Supplementary information

Climate Change Penalty to Ozone Air Quality: Review of Current Understandings and Knowledge Gaps

Tzung-May Fu^{1,2} and Heng Tian³

¹ School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province, China

² Shenzhen Institute of Sustainable Development, Southern University of Science and Technology, Shenzhen, Guangdong Province, China

³ Department of Atmospheric and Oceanic Sciences, Peking University, Beijing, China

Correspondence to Tzung-May Fu (fuzm@sustech.edu.cn)

Table S1 Model projections of changes in summertime or annual mean ozone air quality due to climate change only, adapted and updated from Jacob and Winner [1]

 and Fiore et al. [2] to report results from studies since 2015

Notation in	Reference	Domain	Climate	Time horizon	Metric	Surface ozone change [ppb] ^{<i>c</i>}
Figure 1 ^a			scenario ^b	and	reported	
				averaging		
				period		
А	Fann et al. [3]	US	RCP6.0,	(2025-2035)	May-	Midwest US and the Great Plains: 0~2.6 (RCP6.0), 0~5.4 (RCP8.5)
			RCP8.5	vs (1995-	September	Southwestern US: 0~1.64 (RCP6.0), 0~0.8 (RCP8.5)
				2005)	mean MDA8	
					d	
В	Garcia-Menendez et	US	POL3.7,	(2035-2065)	Population-	US (2035-2065): ~0.5 (POL3.7), ~0.5 (POL4.5)
	al. [4]		POL4.5	and (2085-	weighted	US (2085-2115): ~0.7 (POL3.7), ~0.5 (POL4.5)
				2115) vs	annual mean	
				(1980-2010)	MDA8	
С	Gonzalez-Abraham	US	A1B	(2045-2054)	JJA MDA8	Northwestern US: -1
	et al. [5]			vs (1995-		Southwestern US: 0.4
				2004)		Central and Southern US: 4.3-4.5
						Midwest US: 7.2
						Northeastern US and Southeastern US: 6.1-6.6
D	Val Martin et al. [6]	US	RCP4.5,	2050 decadal	Annual	Northeastern US: ~2.5 (RCP4.5), ~4 (RCP8.5)
			RCP8.5	mean vs 2000	mean MDA8	Southern and Southeastern US: ~1.5 (RCP4.5), ~3 (RCP8.5)
				decadal mean		Midwest US: ~2 (RCP4.5), ~1 (RCP8.5)
						Western US: ~1 (RCP4.5), ~1.5 (RCP8.5)
Е	He et al. [7]	US	A1B, A1Fi	(2048 to	JJA MDA8 ^e	Northeastern US: -0.5 (A1B), 4.2 (A1Fi)
				2052) vs		Southeastern US: 1.6 (A1B), 4 (A1Fi)
				(1995 to		Midwest US: 0.9 (A1B), 5.8 (A1Fi)
				1999)		California: -0.9 (A1B), 2.5 (A1Fi)
						Texas: -0.6 (A1B), 3.4 (A1Fi)

F	Nolte et al. [8]	US	RCP4.5,	(2025-2035)	JJA MDA8	All US: 0.2 (RCP4.5), 0.1 (RCP6.0), 1.1 (RCP8.5)
			RCP6.0,	vs (1995-		Northeastern US: 0.6 (RCP4.5), 0.5 (RCP6.0), 1.8 (RCP8.5)
			RCP8.5	2005)		Southern and Southeastern US: -0.4 (RCP4.5), -0.5~-0.4 (RCP6.0),
						0.2~0.4 (RCP8.5)
						Midwest US: 0.2~0.7 (RCP4.5), 0.4~1.0 (RCP6.0), 2.1~2.9
						(RCP8.5)
						Western US: -0.2~1.3 (RCP4.5), -0.1~0.5 (RCP6.0), 0.2~2.0
						(RCP8.5)
G	Rieder et al. [9]	Eastern	RCP4.5	(2026-2035),	JJA MDA8	Eastern US (2026-2035): 1
		US		(2046-2055),		Eastern US (2046-2055): 1
				and (2091-		Eastern US (2091-2100): 2
				2100) vs		
				(2006-2015)		
Н	Rieder et al. [10]	US	RCP4.5,	(2096-2100)	JJA MDA8	Northeastern US: ~2 (RCP4.5), +1-4 (RCP8.5)
			RCP8.5	vs (2001-		Western US: ~-1 (RCP4.5), ~-2 (RCP8.5)
				2005)		Southeastern US: ~-3 (RCP4.5), ~-4 (RCP8.5)
Ι	Lee et al. [11]	Northern	A2	(2046-2055)	Annual	Northern East Asia: -8.1~-1.3
		East		vs (2016-	MDA8	
		Asia		2025)		
J	Pommier et al. 2018	India	RCP8.5	(2045-2055)	Annual	Northern India: +2
				vs (2006-	mean	Southern India: -1.4
				2015)		
К	Lacressonniere et al.	Europe	+2°C	(2031-2080)	SOMO35 ^f	Europe: -200~1000 [ppb · day] g
	[12]		(reached	vs (1971-		
			along 2031-	2000)		
			2080 under			
			RCP4.5)			
L	Fortems-Cheiney et	Europe	+2°C	(2028-2057)	Annual	Europe: -1.1 (2°C), 2.2 (3°C)
	al. [13]		(reached	vs (1971-	mean	

			along 2028-	2000), (2040-		
			2057 under	2069) vs		
			RCP4.5),	(1971-2000)		
			+3°C			
			(reached			
			along 2040-			
			2069 under			
			RCP8.5)			
М	Schnell et al. [14]	Global	RCP8.5	2100 decadal	JJA MDA8	Western North America: -2.1~5 ^h
				mean vs 2000		Eastern North America: -2.2~7.1 ^h
				decadal mean		Northern Europe: -3.9~2 ^h
						Southern Europe: -1.3~9.3 ^h
						Northern East Asia: -2.5~3.1 ^h
						Southern East Asia: -4.7~-0.8 ^h
Ν	Glotfelty et al. [15]	Global	A1B	2050 vs 2001	Annual	Western North America: $0 \sim 3$
					MDA8	Eastern North America: -0.8~0
						Northern Europe: $-1.4 \sim 1.6$
						Southern Europe: $0.4 \sim 2$
						East Asia: 0~3
						South Asia: $0.8 \sim 1.6$
						Global: 0.6

^{*a*} Results are shown in Figure 1 and denoted with alphabets.

^{*b*} RCP4.5, RCP6.0, and RCP8.5, are different climate scenarios by which the global mean radiative forcings reach 4.5, 6.0, and 8.5 W m⁻², respectively, in the year 2100 [16]. POL3.7 and POL4.5 denote stabilization scenarios that assume a uniform global carbon tax to achieve total radiative forcings of 3.7 and 4.5 W m⁻² by 2100, respectively [4]. A1B, A1FI, and A2 are socio-economic scenarios for GHG emissions used in the IPCC Fourth Assessment Report [17] that represented rapid economic growth and efficient introduction of new technologies, with differences in technological emphasis.

^c Concentration changes reported in ppb unless otherwise specified.

^d Maximum daily 8-h average ozone concentration.

^e JJA denotes June, July, and August.

^f SOMO35 is defined as the cumulative exceedance of the daily maximum 8-h averaged ozone over 35 ppb integrated over a year.

^{*g*} Ranges reported is the range projected by four regional models.

^{*h*} Ranges reported are the ranges projected by four global models.

References

- 1. Jacob, D.J. and D.A. Winner, *Effect of climate change on air quality*. Atmospheric Environment, 2009. **43**(1): p. 51-63.
- 2. Fiore, A.M., et al., *Global air quality and climate*. Chemical Society Reviews, 2012. **41**(19): p. 6663-6683.
- 3. Fann, N., et al., *The geographic distribution and economic value of climate change-related ozone health impacts in the United States in 2030.* Journal of the Air & Waste Management Association, 2015. **65**(5): p. 570-580.
- 4. Garcia-Menendez, F., et al., US Air Quality and Health Benefits from Avoided Climate Change under Greenhouse Gas Mitigation. Environmental Science & Technology, 2015. **49**(13): p. 7580-7588.
- 5. Gonzalez-Abraham, R., et al., *The effects of global change upon United States air quality*. Atmos. Chem. Phys., 2015. **15**(21): p. 12645-12665.
- 6. Val Martin, M., et al., *How emissions, climate, and land use change will impact mid-century air quality over the United States: a focus on effects at national parks.* Atmospheric Chemistry and Physics, 2015. **15**(5): p. 2805-2823.
- 7. He, H., et al., *Future US ozone projections dependence on regional emissions, climate change, long-range transport and differences in modeling design.* Atmospheric Environment, 2016. **128**: p. 124-133.
- 8. Nolte, C.G., et al., *The potential effects of climate change on air quality across the conterminous US at 2030 under three Representative Concentration Pathways.* Atmospheric Chemistry and Physics, 2018. **18**(20): p. 15471-15489.
- 9. Rieder, H.E., et al., *Projecting policy-relevant metrics for high summertime ozone pollution events over the eastern United States due to climate and emission changes during the 21st century.* Journal of Geophysical Research-Atmospheres, 2015. **120**(2): p. 784-800.
- 10. Rieder, H.E., et al., *Combining model projections with site-level observations to estimate changes in distributions and seasonality of ozone in surface air over the USA*. Atmospheric Environment, 2018. **193**: p. 302-315.
- Lee, J.B., et al., *Projections of summertime ozone concentration over East Asia under multiple IPCC SRES emission scenarios*. Atmospheric Environment, 2015.
 106: p. 335-346.
- 12. Lacressonniere, G., et al., *Impacts of regional climate change on air quality projections and associated uncertainties*. Climatic Change, 2016. **136**(2): p. 309-324.
- 13. Fortems-Cheiney, A., et al., A 3 degrees C global RCP8.5 emission trajectory cancels benefits of European emission reductions on air quality. Nature

Communications, 2017. 8: p. 6.

- 14. Schnell, J.L., et al., *Effect of climate change on surface ozone over North America, Europe, and East Asia.* Geophysical Research Letters, 2016. **43**(7): p. 3509-3518.
- 15. Glotfelty, T., et al., *Changes in future air quality, deposition, and aerosol-cloud interactions under future climate and emission scenarios.* Atmospheric Environment, 2016. **139**: p. 176-191.
- 16. van Vuuren, D.P., et al., *The representative concentration pathways: an overview*. Climatic Change, 2011. **109**(1): p. 5.
- 17. Nakicenovic, N., et al., IPCC Special Report on Emission Scenarios, N. Nakicenovic and R. Swart, Editors. 2000: Cambridge, UK and New York, NY.