SOM Table 3 Iron and manganese respiration by the anammox bacterium *Kuenenia* stuttgartiensis

The presence of multiple divergent paralogues of respiratory complexes in the genome assembly of *K. stuttgartiensis* triggered the experimental investigation of manganese and iron respiration in this anammox bacterium.

Single cells of *K. stuttgartiensis* were incubated with different electron donors and acceptors [1]. Fe(II) or Mn(II) oxidation rates were measured with nitrate as electron acceptor and Mn(IV) and Fe(III) reduction rates were measured using freshly synthesized δ -MnO₂ [2], amorphous iron oxyhydroxide (FeOOH; [3] or Fe(III) citrate in combination with formate as electron donor. The conversion rates were calculated based on Mn(II) and Fe(II) consumption or production in time [4,5]. Negative controls with heat-killed cells and without electron donor were performed. In addition, further negative controls were performed with *Escherichia coli* (a dissimilative nitrate reducer) and *Paracoccus denitrificans* (a denitrifier). As a positive control, the Mn(IV) and Fe(III) reducer [6], were measured.

Organism	Mn (IV) reduction rate ^a	Fe (III) reduction rate ^b		Fe (II) oxidation rate ^b
		FeOOH	Fe citrate	
K.stuttgartiensis	0.40	0.2	0.9	4.8
S. putrefaciens	1.21	1.0	5.6	ND
E. coli	0.10	0.05	ND	ND
P. denitrificans	0.13	0.04	ND	ND

SOM Table 3. Mn and Fe reduction rates and Fe oxidation rates of *K. stuttgartiensis*, *S. putrefaciens* (positive control), *E. coli* (negative control) and *P. denitrificans* (negative control). ^anmol Mn(II) (mg protein)⁻¹ min⁻¹, ^bnmol Fe(II) (mg protein)⁻¹ min⁻¹. ND, not determined

The single cells of *K. stuttgartiensis* oxidized Fe(II) at a rate of 4.8 nmol Fe(II) (mg protein)⁻¹ min⁻¹ but not Mn(II) with nitrate as electron donor. The Mn(IV) and Fe(III) reduction rates obtained with *K. stuttgartiensis* single cells and formate as electron donor were significantly higher than the rates obtained for the negative controls with *E. coli*, *P. denitrificans* or heat-killed cells (**SOM Table 3**). *K. stuttgartiensis* did not convert Mn(IV) or Fe(III) with ammonium as electron donor, and *S. putrefaciens* was not able to oxidize ammonium with nitrite as electron acceptor. Under the conditions tested *K. stuttgartiensis* can oxidize ammonium anaerobically to N₂ with nitrite as electron donor, at a rate up to 25 nmol ammonium (mg protein)⁻¹ min⁻¹.

REFERENCES

- 1. Strous M., Fuerst J.A., Kramer E.H.M., Logemann S., Muyzer G., Van de Pas-Schoonen K.T., Webb R., Kuenen J.G., Jetten M.S.M. (1999) Missing lithotroph identified as new planctomycete. *Nature* 400: 446-9.
- 2. Villalobos M., Toner B., Bargar J., Sposito G. (2003) Characterization of the manganese oxide produced by *Pseudomonas putida* strain MnB1. *Geochimica et Cosmochimica Acta* 67: 2649-2662.

- 3. Lovley, D.R., Phillips, E.J.P. (1986a). Organic matter mineralization with reduction of ferric iron in anaerobic sediments. *Applied and Environmental Microbiology* 51: 683-689.
- 4. Lovley, D.R., Phillips, E.J.P. (1986b). Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac river. *Applied and Environmental Microbiology* 52: 751-757.
- 5. Lovley D.R. (1991) Dissimilatory Fe(III) and Mn(IV) reduction. *Microbiology Reviews* 55: 259-87.
- 6. Heidelberg J.F., Paulsen I.T., *et al.* (2002) Genome sequence of the dissimilatory metal ion-reducing bacterium *Shewanella oneidensis*. *Nature Biotechnology* 20(11): 1118-1123.