT	CCAAGAACCA	ATTCTCCCTG	AAGCTGAGCT	CTGTGACCGC	5
CH103UCA-2											G			-
CH103UCA-3														-
CH103UCA-4											G			-
CH103UCA-5											G			-
CH103UCA-6											G			- 260
CH103UCA	TGCGGACACG	GCCGTGTATT	ACTGTGCGAG	CCTGCCCAGG	GGGCAGTTAG	TCAATGCCTA	CTTTGACTAC	TGGGGCCAGG	GAACCCTGGT	CACCGTCTCC	TCA			
CH103UCA-2					G									
CH103UCA-3					G									
CH103UCA-4					A									
CH103UCA-5					G	C								
CH103UCA-6					G	CG					260			
Amino acid sequ	Amino acid sequence alignment of V _H DJ _H CH103 UCAs:													

CH103UCA	QVQLQESGPG L	VKPSETLSL	TCTVSGGSIS	SYYWSWIRQP	PGKGLEWIGY	IYYSGSTNYN	PSLKSRVTIS	VDTSKNQFSL	KLSSVTAADT	AVYYCASLPR	GQLVNAYFDY	WGQGTLVTVS	S
CH103UCA-2											-E		-
CH103UCA-3											-E		-
CH103UCA-4											I		-
CH103UCA-5											-E		-
av100vaa (E D		101

Autologous Env	*Apparent binding affinity of autologous Envs to CH103 clonal lineage antibodies, EC50, ug/ml										
Autologous Eliv	UCA	18	I4	I3	I2	I1	CH105	CH103	CH104	CH106	
CH0505 T/F	2	1.1	0.3	0.12	0.09	0.11	0.1	0.08	0.12	0.08	
CH505.w30.e16	NB	>10	2.1	0.07	0.047	0.06	0.064	0.055	0.05	0.05	
CH0505.w30.e23	NB	NB	>20	0.14	0.07	0.09	0.08	0.044	0.07	0.053	
CH505.w53.e16	NB	NB	NB	0.066	0.03	0.05	0.05	0.03	0.036	0.032	
CH505.w78.e7	NB	NB	NB	0.13	0.054	0.083	0.09	0.043	0.1	0.13	
CH505.w78.e16	NB	NB	NB	NB	0.2	>10	0.3	1.2	0.19	0.14	
CH505.w78.e38	NB	NB	NB	>100	>100	>10	>10	>10	>10	>10	

Supplementary Table 6. Reactivity of autologous Envs with antibodies in CH103 clonal lineage in ELISA.

*Env proteins highlighted in green had 2-fold or greater loss of binding affinity to antibodies in CH103 clonal lineage compared with the binding of transmitted/founder (T/F) Env to the same antibodies. NB = No detectable binding.

Supplementary Table 7. V_HDJ_H sequences 2 genes (IZ95W and 02IV4) very similar to the CH103 VDJ genes, possible clonal members, identified by 454 sequencing and alignment with their UCA. V_HDJ_H genes of IZ95W and 02IV4 were produced as recombinant antibodies complemented with V_LJ_L genes of UCA and tested for binding to the autologous CH505 T/F Env and heterologous HIV-1 Envs in ELISA assays. MAb IZ95W bound CH505 T/F gp140 with end point titer of 11.1 ug/ml, but did not BIND with heterologous Envs, 6321, 9021, 1086C and 427299.

>UCA V_HDJ_H QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCASLPRGQ LVNAYFDYWGOGTLVTVSS >IZ95W V_HDJ_H QVQLQE_GPGLVKPSETLSLTCTVSGGSIVSYYWSWIRQPPGKGLEWIGYMYYSGSTNYNPSLKSRVTISIDTSKNQFSLKLRSVTAADTAVYYCASLPRGQ LILGYFDYWGQGTLVTVSS >02IV4 V_HDJ_H QVQLQESGSGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGFIYYSGSTNYNPSLKSRVTISIDTSKNQFSLKLRSVTAADTAVYYCASLPRGQ LILGYFDYWGQGTLVTVSS UCA $V_{\rm H} D J_{\rm H}$ QVQLQESGPG LVKPSETLSL TCTVSGGSIS SYYWSWIRQP PGKGLEWIGY IYYSGSTNYN IZ95W V_HDJ_H ------V ------- M------------F ------ 60 02IV4 V_HDJ_H CUCA V_HDJ_H PSLKSRVTIS VDTSKNQFSL KLSSVTAADT AVYYCASLPR GQLVNAYFDY WGQGTLVTVS IZ95W VH 02IV4 VH CUCA V_HDJ_H S

IZ95W_V_HDJ_H -02IV4 V_HDJ_H - 121

	CH103:gp120	Fab CH103
PDB accession code	4JAN	4JAM
Data collection		
Space group	$P2_1$	P21
Cell constants		
a, b, c (Å)	48.9, 208.7, 69.4	43.0, 146.4, 66.3
α, β, γ (°)	90.0, 107.2, 90.0	90.0, 97.7, 90.0
Wavelength (Å)	1.00	1.00
Resolution (Å)	46.8-3.25 (3.31-3.25)*	38.2-1.65(1.71-1.65)
R _{merge}	13.3 (36.0)	6.7(53.1)
I / σI	9.4 (2.3)	17.1 (2.6)
Completeness (%)	93.7 (59.0)	98.0 (90.9)
Redundancy	3.5 (2.5)	3.4 (2.3)
Refinement		
Resolution (Å)	3.25	1.65
No. of unique reflections	19,564 (619)	95,531 (8,787)
$R_{\rm work} / R_{\rm free}$ (%)	19.6/25.6	16.9/19.7
No. atoms	17823	13687
Protein	8843	6437
Ligand/ion	154	134
Water	22	726
B-factors (Å ²)	84.0	26.3
Protein	84.0	24.7
Solvent	44.2	36.9
R.m.s. deviations	0.000	0.007
Bond lengths (A)	0.002	0.007
Bond angles (°)	0.610	1.160
Ramachandran		
Most favored regions (%)	92.0	97.4
Additional allowed regions (%)	7.3	2.6
Disallowed regions (%)	0.7	0.0

Supplementary Table 8. Crystallographic data collection and refinement statistics.

* Values in parentheses are for highest-resolution shell.

HI	V-1 gp120)	R	Residue-l	y-residu	ue bindi	ng surfa	ace on H	IV-1 gp	120 (Å ²)) *
	Resid	ue	- CD4	CH103	ы12-1 g	b13	F105	VRC01	VRC03	VRC-	NIH45-
Region	Number	Туре	(2NXY)	(4JAN)	(2NY7)	(3IDX)	(3HI1)	(3NGB)	(3SE8)	PG04 (3SE9)	46 (3U7Y)
,	49	D								~ /	4.8
	96	W									7.1
	97	Κ						26.4	41.0	10.5	44.0
	99	D									22.1
- 1	102	Е									33.8
αι	105	Н					2.9				
	108	Ι					2.8				
	109	Ι					28.7				
	112	W					69.9				
	122	L								3.1	3.3
	123	Т							8.5		5.6
	124	Р	39.9					36.8	81.7	31.2	33.8
	125	L	6.7								
V1/V2	126	С	61.5								
	127	V	30.8								
	196	C	5.5					10 -			
	198	Т						12.7	51.3		
	199	8							13.4		
	210	F					5.3				
β4/5	226	L					11.8				
	244	1					5.7				
I D	255	V					18.1				
Loop B	256	S T		56.6	15.0		10.0		6.0		
	231	1			15.0		10.9		0.9		
	275	V								26.2	11.1
	276	Ν						22.6	13.3	17.7	9.9
	278	Т						84.4	73.0	35.2	36.7
Loop D	279	D	18.5	3.9			6.6	56.5	36.5	51.7	57.5
	280	N	51.1	94.9	13.0		14.3	70.2	76.3	72.0	69.7
	281	A	74.7		29.8	16.7	52.2	69.6	70.8	74.0	75.7
	282	K	31.6			10 (30.5	17.2	31.9	49.7
	283	1	18.2			12.6		11.9	8.2	10.6	5.2
	364	S		18.9							
	365	S	65.6	85.9	38.3	11.5	25.5	61.5	58.0	46.0	59.1
	366	G	24.6	16.7	44.5	29.5	53.8	22.0	23.3	22.0	21.1
β15/ α3	367	G	38.6	/1.1	/4.4	61./	37.4	24.1	26.4	22.9	26.2
CD4-	308	D	09.5	04.0 10.4	04.0 50.7	87.0 62.0	87.5 16.6	48.0	54.2	51.2	47.4
binging	370	P F	14.7	19.4 30.1	39.7 14.7	02.9	10.0 53.7		16.0		
loop	370	I	39.6	30.1	80.8	61.8	17.5	44.1	35.2	11.8	60.4
	372	V	57.0	57.0	30.9	25.8	ч <i>1.5</i>	44.1	55.2	-+.0	00.4
	373	Ť			17.3	11.7					
	375	s			17.5	9.2	7.0		3.3		
	382	F					36.2				
617	384	V I			46	16.2	72				
h1/	386	N			35.9	2.8	1.4				
	417	п			16.2						
ß18	417	r C			22						
h10	419	R			84.7	64.8					
	117	~			0 1.7	0 1.0					

Supplementary Table 9. Comparison of interactions between HIV-1 gp120 and CD4, CH103 and other CD4-binding site antibodies.

H	V-1 gp12	0		HIV-1 gp120 interacting molecule (PDB code)								
	Resid	110				przo me	in uccining in	lioiceule (1	DD couc)	VRC.		
Region	Number	Туре	- CD4 (2NXY)	CH103 (4JAN)	b12 (2NY7)	b13 (3IDX)	F105 (3HI1)	VRC01 (3NGB)	VRC03 (3SE8)	PG04 (3SE9)	NIH45-46 (3U7Y)	
	421	K				40.2	54.1					
	424	Ι					4.3					
	425	Ν	24.5			60.7	18.2		12.1			
B20/21	426	Μ	14.4			12.5	79.1		7.1			
P20/21 Bridging	427	W	28.2					7.6	35.1		12.8	
sheet	428	Q						4.7				
sheet	429	K	14.9				63.0	2.1	49.7	47.6	23.7	
	430	V	111.5		31.1			58.3			57.3	
	431	G			13.2				13.8	7.0	11.3	
	432	K			47.8						8.0	
	455	Т	15.5	18.6	28.3	3.5	9.6	31.2	24.0	32.9	31.9	
β 23	456	R	3.6		5.4			5.8	6.4	2.4	6.8	
	457	D	37.4	49.1				46.4	43.7	27.1	45.8	
	458	G		32.5				50.5	35.2	39.4	44.9	
	459	G	32.2	48.9				69.1	62.9	56.8	68.8	
	460	Ν	64.8	53.3				37.1	63.9		24.1	
Loop V5	461	S		66.1				67.8	51.2	66.3	54.9	
	462	Ν		36.2					28.9	26.7	6.6	
	463	Ν		16.9				13.7	15.4		10.2	
	465	S						9.7	94		8.7	
	466	Ĝ						6.0			2.1	
β24	467	Ĩ						11.3	15.9		17.8	
	469	R	13.5	59.4				23.3	21.8	17.2	21.0	
	471	G		42			42					
Outer	472	G	20.5	6.6	20.5	63	1.2	84	23.7	3.6	48	
domain	473	G	23.4	0.0	53.5	23.8	50.2	27.6	29.2	18.3	22.8	
exiting	474	D D	37.2		26.0	25.3	43.9	17.3	3.0	7.6	30.5	
loop	475	M	2.8		65.0	23.5	33.6	17.5	5.0	7.0	4.2	
α5	476 477	R D	9.3 3.7				40.9 3.1			21.9	24.8	
	480	R									16.4	

Supplementary Table 9 continued:

Residue-by-residue binding surface on HIV-1 gp120 (Å²) *

*: Residues with interacting surface area less than 2.0 \AA^2 are not listed. Accession codes for CH103 have been requested.

Supplementary Table 10. Interface between antibody CH103 and ZM176.66 gp120.

Antibody	× 6 60 (² 0)	Interface on CH103 (Å ²)				
Antibody	Interface on gp120 (A ²)	Total antibody area	Area contributed by UCA residues (% total)			
Heavy chain	429	493	414 (84%)			
Light chain	378	377	164 (44%)			
Total	807	870	578 (66%)			

Supplementary Table 10a, Total buried surface areas across the interface of CH103 and HIV-1 gp120.

Supplementary Table 10b, Residue-by-residue buried surface area of gp120 residues that interact with CH103.

gp]	120 residue		Heavy ch	ain interactions	Light ch	ain interactions
Region	Number	Туре	Bond type*	Surface area (Å ²)	Bond type	Surface area (Å ²)
Loop B	256	SER	Н	12		
Loop D	279 280	ASP ASN		12	Н	4 40
CD4- binding loop	364 365 366 367 368 369 370 371	HIS SER GLY GLY ASP LEU GLU ILE	H HS H HS	13 54 18 68 65 19 29 39		4 32 4
Loop V5	455 457 458 459 460 461 462 463	THR ASP GLY GLY ASN ASP ASP ASN		19 35 10 51	H HS	13 24 50 51 70 37 15
β24	469 471 472	ARG GLY GLY		24 5 6		34

* Bond type: H: Hydrogen, S: Salt bridge.

Detailed gp120:CH103 interface data was calculated on the EBI PISA server (http://www.ebi.ac.uk/msdsrv/prot_int/cgi-bin/piserver).

Chain Dagion	Resid	lue	Bond	Buried surface area	Contribution by	
Chain	Region	Number (Kabat)	Туре	type*	(Å ²)	Region (%)
Н	CDR H1	33	TYR	Н	32	3.7
Н Н Н Н	CDR H2	50 52 54 56 58	TYR PHE THR GLU ASN	H H	22 12 8 59 2	11.8
Н Н Н Н Н	CDR H3	97 98 99 100 100A 100B	ARG GLY GLN LEU VAL ASN	HS H H H	82 23 120 27 55 50	41.1
L L L	CDR L1	27 31 32	SER THR ASN	Н	4 14 52	8.0
L L L L	CDR L2	50 51 52 53	GLU ASN TYR LYS	H H H	38 28 33 22	14.0
L L L L	FWR L3	65 66 67 68	SER LYS SER GLY	HS	9 44 25 36	13.1
L * Bond ty	CDR L3	91 D: Disulphid	TRP	Salt bridge (71 C: Covalent link	8.1

Supplementary Table 10c. Residue-by-residue buried surface areas of the CH103 paratope residues.

* Bond type: Hydrogen, D: Disulphide bond, S: Salt bridge, C: Covalent link. Detailed gp120:CH103 interface data was calculated on the EBI PISA server (http://www.ebi.ac.uk/msdsrv/prot_int/cgi-bin/piserver).

Hydrogen bonds											
	Antib	ody CH103		— Distance (Å) —		gp120					
Chain	Number	Туре	Atom	Distance (A)	Atom	Туре	Number				
\mathbf{H}	33	TYR	OH	2.2	OD1	ASP	368				
н	50	TYR	OH	3.7	0	GLY	367				
н	56	GLU	OE1	3.2	Ν	LEU	369				
н	97	ARG	NH1	3.8	OG	SER	256				
н	97	ARG	NH2	2.6	OE1	GLU	370				
н	99	GLN	NE2	3.1	OG	SER	365				
н	100	LEU	Ν	2.4	0	SER	365				
н	100	LEU	Ν	3.2	OG	SER	365				
н	100A	VAL	Ν	3.2	OG	SER	365				
L	32	ASN	ND2	3.0	0	GLY	458				
L	50	GLU	OE2	3.1	ND2	ASN	280				
L	51	ASN	ND2	2.9	OD1	ASP	461				
L	53	LYS	NZ	3.2	OD1	ASN	280				
L	66	LYS	NZ	3.2	OD2	ASP	461				

Supplementary Table 11. Hydrogen bonds and salt bridges between CH103 and ZM176.66 gp120.

			Salt	t bridges			
	Antib	ody CH103				gp120	
Chain	Number	Туре	Atom	Distance (Å)	Atom	Туре	Number
н	97	ARG	NE	3.9	OD1	ASP	368
н	97	ARG	NE	2.6	OD2	ASP	368
н	97	ARG	NH2	2.6	OE1	GLU	370
н	97	ARG	NH2	2.7	OD2	ASP	368
L	66	LYS	NZ	3.7	OD1	ASP	461
L	66	LYS	NZ	3.2	OD2	ASP	461

Supplementary Table 12. Residue-by-residue specification of unmutated versus mutated residues on antibody CH103.

Heavy chain mutations									
Region	ID	UCA	Mature	Paratope	Description and note				
	11	L	V		Shortens side chain on strand A				
EW/D 1	14	Р	S		Alters loop between strands A and B				
FWK I	29	Ι	М		Enhances interactions with heavy chain Trp34				
	30	S	G		Increases loop flexibility				
CDP 1	31	S	G		Increases CDR 1 flexibility				
CDK I	32	Y	Т		Avoids clash with other heavy chain residues				
	37	Ι	L		Neutral mutation				
FWR 1	39	Q	L		Alters heavy/light chain interface				
	40	Р	S		Allows flexibility in strand C				
	52	Y	F	Yes	Polar to hydrophobic				
	53	Y	Н	Yes	Polar to basic				
	54	S	Т	Yes	Adds carbon to paratope interface				
CDR 2	56	S	Е	Yes	Forms hydrogen bond with backbone amide of Leu369 in the CD4-binding loop				
	60	Ν	S		Alters heavy/light chain interface				
	65	S	G		Increases flexibility in loop between strand C" and D				
	68	Т	S		Avoids clashes with neighboring residues				
	75	Κ	Е		Basic to acidic change in loop between strand D and E				
EWD 3	76	Ν	D		Polar to acidic change at the beginning of strand E				
I WK J	81	Κ	R		Neutral mutation				
	82A	S	R		Polar to basic change at C terminus of strand E				
	91	Y	F		Polar to hydrophobic change at the heavy/light chain interface				
CDP 3	101	D	R		Acidic to basic change at the first layer adjacent to paratope				
CDK 5	102	Y	Ν		Smaller side chain at the end of CDR H3				
	105	Q	R		Alters heavy/light chain interface				
	107	Т	S		Avoids clashes with neighboring residues				
FWR 4	110	Т	S		Alters heavy/light chain interface				
	112	S	Т		Minor change at the end of strand G				
	113	S	А		Avoids clashes with neighboring residues				

(Supplementary Table12 continues to next page)

Region	ID	UCA	Mature	Paratope	Description and note
FWR 1	20	S	Т		Surface residue in strand B
	26	D	А		Avoids clashes with neighboring residues
	27	Κ			Deletion reduces potential clashes with HIV-1 gp120
	27A	L			Deletion reduces potential clashes with HIV-1 gp120
	27B	G			Deletion reduces potential clashes with HIV-1 gp120
CDK I	27C	D	S	Yes	Acidic to polar change
	31	К	Т	Yes	Shorter side chain reduces potential clashes with HIV-1 gp120
	32	Y	Ν	Yes	Smaller side chain reduces potential clashes with HIV-1 gp120
	33	А	V		Bulker side chain increases packing of light chain core
FWR 2	38	Q	V		Alters heavy/light chain interface
	45	V	Е		Surface residue at strand C', hydrophobic to acidic change
	46	L	V		Alters heavy/light chain interface
	49	Y	F		Alters heavy/light chain interface
	50	Q	E	Yes	Forms hydrogen bond with Asn280 in gp120 loop D
CDR 2	51	D	Ν	Yes	Forms hydrogen bond with Asn461 in gp120 loop V5
	52	S	Y	Yes	Enhances interactions with gp120 loop D
	60	Е	D		Surface residue in loop between strands C" and D
	66	Ν	K	Yes	Forms hydrogen bond and salt bridges with Asn461 in loop V5
FWR 3	69	Ν	S		Shortens side chain in loop between strands D and E
	76	S	R		Polar to basic change and longer side chain at C terminus of strand E
	81	М	Ι		Shortens side chain in loop between strands E and F
CDR 3	90	А	V		Bulker side chain increases packing of light chain core
FWR 4	100	Т	S		Neutral mutation in strand G and near heavy/light chain interface

Supplementary Table12, continued:

Light chain mutations

To determine the frequency of germline antibodies that could potentially serve as unmutated common ancestors of a lineage line CH103, we have interrogated a combined dataset of 454 pyrosequences of three HIV infected subjects unrelated to the CH505 patient. Gene segment frequencies in this dataset demonstrate that the frequency of the VH4-59 gene is 4.2%, the JH4 is 49.7% and the frequency of HCDR3 length of the CH103 VH length (a 15mer) is 8.9%. The proportion of sequences with all three characteristics, if independent is VH4-59/JH4/CDR3 Length=15 is 1/540 with the actual count in the analyzed data set of the combinantion = 637/386853 = 1/607. This frequency is clearly very common. The question that remains regards the prevalence of the relevant characteristics of CDR3.

For example, the HC CDR3 contact residues (from figure 4 of the paper) are RGQLVN starting at position 4 in HCDR3 with the following conservative substitutions:

$R{:}\;K;\;\;G{:}\;A;\;\;Q{:}\;E;\;\;L{:}\;I,\;V;\;\;V{:}\;I,\;V;\;\;N{:}\;D$

We therefore use the HCDR3 motif: XXX(R/K)(G/A)(Q/E)(L/V/I)(L/V/I)(N/D)nX, and scanned our pyrosequencing heavy-chain dataset for its occurrence. This motif occurred 10 times among the 337567 in-frame HCDR3 in our pyrosequencing database.

If we allow positions other than the fourth (which contains the R/K necessary for the salt bridge) to vary we obtain the table below. The number of positions at which the observed HCDR3 differs from the CH103 HCDR3 motif is on

the left, and the number out of 337567 HCDR3 sequences is on the right. All of the CDR3 in this table have R or K at position 4.

distance	number of sequences out of 337567
0	10
1	71
2	1028

An appropriate light-chain UCA is also likely to be readily available. We downloaded 2312 rearranged human lambda V-region sequences from Genbank and analyzed them for comparison. The CH103 light chain uses IGLV3-1 and IGLJ1. These genes are found in 9.6% and 15.5% respectively of all sequences in the Genbank lambda database. The CH103 light chain is 30 nt long, as are 23.7% of the Genbank lambdas. The single contact residue in the light-chain CDR3 is tryptophan at the 3rd CDR3 position, which is encoded by the IGLV gene.Indeed 43% of all Genbank lambda chains have W at position 3 of CDR3. Thus, there is considerable evidence that the germlines of the CH103 lineage are relatively common by a variety of criteria.

				Usir	Using MEME						
Week after infection	n Pos ^a	n Neg ^b	CH103 n Pos ^c	Non- CH103 n Pos ^d	Fisher's p (n Pos) ^e	Fisher's p (n Neg) ^f	Substitution per site ^g	selected sites	Positively selected sites inside CH103 footprint	Positively selected sites outside CH103 footprint	Fisher's exact P value
4	0	6	0	0	na	1	0.0035	0	0	0	na
14	0	14	0	0	na	1	0.0095	0	0	0	na
20	5	20	3	2	0.009	0.71	0.022	3	2/92	1/830	0.05
30	8	32	4	4	0.005	0.36	0.04	5	3/92	2/830	0.009
160	36	88	11	25	0.0004	0.6	0.057	34	11/92	23/830	0.0002

Supplementary Table 13. Localization of sites under positive selection using the fixed effects likelihood (FEL)¹ (p-value < 0.10) and the mixed effects model of evolution (MEME)² (q-value < 0.1).

^a Number of positively selected sites; ^bNumber of negatively selected sites; ^cNumber of positively selected sites among 92 sites inside CH103 binding regions (footprint); ^dNumber of positively selected sites among 830 sites not in CH103 footprint; ^eP value from Fisher's exact test for positively selected sites inside vs. outside CH103 footprint; ^fP value from Fisher's exact test for negatively selected sites inside vs. outside CH103 footprint; and ^gPer-site substitution rate among 922 aligned sites.

The 922 codons in the CH505 alignment were considered as 2 sets: 92 codons (10%) were included in the candidate regions for CH103 selection (CH103, CD4, and VRC01 contact residues, as well as V1 and V5 hypervariable loops which border these contacts), and the 830 other codons remaining in the alignment. We used FEL¹ and MEME² methods to quantify selection in the CH505 codon-aligned sequences, implemented through the HyPhy package at the DATAMONKEY website (http://www.datamonkey.org). The full alignment was used for the initial analysis, and the codon sets defined above were used to see if positive selection was concentrated in the CH103 contact/CD4bs region. We used the strategy implemented at the DATAMONKEY web site to select optimal substitution models, with a p < 0.10 cutoff as evidence suggesting positive selection for the FEL model, and a q < 0.10 cutoff for the MEME model. Analysis by using both FEL and MEME methods showed that positive selection was enriched in CH103 binding regions by week 20, and this focus continued throughout the course of the study, through week 160. Fisher's exact test was used to test the null hypothesis that the positively selected sites are evenly distributed throughout Env; they are not, and are enriched in the CH103 region. In contrast, the number of sites under negative selection was evenly distributed between the two regions. The amino acids that are changing in the regions of interest for CH103 escape are shown in Fig 5. At week 4, using FEL¹ and MEME², there was no statistical evidence for positive selection anywhere in the CH505 codon-aligned sequences, though there was evidence for negative selection at 6 positions with p values below the cutoff. However, FEL and MEME will underestimate positive selection within a subject, as the frequencies of identical sequences are not considered, and thus changes in population frequency are not considered positive selection. Given this, it is of note that in the week-4 sample, a single mutation in the full alignment of 55 sequences occured more than once, and it was a N279K change in Loop D, found in 5 of the 55 sequences. There was also one instance of a short (7 residue) in-frame deletion spanning this position. This would produce just one ancestral change in the phylogenetic tree, so it could not provide statistical evidence of selection, but still coincidence of facts makes it of interest: 279 is located in a key contact position for CH103 in Loop D, in a region under clear strong subsequent selective pressure. Neighboring positions are mutating by week 14, a further indication that local positive selection might be underway, leaving open the possibility that these sites may targeted by the CH103 lineage very early in infection. Codon models also do not take into account insertions and deletions, an essential aspect of HIV env evolution, which is evident in CH505 in V1 by week 20.

1. Kosakovsky Pond, S.L. & Frost, S.D. Not so different after all: a comparison of methods for detecting amino acid sites under selection. *Molecular biology and evolution* 22, 1208-1222 (2005).

2. Murrell, B., et al. Detecting individual sites subject to episodic diversifying selection. PLoS genetics 8, e1002764 (2012).

	Neutralization activity (IC50, ug/ml)										
Antika da ID	C.CH505	Heterologous viruses									
Anubody ID	T/F	B.SF162	B.JRFL	A.Q168	A.Q842	B.BG1168	C.ZM106	WIUL V			
UCA	> 50	> 50	> 50	> 50	> 50	> 50	> 50	> 50			
18	49.4	> 50	> 50	> 50	> 50	> 50	> 50	> 50			
17	14.7	> 50	> 50	> 50	> 50	> 50	> 50	> 50			
I4	10.9	> 50	> 50	> 50	> 50	> 50	> 50	> 50			
1AZCETI5	12.8	> 50	> 50	> 50	> 50	> 50	> 50	> 50			
1A102RI6	4.6	> 50	> 50	> 50	> 50	> 50	> 50	> 50			
1AH92U	> 50	22.0	> 50	> 50	> 50	> 50	> 50	> 50			
13	6.2	1.2	0.071	24.1	> 50	42.6	> 50	> 50			
I2	1.5	1.1	< 0.023	2.6	3.7	14.7	17.0	> 50			
I1	2.5	0.211	< 0.023	2.2	1.8	15.4	19.4	> 50			
CH103	3.2	0.316	0.033	2.3	1.4	17.7	12.8	> 50			
CH104	2.0	0.096	0.025	2.7	2.4	13.4	12.0	> 50			
CH105	4.9	0.562	0.038	5.5	40.0	15.8	28.5	> 50			
CH106	2.3	0.121	< 0.023	1.6	0.6	8.2	8.1	> 50			
	>50	>20 - <50	>10 - <20	>5 - <10	<5						

Supplementary Table 14. Autologous and heterologous neutralization activity of CH103 clonal lineage antibodies.

viruses.							
C.CH0505T/F	MRVMGIQRNY	PQW.WIWSML	GFWMLMICNG	MWVTVY	YGVPVWKEAK	TTLFCASDAK	
A 0168	-K-DKT	-K-CTM	LLCTVSV	AFOL	D-F		
A.Q100		ONT D CTM	TIC TTE CA	· ADQU			
A.Q042	AM-C	QNLR-GIM	ILG-IIF-SA	. VDNL	E		
B.BGI100	KMK-C	QHLR-GIM	LLGISA	.TEKL	T		
B.JRFL	KRK	QHLRGGT-	LLGIIVSA	.VEKL	T		
B.SF162	KRK	QHLRGGT-	LLGSA	.VEKL	T		
C.ZM106	-K-RE-LW	RGI-	V	VVGNL			
B.HXB2	KEKYQHL	WR-G-R-GTM	LLGSA	.TEKL	T		60
C.CH0505T/F	AYEKEVHNVW	ATHACVPTDP	NPQEMVLKNV	TENFNMWKND	MVDQMHEDVI	SLWDQSLKPC	
A.0168	ST-KI-		IH-E	EN	ET-I-	R	
A.0842	т-к		TH-E	EN	ET-T-		
B BG1168	T		VK-E	DV	TT-		
B JEFL	DT		VG	KN	EOI-		
B GF162	DT		TF	N	FT_		
D. JF102	DI		E	N	EI-		
C.ZMIU6	K		SE		1-		100
B.HXBZ	D'I'		\/		E1-		120
C.CH0505T/F	VKLTPLCVTL	NCTNA	A	SNSSII.	EGM	KNCSFNITTE	
A.Q168		VN	NNTN	V-NNTG.	WD-ER		
A.Q842		D-N-VT	NNGS	DMR.	EI	M	
B.BG1168		HDVNTTCI	TTNNS-MTNS	TEGNCS	SYNYNGR-EL	RS	
B.JRFL		KDV	NA-NTTN	GSEGTM	ERGEI	S	
B.SF162		HL	KNA-NTKS	WKEM	DRGEI	KVS	
C.ZM106		K-V-V	NA-SKSN	ASATNDG	SGE-	T	
B. HXB2	S-	KDI	KND-NTNS	-SGRMTM. E	KGET	S-S	180
2,11122	5					0.0	200
С СНОБОБТ/F	I.RDKREKKNA	I.FYKI.DIVOI.	DGNSSO	YRLINCNTS	VITOACPKVS	FDPTPTHYCA	
a 0168			DN-S	. IREINONIO		-F	
A.Q100	Q VIS	V I T	NEDO NN	• v m		E	
A.Q042	Q-VI3	I	NEDQNN	I/1	A1	-E	
B.BGI168	IQVQ.DY-	1PI	KSDNSDNTS.	·	1-	-E	
B.JRFL	IEVQ-EY-	V-P1	N-NTS.	S-D	1-	- <u>K</u>	
B.SF162	I-N-MQ-EY-	V-PI	NDNTS.	K		-E	
C.ZM106	IKRNES-	P-	TNDNNSG	E	AM		
B.HXB2	I-G-VQ-EY-	FIPI	DNDTTS.	K-TS		-E	240
C.CH0505T/F	PAGYAILKCN	NKTFTGTGPC	NNVSTVQCTH	GIKPVVSTQL	LLNGSLAEGE	IIIRSENITN	
A.Q168	FK	DEK-N	K		K-	VMF	
A.Q842	FK	DEE-N-I	К		K-	VKC	
B.BG1168	F	D-K-S-K-T-		RL.T	VVEG	VVLF	
B.JRFL	F	DN-K	К	R	E-	VVD-F	
B.SF162	F	D-K-N-S	Т	R	EG	VVF-D	
C 7M106		N	Y			TD	
B HYB2		N	т т	P	F_	WVV-F-D	300
D • 1171D2	L	14	1	11	Ц	VV VID	500
С СНОБОБТ/Е	NVKTTTVHLN	FSVKIECTBP	NNKTRTSIRI	GPGOAFYA	TGOVIGDIRE	AYONINESKW	
7 0160	N N T OEK	DNI	NNICINISINI	••GI GQAFIA	TGOATODIKE	AICHINGSIW	
A.Q100	-A-N-L-QFK	ND N		••	1Q	U V DEE	
A.Q842	-AQ-V	NPN	NKH-		DIQ	-HV-RTE-	
B.BGI108	-дQ-к	DPE	N-IKHL	K-WH-	IK	-F-TL-STN-	
B.JRFL	-АQ-К	E-N	NKH-	•••RT	E1Q	-HSRA	
B.SF162	-АQ-К	E-N	NKT-	R	DIQ	-HSGE	
C.ZM106		IH-T	NK	T	EIK	S-E	
B.HXB2	-AQ	TE-N	NKR	QRRVT	I-KNM-Q	-HSRA	360
C.CH0505T/F	NETLQRVSKK	LKEYFP.HKN	ITFQPSSGGD	LEITTHSFNC	GGEFFYCNTS	SLFNRTYMAN	
A.Q168	-KAK-VEQ	-RSS-E.N-T	-I-AN			GDS-WNDT	
A.Q842	-NHQ-VEQ	-RKHN-T	-N-AN-T		T	NS-WNHT	
B.BG1168	TNKQMVE-	-R-Q-E.N-T	-A-NQ-T	PVM-T	T	QSIWYNT	
B.JRFL	-DKOIVI-	-R-O-E.N-T	-V-NH	PVM	ST	OS-WNN-	
B.SF162	-NKOTVT-	-OAO-G.N-T	-V-KO	PVM	ST	0S-WNNT	
C.ZM106	-KAE-G	H N-T	-K-A		R	~ КЯН-	
B HXB2	-NKUIDG-	-R-O-CNN-T	-T-KO	PV	QT	0S-WFNG	420
	TA TATAD-	T & GIMIN-I	T T/Å	- v	51	× P MEINO	120

Supplementary Table 15. Alignment of gp160 Env sequences of CH505 transmitted/funder (T/F) and tested heterologous HIV-1 viruses.

C.CH0505T/F	STDMANSTET	NSTRTITIHC	RIKQIINMWQ	EVGRAMYAPP	IAGNITCISN	ITGLLLTRDG	
A.Q168	DSR	QENGLP-		RT-Q-1	-Q-A-R-V		
A.Q042 P. PC1169	ASMNS-	E-NDILP-		RQ	-K-V-K-E		
B.BGII00 B.TPFT	T FC-NN-	FCN LP-		QK-I	-R-R-R		
B SF162	TGPN	-TNGLP-	R	K	-R-0-R-S		
C.ZM106	ATSRN	ATNALP-	R		V	V	
B.HXB2	TWSTEG-NN-	EGSDLP-		КК	-S-Q-R-S		480
C.CH0505T/F	GKNNTET	FRPGGGNMKD	NWRSELYKYK	VVEVKPLGVA	PTNARRRVVE	REKRAVGMGA	
A.Q168	-NN.NSTN	D-R-		KIE	KG		
A.Q042 P. PC1169	-NT.NSTR	D-R-		KIE	K-K0		
B.IRFI.	-DI.N-GI	D-R-		KIE	K-KÓ	T	
B.SF162	EIS-TI	D_R_		KIE	K-K0	TI	
C.ZM106	-NGDT-D	DN		I	E-K	I	
B.HXB2	-NS.N-ES-I	D-R-		KIE	K-KQ	I	540
					-		
C.CH0505T/F	VFLGFLGAAG	STMGAASITL	TVQARQLLSG	IVQQQSNLLK	AIEAQQHMLK	LTVWGIKQLQ	
A.Q168					L-R		
A.Q842	I			R	L		
B.BG1168	M			R	L-Q		
B.JRFL		M	L	R	Q		
B.SF162	M	T		R	L-Q		
C.ZMIU6	-L	M	-AV	R	L-Q		600
B.HXBZ	Г	M		R	<u>r</u> -Õ		600
С СНОБОБТ/Е	ARVI.ALERYI.	KDOOLLGMWG	CSGKLICTTN	VYWNSSWSNK	TYCDIWDNMT	WMOWEREISN	
A 0168	V_	T		-P	SOSEE	-IK	
A.0842	V	I	S	-P	SONE	-LDK	
B.BG1168	V	I	A	-PA	SOEEL-	KN-	
B.JRFL	V	GI	A	-PA	SLDRN	ED-	
B.SF162	V	I	A	-PA	SLDQN	ED-	
C.ZM106	T	L	RA	-P	SLT	DK-V	
B.HXB2	V	I	A	-PA	SLEQNHT-	E-DN-	660
/							
C.CH0505T/F	YTEIIYELLE	ESQNQQEKNE	QDLLALDRWN	SLWNWFNITN	WLWYIKIFIM	IVGGLIGLRI	
A.Q168	QT-I-		K-A	D-SK	R		
A.Q842 D.DC1169	QD		E E K A	ND-S-			
B.DGIIVO B.TRFT	SFT-T-	Q	-EEK-V	DK	K		
B SF162	NIT-T-		-EEK-A	D-SK		V	
C.ZM106	NTR	DS	KS-K	NTD-S-		V	
B.HXB2	SL-HS-I-		-ЕЕК-А		L	V	720
C.CH0505T/F	IFAVLSLVNR	VRQGYSPLSL	QTLIPSPRGP	DRPGGIEEEG	GEQDRNRSTR	LVSGFLALVW	
A.Q168	VV	E'	L-A	D	G-GRQ	NST-1-	
A.Q842 D.DC1169	VVI	F	HT-NL	ER	KI-	A-	
B.IRFI.	V-TT	F		<u>E</u>		NT_	
B.SF162	V-TT	F	RF-A	E	RDSP	H-TT-	
C.ZM106	I-I		TOG	L-R	DI-	NT-A-	
B.HXB2	VI	F	HL-T	E	RDI-	N-SI-	780
C.CH0505T/F	DDLRSLCLFI	YHRLRDFILI	AARAGELLGR	SSLKGLRRGW	EALKYLGSLV	QYWGLELKRS	
A.Q168	S	L	IV		IWN-L	IQN-	
A.Q842	S		VTVH	L	-GN-L	SRRI-	
B.BG1168	S	L	VIV		WWN-L	SQN-	
B.JRFL	VS	LL-T	VT-IV		-VWWN-L	SQN-	
B.SF102	S	L		····	W-N-L	C	
B HXB2	S	T.T	H VT-TV	ĸQĸ	NN		840
שנאוני ש	5		v ± ± v	•••••		2711 -	040
C.CH0505T/F	AISLLDTLAT	AVGEGTDRTT.	EFVLGICRAT	RNIPTRIROG	FETALL		
A.Q168	N-T	AAT	-IIORAIT-V	L	R		
A.Q842	-TNI	VIAGWVI	-IGQRLF	LR	R		
B.BG1168	-VN-T	V-AI	-ALQR	LH	R		
B.JRFL	-VNAT	AI	-ALQRTY	LH	L-R		
B.SF162	-VF-AI	AI	-VAQR-GF	LHR	R		
C.ZM106	SI-M	AI	-L-QRG-	YHR	A	~	
B.HXB2	-VNAT	AVI	-V-Q-A	-HR	L-RI 88	6	