SUPPLEMENTARY INFORMATION

С

orm1∆/orm2∆ x sac1∆

Supplementary Figure 1. A functional role for Sac1 in sphingolipid metabolism.

a, Lipidomic analysis of LCB levels in the indicated strains are shown (average \pm s.d., n = 3). **b**, Serial ten-fold dilutions of the indicated strains were spotted on plates with 0 or 400 ng/ml myriocin and imaged after 24-48 hr of growth. The *sac1-8* allele of *SAC1* is a catalytically inactive *SAC1* mutant described previously (ref. 1). **c**, *ORM1/ORM2* and *SAC1* deletion mutants exhibit synthetic lethality. Representative tetrads from a *orm1* Δ */orm2* Δ x *sac1* Δ cross are shown, with circles indicating spores with the *orm1* Δ */orm2* Δ */sac1* Δ genotype that fail to grow.

Supplementary Figure 2. ORMDL gene expression after RNAi treatment

Gene expression was quantified for the indicated genes after transfection of Hela cells with indicated siRNAs. RT-PCR was performed with primers for the indicated genes using *RPL19* as a reference. Data are normalized to expression levels in untreated cells (average \pm s.d., n = 3).

Supplementary Figure 3. Myriocin treatment does not prevent formation of the Orm1/2-Lcb1/2-Sac1 complex. Colloidal-stained SDS/PAGE gels are shown for native affinity purifications from strains expressing 3xFlag-Orm1 or 3xFlag-Orm2. Prior to harvest, the indicated strains were grown for 12-16 hr in standard rich media or media supplemented with 150 ng/ml myriocin.

- Myriocin GFP-Orm2

GFP-Orm

Sec63-mCherry

GFP-Orm

GFP-Orm1

Supplementary Figure 4. Orm2 localization changes in response to myriocin treatment. GFP-Orm2 and GFP-Orm1 were visualized in strains grown in rich media with or without myriocin. Sec63-mCherry was used as a marker for ER localization. Arrowheads in images of GFP-Orm2 indicate a reduction in cortical ER localization in response to myriocin treatment. Median filtering was applied to reduce image noise.

Breslow et al. Supplementary Figure 5

Supplementary Figure 5. Disruptions to sphingolipid synthesis that act downstream of Lcb1/2 but upstream of Aur1 induce Orm1/2 phosphorylation. Tetracycline-repressible promoters were inserted in front of the indicated genes in strains expressing 3xFlag-Orm1 or 3xFlag-Orm2 (note: *pTet-LAG1* was combined with deletion of *LAC1*). Lysates were prepared before and after gene expression shut-off (treatment with 5 µg/ml doxycyclinefor 14-16 hr) and analyzed by Western blot against the Flag epitope after separation on phosphate-affinity SDS/PAGE gels. Note: gel-to-gel differences in banding pattern are due to variability in phosphate-affinity gel resolution.

Supplementary Figure 6. Mass spectrometry identifies phosphorylated residues on Orm1 and Orm2. Phospho-peptides from immuno-precipitated 3xFlag-Orm1 and 3xFlag-Orm2 proteins were analyzed using an orbitrap mass spectrometer. For both Orm1 and Orm2, three phospho-peptides were identified. All Orm2 phospho-peptides were singly phosphorylated, whereas singly, doubly and triply phosphorylated peptides were identified for Orm1. The most probable phosphorylation site assignments are highlighted in red, and alternative assignments (with a lower probability) are highlighted in blue. For the boxed peptides NQTDLKPFPS*AGSASSSIK (Orm1) and TKNES*PAFEESPLTPNVSNLKPFPSQSNK (Orm2), annotated tandem mass spectra are shown, where S* indicates the site of phosphorylation.

Supplementary Figure 7. Wild type and phospho-mutant forms of Orm1 and Orm2 show similar expression levels. Lysates from strains expressing 3xFlag-tagged wildtype (WT) or phospho-mutant alleles of *ORM1* and *ORM2* were prepared after growth for 12-16 hr in 0 or 150 ng/ml myriocin. Western blots of these lysates were probed against the Flag epitope and against Pgk1 as a loading control.

Supplementary Methods

Plasmid sequences below are derived in part from published constructs described in Gari et al.² and Shaner et al.³

pFA6a-NATMX4_pTEF2_eGFP_Adh1-tm-AG

Primer annealing sequences used for PCR are underlined. TEF2 promoter sequence is in bold font.

TTAGCTTGCCTTGTCCCCGCCGGGTCACCCGGCCAGCGACATGGAGGCCCAGAATACCCTCCTTGACAGTCTTGACG TGCGCAGCTCAGGGGCATGATGTGACTGTCGCCCGTACATTTAGCCCCATACATCCCCATGTATAATCATTTGCATCC ATACATTTTGATGGCCGCACGGCGCGAAGCAAAAATTACGGCTCCTCGCTGCAGACCTGCGAGCAGGGAAACGCTCC CCTCACAGACGCGTTGAATTGTCCCCACGCCGCGCCCCTGTAGAGAAATATAAAAGGTTAGGATTTGCCACTGAGGT **TCTTCTTTCATATACTTCCTTTTAAAATCTTGCTAGGATACAGTTCTCACATCACATCCGAACATAAACAACCATGG** GTACCACTCTTGACGACACGGCTTACCGGTACCGCACCAGTGTCCCGGGGGACGCCGAGGCCATCGAGGCACTGGAT GGGTCCTTCACCACCGACACCGTCTTCCGCGTCACCGCCACCGGGGACGGCTTCACCCTGCGGGAGGTGCCGGTGGA CCCGGACGTTCGTCGCGTACGGGGACGACGGCGACCTGGCGGGCTTCGTGGTCGTCTCGTACTCCGGCTGGAACCGC CGTACCGGCGGATGGGGTTCACCCTCTGCGGCCTGGACACCGCCCTGTACGACGGCACCGCCTCGGACGGCGAGCAG GCGCTCTACATGAGCATGCCCTGCCCCTAATCAGTACTGACAATAAAAAGATTCTTGTTTTCAAGAACTTGTCATTT CATCTGCCCAGATGCGAAGTTAAGTGCGCAGAAAGTAATATCATGCGTCAATCGTATGTGAATGCTGGTCGCTATAC TGCTGTCGATTCGATACTAACGCCGCCATCCAGTGTCGAAAACGAGCTCATATATGGGGGCCGTATACTTACATATAG TAGATGTCAAGCGTAGGCGCTTCCCCTGCCGGCTGTGAGGGCGCCATAACCAAGGTATCTATAGACCGCCAATCAGC AAACTACCTCCGTACATTCATGTTGCACCCACACATTTATACACCCAGACCGCGACAAATTACCCCATAAGGTTGTTT GAAGCCTCAAGAAAAAAAAATTCTTCTTCGACTATGCTGGAGGCAGAGATGATCGAGCCGGTAGTTAACTATATAT **TTATTCCCTTCAAGGTTTTTTTTAAGGAGTACTTGTTTTTAGAATATACGGTCAACGAACTATAATTAACTAAACA** ${\tt CTAGT} {\tt ACCATGAGTAAAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTCTTGTTGAATTAGATGGTGATGTTAAT$ TACTGGAAAACTACCTGTTCCATGGCCAACACTTGTCACTACTTTCACTTATGGTGTTCAATGCTTTTCAAGATACC CAGATCATATGAAACGGCATGACTTTTTCAAGAGTGCCATGCCCGAAGGTTATGTACAGGAAAGAACTATATTTTTC AAAGATGACGGGAACTACAAGACACGTGCTGAAGTCAAGTTTGAAGGTGATACCCTTGTTAATAGAATCGAGTTAAA AGGTATTGATTTTAAAGAAGATGGAAACATTCTTGGACACAAATTGGAATACAACTATAACTCACAAATGTATACA TCATGGCAGACAAACAAAGAATGGAATCAAAGTTAACTTCAAAATTAGACACAACATTGAAGATGGAAGCGTTCAA CTAGCAGACCATTATCAACAAAATACTCCAATTGGCGATGGCCCTGTCCTTTTACCAGACAACCATTACCTGTCCAC ACAATCTGCCCTTTCGAAAGATCCCCAACGAAAAGAGAGACCACATGGTCCTTCTTGAGTTTGTAACAGCTGCTGGGA TTACACATGGCATGGATGAACTATACAAATAGGGCCTCGAGgcccgctattaacgctttgtaatgtatagcttttaa tgtgtgatcgcctgacttttgcacgccggccggcggcagcgcgctgcgtccaggcagcgtcacggcgcaggtggcgg acqqcqcqcqqqcaqtcctcqacAACGAGCTCGAATTCATCGACCGCGGATCTGCCGGTCTCCCTATAGTGAGTCG TATTAATTTCGATAAGCCAGGTTAACCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGG GGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCA GGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAAATCGACGC TCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCCTGGAAGCTCCCTCGTGCGCTC TCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAATGCT CACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCC GACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGC CACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCT ACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGA TCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCA GAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATC CATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGA ${\tt CCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCG$ ATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCAT GCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGA GTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAA CGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAA CTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGG GAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTAT AGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTC GTCTCGCGCGTTTCGGTGATGACGGTGAAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAA GGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGGACATATTGTCGTTAGAACGCGGCTACAATTAATACATAA CCTTATGTATCATACACATACGATTTAGGTGACACTATA

pFA6a-NATMX4_pTDH3_eGFP_Adh1-tm-AG

Primer annealing sequences used for PCR are underlined. TDH3 promoter sequence is in bold font.

TTAGCTTGCCTTGTCCCCGCCGGGTCACCCGGCCAGCGACATGGAGGCCCAGAATACCCTCCTTGACAGTCTTGACG TGCGCAGCTCAGGGGCATGATGTGACTGTCGCCCGTACATTTAGCCCCATACATCCCCCATGTATAATCATTTGCATCC ATACATTTTGATGGCCGCACGGCGCGAAGCAAAAATTACGGCTCCTCGCTGCAGACCTGCGAGCAGGGAAACGCTCC CCTCACAGACGCGTTGAATTGTCCCCACGCCGCGCCCCTGTAGAGAAATATAAAAGGTTAGGATTTGCCACTGAGGT **TCTTCTTTCATATACTTCCTTTTAAAATCTTGCTAGGATACAGTTCTCACATCACATCCGAACATAAACAACCATGG** GTACCACTCTTGACGACACGGCTTACCGGTACCGCACCAGTGTCCCGGGGGACGCCGAGGCCATCGAGGCACTGGAT GGGTCCTTCACCACCGACACCGTCTTCCGCGTCACCGCCACCGGGGACGGCTTCACCCTGCGGGGAGGTGCCGGTGGA CCCGGACGTTCGTCGCGTACGGGGACGACGGCGACCTGGCGGGCTTCGTGGTCGTCTCGTACTCCGGCTGGAACCGC CGGCTGACCGTCGAGGACATCGAGGTCGCCCCGGAGCACCGGGGGCACGGGGTCGGGCGCGCGTTGATGGGGCTCGC CGTACCGGCGGATGGGGTTCACCCTCTGCGGCCTGGACACCGCCCTGTACGACGGCACCGCCTCGGACGGCGAGCAG GCGCTCTACATGAGCATGCCCTGCCCCTAATCAGTACTGACAATAAAAAGATTCTTGTTTTCAAGAACTTGTCATTT CATCTGCCCAGATGCGAAGTTAAGTGCGCAGAAAGTAATATCATGCGTCAATCGTATGTGAATGCTGGTCGCTATAC TGCTGTCGATTCGATACTAACGCCGCCATCCAGTGTCGAAAACGAGCTCCACGCTTTTTCAGTTCGAGTTTATCATT GCCTTTTAATTCTGCTGTAAACCCGTACATGCCCCAAAATAGGGGGGCGGGTTACACAGAATATAACATCGTAGGTGT GAATCCCAGCACCAAAATATTGTTTTCTTCACCAACCATCAGTTCATAGGTCCATTCTCTTAGCGCAACTACAGAGA AGCTGAAAAAAAAGGTTGAAACCAGTTCCCCTGAAATTATTCCCCCTACTTGACTAAAAGTATAAAAGACGGTAGGT ${\tt CTGGAGTTGTCCCAATTCTTGTTGAATTAGATGGTGATGTTAATGGGCACAAATTTTCTGTCAGTGGAGAGGGTGAA}$ TGTCACTACTTTCACTTATGGTGTTCAATGCTTTTCAAGATACCCAGATCATATGAAACGGCATGACTTTTTCAAGA GTGCCATGCCCGAAGGTTATGTACAGGAAAGAACTATATTTTTCAAAGATGACGGGAACTACAAGACACGTGCTGAA GTCAAGTTTGAAGGTGATACCCTTGTTAATAGAATCGAGTTAAAAGGTATTGATTTTAAAGAAGATGGAAACATTCT TTAACTTCAAAATTAGACACAACATTGAAGATGGAAGCGTTCAACTAGCAGACCATTATCAACAAAATACTCCAATT GGCGATGGCCCTGTCCTTTTACCAGACAACCATTACCTGTCCACACAATCTGCCCTTTCGAAAGATCCCAACGAAAA ${\tt GAGAGACCACATGGTCCTTCTTGAGTTTGTAACAGCTGCTGGGATTACACATGGCATGGATGAACTATACAAATAG{\tt G}$ gctgtcacgtgacggcgaccacgggtggagaaaatttttggccaacggcgcgcagagcagtcctcgacAACGAGCTCGAATTCATCGACCGCGGATCTGCCGGTCTCCCTATAGTGAGTCGTATTAATTTCGATAAGCCAGGTTAACCTGCATT AATGAATCGGCCAACGCGCGGGGGGGGGGGGGGGGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTG TAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTT TCCATAGGCTCCGCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTA TAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCT GTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAATGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCG TTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTT GAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGT AGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTC TTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTC TGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCC TTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTA ATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAAC TACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATT ATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGG TCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGA GTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATA CCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTA CCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGT TTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCA TACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATT TAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTAT CATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTGAAAACC TCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGC GCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCA TATGGACATATTGTCGTTAGAACGCGGCTACAATTAATACATAACCTTATGTATCATACACATACGATTTAGGTGAC ACTATA

pFA6a-NAT-MX4-Tet-Act-pTet

A fusion PCR product of the pFA6a-NATMX4 marker, Tet-Activator, and 4XTet-Operator promoter was generated and cloned into the pCR2.1-TOPO vector

(Invitrogen). The sequence of the cloned PCR product is given below (NAT marker is underlined, TetO sites are in bold font):

GGTCGACGGATCCCCGGGTTAATTAAGGCGCGCCAGATCTGTTTAGCTTGCCTCGTCCCCGCCGGGTCACCCGGCCA GCGACATGGAGGCCCAGAATACCCTCCTTGACAGTCTTGACGTGCGCAGCTCAGGGGCATGATGTGACTGTCGCCCG TACATTTAGCCCATACATCCCCATGTATAATCATTTGCATCCATACATTTTGATGGCCGCACGGCGCGAAGCAAAAA TTACGGCTCCTCGCTGCAGACCTGCGAGCAGGGAAACGCTCCCCTCACAGACGCGTTGAATTGTCCCCACGCCGCGC CCCTGTAGAGAAATATAAAAGGTTAGGATTTGCCACTGAGGTTCTTCTTTCATATACTTCCTTTTAAAATCTTGCTA GGATACAGTTCTCACATCACATCCGAACATAAACAACCATGGGTACCACTCTTGACGACACGGCTTACCGGTACCGC ACCAGTGTCCCGGGGGGACGCCGAGGCCATCGAGGCACTGGATGGGTCCTTCACCACCGACACCGTCTTCCGCGTCAC CGCCACCGGGGACGGCTTCACCCTGCGGGGGGGGGCGCGGTGGACCCGCCCTGACCAAGGTGTTCCCCGACGACGAAT CGGACGACGAATCGGACGACGGGGGGGGGGCGGCCGGGACTCCCGGACGTTCGTCGCCGTACGGGGACGACGGCGAC CTGGCGGGCTTCGTGGTCGTCTCGTACTCCGGCTGGAACCGCCGGCTGACCGTCGAGGACATCGAGGTCGCCCCGGA GCACCGGGGGCACGGGGTCGGGCGCGCGTTGATGGGGCTCGCGACGGAGTTCGCCCGCGAGCGGGGCGCCGGGCACC TCTGGCTGGAGGTCACCAACGTCAACGCACCGGCGATCCACGCGGCGGATGGGGTTCACCCTCTGCGGCCTG GACACCGCCCTGTACGACGGCACCGCCTCGGACGGCGAGCAGGCGCTCTACATGAGCATGCCCTGCCCCTAATCAGT **ACTGACAATAAAAAGATTCTTGTTTTCAAGAACTTGTCATTTGTATAGTTTTTTTATATTGTAGTTGTTCTATTTTA** ATCAAATGTTAGCGTGATTTATATTTTTTTTCGCCTCGACATCATCTGCCCAGATGCGAAGTTAAGTGCGCAGAAAG TAATATCATGCGTCAATCGTATGTGAATGCTGGTCGCTATACTGCTGTCGATTCGATACTAACGCCGCCATCCAGTG ${\tt TCGAAAACGAGCTCGAATTCttattacgatcctcgcgccccctacccaccgtactcgtcaattccaagggcatcggt}$ ccggggaatccccgtcccccaacatgtccagatcgaaatcgtctagcgcgtcggcatgcgccatcgccacgtcctcgqaqaaaqqacaqqcqcqqaqccqccaqccccqcctcttcqqqqqqcqtcqtcqtcqqqqaqatcqaqcaqqccctcqa ${\tt tggtagacccgtaattgtttttcgtacgcgcggctgtacgcggacccactttcacatttaagttgtttttctaat$ taataatggcggcatactatcagtagtaggtgtttccctttcttctttagcgacttgatgctcttgatcttccaatacgcaacctaaagtaaaatgccccacagcgctgagtgcatataatgcattctctagtgaaaaaaccttgttggcataaaa agget a attgattttcgagagtttcatactgtttttctgtaggccgtgtacctaaatgtacttttgctccatcgcgatgacttagtaaagcacatctaaaacttttagcgttattacgtaaaaaatcttgccagctttccccttctaaagggcaaaaqtqaqtatqqtqcctatctaacatctcaatqqctaaqqcqtcqaqcaaaqcccqcttattttttacatqccaa ${\tt tacaatgtaggctgctctacacctagcttctgggcgagtttacgggttgttaaaccttcgattccgacctcattaag}$ atcqqtcccqqtqtcttctatqqaqqtcaaaacaqcqtqqatqqcqtctccaqqcqatctqacqqttcactaaacqa gctctgcttatatagacctcccaccgtacacgcctaccgcccatttgcgtcaatggggcggagttgttacgacattt tggaaagtcccgttgattttggtgccaaaaccaaactcccattgacgtcaatggggtggagacttggaaatccccgtg agtcaaaccgctatccacgcccattgatgtactgccaaaaccgcatcaccatggtaatagcgatgactaatacgtag atgtactgccaagtaggaaagtcccataaggtcatgtactgggcataatgccaggcgggccatttaccgtcattgac gtcaataggggggcgtacttggcatatgatacacttgatgtactgccaagtgggcagtttagcgtaaatactccacccattgacgtcaatggaaagtccctattggcgttactatgggaacatacgtcattattgacgtcaatgggcggggtcgttgggcggtcagccaggcgggccatttaccgtaagttatgtaacgcggaactccatatatgggctatgaactaatga $\verb|ccccgtaattgattactattaataactagtcaataatcaatgtcaacatggcggtaatgttggacatgagccaatat||$ aaatgtacatattatgatatggatacaacgtatgcaatgggccaagctcctcgagtaattcgcgccacttctaaataactcttaggttttaaaacgaaaattcttattcttgagtaactctttcctgtaggtcaggttgctttctcaggtatagtatgaggtcgctcttattgaccacacctctaccggcAGATCCGCTAGGGATAACAGGGTAATATagatcaattcctc gatcgagtttaccactccctatcagtgatagagaaaagtgaaagtcgagtttaccactccctatcagtgatagagaa aagtqaaagtcqagtttaccactccctatcagtqataqagaaaagtqaaagtcqagtttaccactccctatcagtqa $\tt cttttctctaaatattctttccttatacattaggtcctttgtagcataaattactatacttctatagacacgcaaac$ acaaatacacacactaaattaccggatcaattcgggATG

pNTI8_mCherry_URA

Primer annealing sequences used for PCR are underlined. mCherry sequence used for C-terminal tagging is in bold font.

ATATCAGATCCACTAGTGGCCTATGCGGCCGCGGATCTGCCGGTCTCCCTATAGTGAGTCGTATTAATTTCGATAAG TCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGC CGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGC GAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTG ${\tt CCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAATGCTCACGCTGTAGGTATCT}$ CAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTAT ${\tt CCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATT}$ AGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGT CCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTG ATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAG ACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTC CCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACG AAGGCGAGTTACATGATCCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTA AGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGC TTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGC GTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAA AACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCT TTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACG GAAATGTTGAATACTCATACTCTTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGAT ACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCCGAAAAGTGCCACCTGACGTC TAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGCTTTCGG TGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCA GACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGGTGTCGGGGCTTGACTATGCGGCATCAGAGCAGATT GTACTGAGAGTGCACCATATGGACATATTGTCGTTAGAACGCGGCTACAATTAATACATAACCTTATGTATCATACA CATACGATTTAGGTGACACTATAGAACGCGGCCGCCAGCTGAAGCTTCGTACGCTGCAGGTCGACGGATCGGTGACG GTGCTGGTTTAATTAACATG<mark>GTG</mark>AGCAAGGGCGAGGAGGAGAACATGGCCATCAAGGAGTTCATGAGATTCAAG GTGCACATGGAGGGCTCCGTGAACGGCCACGAGTTCGAGATCGAGGGCGAGGGCGAGGGCAGACCCTACGAGGGCAC CCAGACCGCCAAGCTGAAGGTGACCAAGGGTGGCCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCTCAGTTCATGT ACGGCTCCAAGGCCTACGTGAAGCACCCCGCCGACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAG TGGGAGAGAGTGATGAACTTCGAGGACGGCGGCGTGGTGACCGTGACCCAGGACTCCTCCCTGCAGGACGGCGAGTT CATCTACAAGGTGAAGTTGAGAGGCACCAACTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGG AGGCCTCCTCCGAGAAATGTACCCCGAGGACGGCGCCCTGAAGGGCGAGATCAAGCAGAGGCTGAAGCAC GGCGGCCACTACGACGCTGAGGTCAAGACCACCTACAAGGCCAAGAAGCCCGTGCAGCTGCCCGGCGCCTACAACGT CAACATCAAGTTGGACATCACCTCCCACAACGAGGACTACACCATTGTGGAACAATATGAAAGAGCTGAAGGTAGAC ATTCTACTGGTGGTATGGATGAATTGTACAAATAAGGCGCGCCCCCTTCTAAATAAGCGAATTTCTTATGATTTATGA TTCTTATTCTTGAGTAACTCTTTCCTGTAGGTCAGGTTGCTTTCTCAGGTATAGTATGAGGTCGCTCTTATTGACCA CACCTCTACCGGCAGATCCGCTAGGGATAACAGGGTAATATAGATCTGTTTAGCTTGCCTCGTCCCCGCCGGGTCAC ${\tt CCGGCCAGCGACATGGAGGCCCAGAATACCCTCCTTGACAGTCTTGACGTGCGCAGCTCAGGGGCATGATGTGACTG}$ TCGCCCGTACATTTAGCCCATACATCCCCATGTATAATCATTTGCATCCATACATTTTGATGGCCGCACGGCGCGAA GCAAAAATTACGGCTCCTCGCTGCAGACCTGCGAGCAGGGAAACGCTCCCCTCACAGACGCGTTGAATTGTCCCCAC GCCGCGCCCCTGTAGAGAAATATAAAAGGTTAGGATTTGCCACTGAGGTTCTTCTTTCATATACTTCCTTTTAAAAT CTTGCTAGGATACAGTTCTCACATCACATCCGAACATAAACAACCATGACAGTCAACACTAAGACCTATAGTGAGAG AGCAGAAACTCATGCCTCACCAGTAGCACAGCGATTATTTCGATTAATGGAACTGAAGAAAACCAATTTATGTGCAT CATATTGATATAATCAATGATTTTTCCTATGAATCCACTATTGAACCATTATTAGAACTTTCACGTAAACATCAATT

Supplementary Notes

References for Supplementary Information

- 1. Kearns, B. G. et al. Essential role for diacylglycerol in protein transport from the yeast Golgi complex. Nature 387, 101-5 (1997).
- 2. Gari, E., Piedrafita, L., Aldea, M. & Herrero, E. A set of vectors with a tetracyclineregulatable promoter system for modulated gene expression in Saccharomyces cerevisiae. Yeast 13, 837-48 (1997).
- 3. Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22, 1567-72 (2004).

	IP 3xFlag-Orm1		IP 3xFlag-Orm2	
		%		
		Sequence		% Sequence
Protein ID	# of peptides	Coverage	# of peptides	Coverage
Sac1	42	74.6	33	62.1
Lcb1	23	40.9	26	43.5
Lcb2	23	41.0	22	37.1
Orm1	10	49.1	4	19.4
Orm2	6	25.0	8	31.9
Tsc3	3	30.0	1	17.5

Supplementary Table 1. Orm-associated proteins identified by mass spectrometry. Proteins found in immunoprecipitations of 3xFlag-Orm1 and 3xFlag-Orm2 were analyzed by mass spectrometry. Peptide coverage information for identified proteins corresponding to the bands indicated in **Fig. 2a** are shown above.

Supplementary Notes

References for Supplementary Information

- 1. Kearns, B. G. et al. Essential role for diacylglycerol in protein transport from the yeast Golgi complex. Nature 387, 101-5 (1997).
- 2. Gari, E., Piedrafita, L., Aldea, M. & Herrero, E. A set of vectors with a tetracyclineregulatable promoter system for modulated gene expression in Saccharomyces cerevisiae. Yeast 13, 837-48 (1997).
- 3. Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22, 1567-72 (2004).