Electronic Supplementary Material Appendices

A Filtering algorithms: Subtraction and Multiplication

A.1 Subtraction

Here we deal with constraints of the form x = yHg z.

Assume X = [xg,x4), Y = [y¢,yu] and Z = [z¢,2,)-

Again, thanks to Proposition 2 we need not be concerned with sets of rounding modes, as any such
set S C R can always be mapped to a pair of “worst-case rounding modes” which, in addition are never
round-to-zero.

Direct Propagation. For direct propagation, we use Algorithm 6 and functions dsy and ds,, as defined in
Figure 12.

Algorithm 6 Direct projection for subtraction constraints.

Require: x =yHsz,x € X = [xp,x4), y €Y = [y, yu) and z € Z = [z¢,24)-
Ensure: X' CXandVreS,xeX,yeY,ze€Z:x=yH,z = x€X andVX" C X,3IreS,yeY,ze€Z:
yB,z¢ X".
I = r[(SvyéaElvzu); Iy ‘= ru(SayuaEl’Zé);
20 ) i=dse(ye,zu,re)s Xy = dsu(Yu, 26, 7u)s
3 X i=XN[,x

ds¢(Veszure) | —eo R_ -0 +0 R, +oo
—o0 —+oco —oo —o0 —oo —oo —oo
R_ oo ye Elr;; Zu ye ye ye Elr;; Zu —o°
-0 oo —Zu ay -0 —Zu —>
+0 +o0 —Zu +0 ai —Zu —o
Ry oo e By zu ye Ve e By zu —oo

{o, ifre =1,
a) =

+0, otherwise;

dsu(ylﬁzl,'v ru) ‘ —oo R_ -0 +0 R4 +o0
—00 —00 —00 —00 —00 —00 —00
R_ o0 Yu Eru 20 Yu Yu Yu Elru 20 —o0
-0 o0 -z a -0 -2 —oo
+0 +oo -z +0 az —2z —o0
R+ o0 Yu Elru 20 Yu Yu Yu Elru 2 —

=0, ifr,=4,

as = .
+0, otherwise.

Fig. 12 Direct projection of subtraction: function ds; (resp., ds,); values for y, (resp., y,) on rows, values for
zy (resp., z¢) on columns.

Theorem 6 Algorithm 6 satisfies its contract.
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—oo —oo

R_ — fmax az X¢ Xp @ unsat.
-0 — fmax 2 -0 -0 2 unsat.
+0 — fmax ay as as as unsat.
R4+ — fimax as X¢ Xp as unsat.
oo — fmax ag +oo +oo +oo unsat.

e =x+Vy (x0)/2+z;

-0, if 7o =n, V3~ (x¢) = — finin and xp = —z¢;
Xy EET 20, if 7y =n, ng (x¢) = — fmin and x; # —2z¢;
lec]s, if 7p =n, even(x;), V3~ (x¢) # — fmin and ey = [ec]y;
= lec], if 7, =n, eVen(x{), V37 (x¢) # — fmin and [e]y > [ecly;
* succ([[ed]i), if 7y = n, otherwise;
-0, if 7y = | and xy = —z¢;
x¢ By z¢, if 7, = | and x; # —zy;
succ (pred(x/;) =] zk), if fFp=1;
(as,a5) = {(SUCC(Z[),JrO), Fo= i;.
(z¢,—0), otherwise;
oo, =4
a6 = q suce(fmax B 2¢), Fo=1

Sinax By (Vr21+ (finax)/2 8¢ zg) , otherwise.

Fig. 13 First inverse projection of subtraction: function isg .

Inverse Propagation. For inverse propagation, we have to deal with two different cases depending on
which variable we are computing: the first inverse projection on y or the second inverse projection on z.

The first inverse projection of subtraction is somehow similar to the direct projection of addition. In this
case we define Algorithm 7 and functions isﬁ and isﬁ, as defined in Figure 13 and 14 respectively.

Algorithm 7 First inverse projection for subtraction constraints.

Require: x =yHsz,x € X = [xp,x4), ¥ €Y = [ys,yu) and z € Z = [z¢,24)-
Ensure: Y/ CYandVreS,xeX,y€Y,z€Z:x=y8,z = yeY.
1: Fpi= fg(S,XhEvZ/); Ty = ;ﬁ(s\,xuaElvzu);

: y2 = iSfO‘A%”@)U‘L = isﬁ(xuyzusfu);
: ify, € Fand y;, € F then
Y=Yl
else
Y =02,
end if

A A

Theorem 7 Algorithm 7 satisfies its contract.

The second inverse projection of subtraction is quite similar to the case of direct projection of subtraction.
Here we define Algorithm 8 and functions isj and is;, as defined in Figures 15 and 16 respectively.

u>

Theorem 8 Algorithm 8 is correct.

Since subtraction is very closely related to addition, the proofs of Theorems 7 and 8 can be obtained
by reasoning in the same way as for the projections of addition. Moreover, it is worth noting that in order
to obtain more precise results, inverse projections for subtraction need to be intersected with maximum ULP
filtering [5], as in the case of addition.
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is{:(xu-,Zuvfu) ‘ — R_ -0 +0 R+ +oo

—o0 unsat. —oo —o0 — ag fmax
R_ unsat. az Xy Xy ar Smax
-0 unsat. ag ag ag ag Smax
40 unsat. Zu +0 +0 Zy Smax
Ry unsat. ar Xy Xy az Smax
oo oo oo oo oo oo +oo

€y Exu+vg+(xl¢)/2+zll;

+0, if 7 =n, V) (x,) = fmm and x, = —2z,;
Xu EHJ, Zus if ry=n, V? (xu) mm and Xu ?é —Zus
le.],, if 7, =n, even(x,), V (xu) # frin and e, ]} = [ed]};
w— [e.]+, if 7, = n, even(x,), V2 (%u) # frmin and e, ]} < [e]}s
pred ([[eu]h) , if 7, = n, otherwise;
pred (succ(xu) B Zu) . ifR =1
+0, if 7, =1 and x, = —z,;
X, B 74, if 7, =1 and x, # —2z,;
o {z if7 = 1:
pred(z,), otherwise;
—, if Fy= T;
ag = Pred(zu EET 7fmax)7 if 7, = ~L;

— fmax B) (V5 (—fmax) /28, z4), otherwise.

Fig. 14 First inverse projection of subtraction: function is{: .

Algorithm 8 Second inverse projection for subtraction constraints.

Require: x =yHsz,x € X = [xp,x4), y €Y = [ys,yu) and z € Z = [z¢,2u)-
Ensure: Z CZandVreS,xeX,yeY,z€Z:x=y8,z = z€Z.

1: r[ = (S, xu, B8, 30): Fu i =7 (S, 0,8, yu):
2 2 = 08 (s F2 ) 2 i iS5 O s )
3: if zj € F and 7}, € F then

4 Z'=zn[Z.4);

5: else

6: 7 :=a;

7: end if

A.2 Multiplication
Here we deal with constraints of the form x = y[sz. As usual, assume X = [x;,x,], ¥ = [y, yu] and Z = [z¢,z4].

Direct Propagation. For direct propagation, a case analysis is performed in order to select the interval
extrema yy and zz, (resp., yy and zy) to be used to compute the new lower (resp., upper) bound for x.

Firstly, whenever sgn(y,) # sgn(y,) and sgn(z¢) # sgn(z, ), there is no unique choice for yz, and z; (resp.,
yu and zy); therefore we need to compute the two candidate lower (and upper) bounds for x and then choose
the minumum (the maximum, resp).

The choice is instead unique in all cases where the signs of one among y and z, or both of them, are
constant over the respective intervals. Function ¢ of Figure 7 determines the extrema of y and z useful to
compute the new lower (resp., upper) bound for y when the sign of z is constant. When the sign of y is
constant, the appropriate choice for the extrema of y and z can be determined by swapping the role of y and z
in function o.

Once the extrema (yr,yu,zr,zv) have been selected, functions dmy and dm,, of Figure 17 are used to
find new bounds for x. It is worth noting that it is not necessary to compute new values of r; and r, for the
application of functions dmy and dm,, at line 6 of Algorithm 9. This is true because, by Definition 7, the
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iS; (VesXu, Fe) ‘ —oo R_ -0 +0 R+ +oo
— 7fmax 7fmax 7fmax 7fmax 7fmax —
R- ar aio ar ye aio —oo
-0 oo —Xy ap -0 —Xy —oo
+0 o0 —Xy an -0 —Xy —oo
Ry +oo aio ar ye aio —o
o0 unsat. unsat. unsat. unsat. unsat. —oo
er=yr— (xu +Vg+(xu)/2) H
-0, ifrp=n, V (xu> Jmin and x, = y;
y(’,ElTxuv lf}’/ =n, VnJr(xu): mm and-xu #YZ:;
[ecls, if 7 =n, even(x,), V5" (x4) # fmin and [e¢]s = [ec]r;
ane — J Leds if 7y = n, even(x,), V5¥ (x,) # fmin and Jec]y > [ef)y;
10 succ([ec],), if 7, = n, otherwise;
-0, if 7p =1 and x, = yy;
yZETxuv if 7, =1 and x, # y;
succ (yg 8, succ(xu)) , ifF =1
) e, —0), ifryg=1;
(a11,a12) = S
(succ(ye),+0), otherwise;
oo, if 7y = 1
ayz = 4 succ(ye By fmax), iffg=1;
fmax By (V3T (finax) /28B4 y¢),  otherwise.
Fig. 15 Second inverse projection of subtraction: function isj.
isy Vuy X 7u) | —oo R_ -0 +0 Ry +oo
—oo +oo unsat. unsat. unsat. unsat. unsat
R- +oo ag Yu ais aa —oo
-0 oo —X7 +0 aps —Xx¢ —oo
+0 +oo —Xy +0 ae —Xy —oo
Ry +oo au Vu ais au ar
oo oo Smax Smax Jmax Smax Smax
€y =Yu— ()C/ +V[217(xu)/2) 5
+0, if 7y =1, V37 (x7) = — fimin and x; = yy;
yu B xg, if 7y =1, V37 (xg) = — fmin and x; # yu;
leu]y, if 7, = n, even(xy), V3~ (x¢) # — fmin and [e,]| = [eu]y;
ans— [eu]s, if 7, = n, even(x,), V5~ (xy) # — fmin and [e, ]} < [eu])s
14 pred ([[e,,]]T) , if 7, = n, otherwise;
pred (yu =N pred(x;)) , ifr, =1
+0, 7, = and x0 = y;
yu By xe, if 7, = | and x; # yu;
red(y,),—0), ifr,=1];
(a15,a16) = (pred() ) ! l .
(Yu, 0), otherwise;
—oo, ifr, =1;
a7 = < pred(y, By finax), ifr, =1;
— fmax B} (V;’ (—finax) /28 yu) , otherwise.

Fig. 16 Second inverse projection of subtraction: function is,.
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choice of ry (of ry, resp.) is driven by the sign of y; [1z; (of yyy [ zy, resp.) only. Since, in this case, the sign
of yr [z, (of yy zy, resp.) as defined at line 2 and the sign of y; [zz (of yy [l zy, resp.) as defined at line 5
are the same, we do not need to compute ry and r,, another time.

Algorithm 9 Direct projection for multiplication constraints.

Require: x=y0sz,x € X = [x;,x,],y €Y = [ye,yu) and z € Z = [z4, 2]

Ensure: X' CXandVreS,xeX,yeY,z€Z:x=yl0,z = xeX' andVX" CX:3reS,yeY,zeZ.
yEer ¢X”.

1: if sgn(y) # sen(y,) and sgn(z;) # sgn(z,) then

20 (yLoyu,anszv) 2= (Ve Yes s 20)s

30 =S,y ) re = (S, yu, 0,z )s

4 ve=dmy(y,ze,re)s ve = dmy (o, 2o, 1)

500 (yuszszu) = VusYur 265 2u)s

6:  wypr=dmy(yL,zr,r¢); wy i=dm, (Yu,zu, 7u);

7 xpi=min{vg,we}; X, := max{v,,w,};

8: else

9: if sgn(y;) = sgn(y,) then

10: OLsyuszeszv) = 6 (Ve Yu, 265 2u)s
11: else

12: (zL,20,YL,YU) 2= O(20,Zu, Yes Vu)s
13: end if

14: re=re(S,yr,0,z0); neci=ru(S,yu, B, 2w );
15: xpr=dmy(yr,ze,re): x, == dmy (Yyu, 20, 7u)s
16: end if

17: X' :=XNx),x,];

Theorem 9 Algorithm 9 satisfies its contract.

Inverse Propagation. For inverse propagation, Algorithm 10 partitions interval Z into the sign-homogeneous

intervals Z_ % 7 [—o0,—0] and Z 7N [+0,4c0]. This is done because the sign of Z must be taken into
account in order to derive correct bounds for Y. Hence, once Z has been partitioned into sign-homogeneous
intervals, we use intervals X and Z_ to obtain interval [y, ,y; |, and X and Z to obtain [y, y;]. To do so, the
algorithm determines the appropriate extrema of intervals X and W =Z_ or W = Z,. to be used for constraint
propagation. To this aim, function 7 of Figure 5 is employed; note that the sign of W is, by construction, con-
stant over the interval. The chosen extrema are then passed as parameters to functions im, of Figure 18 and
im,, of Figure 19, that compute the new, refined bounds for y, by using the inverse operation of multiplication,
i.e., division. The so obtained intervals ¥ N[y, ,y; ] and ¥ N[y;,y;"] will be then joined with convex union,
denoted by |4, to obtain Y.

Theorem 10 Algorithm 10 satisfies its contract.

Of course, the refinement Z' of Z can be defined analogously.
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dmg(yp,z) | —e R_ -0 +0 R, Joo
R_ oo )’LDr[ 2L +0 -0 yLDQZL —
0 oo +0 +0 0 - 0
+0 -0 0 0 +0 +0 +oo
Ry —oo el 2 -0 +0 vyl 2L +oo
oo oo oo ~0 oo oo oo
dmu ()’U,Zu) ‘ —o0 R_ -0 +0 RJr +oo
R_ +o0 yully, zu +0 -0 yoldy,zu —oo
0 +0 +0 +0 0 -0 o
+0 oo -0 -0 +0 +0 +0
Ry —oo yolr,zu -0 +0 yuldr,zu oo

Fig. 17 Direct projection of multiplication: functions dm; and dm,,.

Algorithm 10 Inverse projection for multiplication constraints.

Require: x =ygz,x € X = [xp,x4), y €Y = [ys,yu) and z € Z = [z¢,24)-

Ensure: Y/ CYandVreS,xeX,yeY,zeZ:x=y0,z = yeY.

1: Z_:=ZN[—e,—0];
2: if Z_ # & then
: W:.=Z_
(XL,%0 WL, WU ) = T(X0, X0, We, Wa )
Foi= ff(S,xL,El,wL); Fy = fﬁ(S,xU,EI,wU);

ify, € Fandy, €[ then
Yi=ynly, v

: else
10: Y =2
11: end if
12: else
13: Y =g;
14: end if
15: Zy :=ZN[+0,+o0];
16: if Z, # & then
17: W:=2Z;;
180 (xp, Xy, WL, wu ) := T(Xe,Xu, Wes W );
19: 7= fﬁ(S.,xL,B,wL);f,, = 7S, xy, B, wy);

20:  y/i=img(xg, wr, Ry o= imy (xu, wu s )

21:  ify/ € Fandy; €F then

22: Yi=ynpl ik
23: else

24: Y| =2

25: end if

26: else

27: Y, =

28: end if

29: Y=Y YY)

3
4
5
6:  y, i=img(xz,wr, 7o)y, = imy (xu, wy, )
7
8
9

47



img (xz, wr) ‘ —oo R_ -0 10 R, +oo
—o Smin ay unsat. — oS s
R- JSmin ay unsat. — fmax as Fmin
-0 +0 +0 +0 7fmax as fmin
+0 fmin ag _fmax +O +O +0
Ry JSmin ay — fnax unsat. ai Finin
too —o —oo —oo unsat. az Fmin

ef = (L + V5 (x)/2)/wL;
ﬂeﬂm

Hez—]]i?

a3 = q suce([ef 1)),

xL By wr,

e, = (xp+ V5t (x)/2)/wis

[[e;]]%
[[e‘;]]w

ay = ¢ succ([e; 1)),
XL Ay wr,

if 7 =n, even(x,) and [e |+ = [¢/ ]1;
if 7 =n, even(x) and [e; |+ > [¢/ ]1;
if 7y = n, otherwise;

itrg=1;

succ(pred(x,) @y wr), iffp =13

if 7 = n, even(x;) and [e; |+ = [¢] ]+
if 7, =n, even(x) and [e, ] > [e, ]
if 7y = n, otherwise;

it = 1:

succ(suce(xy) @y we), if e =1;

e[I = (7.f.max + V;7 (7fmax)/2)/WL;
+oo if 7 =1
as = succ(— fmax A, wr), iffi=4;
[ei:. if 7o = n and [e; ]y = [eg]1:
le:1s, if 7, = n, otherwise;
(=0, succ(fumin @ wL)), if 7 = U;

(as,ag) = 4 (succ(—fmax B wL)

, —0), if 7 =1;

(—fin @1 (2-WL), fin @4 (2wr)), if 7o =n;
€ = (fmax + V2 (finax) /2) /W5

+oo

Succ(fmax “, WL)7
lefls,

L7155

a; =

it =1;

ifrg="1;

if 7, =n and [2]+ = [e3]4;
if 7y = n, otherwise.

Fig. 18 Inverse projection of multiplication: function im,.
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im, ()CU7 WU) ‘ —oo R_ -0 +0 Ry +oo
—o0 +oo +oo +oo unsat. ag — fmin
R- — fmin ag Smax unsat. ag+ — fmin
-0 — fmin ao Smax -0 -0 -0
+0 -0 -0 -0 Smax ar — fmin
Ry — fmin ag unsat. Smax a; — fmin
+o0 — fmin ap unsat. +oo o0 +oo
ey = (xw + V5" (w)/2)/wys
leif 1y if 7, =n, even(xy) and [e;} |1 = [e;f ]4;
lei I+, if 7, =n, even(xy) and [e/f I+ > [e; 13
ag = { pred([e;]1), if 7, = n, otherwise;

ag

(ar0,a11)

a2

Xy Zl wu,

(v + V3~ (w)/2)/wu:
le. 1y

lex ]+,

= { pred([e; Tr),

xydypwu,

—o0
5

pred(_fmax 7 WU)7
leal,
leal+

(+0> pred(fmin ZT WU))7
(pred(ffmin ZT WU)7 +0) if y = T;
(7fmin “, (2'WU)7 Smin @y (2'WU)),

pred (suce(xy) By wy),

pred (pred(xy) @ wy ),

ifr, =13
ifr, =13

if 7, = n, even(xy) and [e, [+ = [e; 13
if 7, = n, even(xy) and [e; [+ > [e; ]13

if 7, = n, otherwise;
7, =1
itr, =4;

(7fmax +V37(7fmax)/2)/WU§

if 7, =1

ifr, =1;

if 7, =nand [e}]; = [el]};
if 7, = n, otherwise;

ifr,=1;

if 7, = n;

= (fimax +Vg+(fmax)/2)/WU;

—o9, ifr, =4

Pred(fmax T wu )»
leals
leal+

if 7, = T;
if 7, =nand [e;] ) = 7],
if 7, = n, otherwise.

Fig. 19 Inverse projection of multiplication: function im,,.
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B Proofs of Results

B.1 Proofs of Results in Section 2

Proof (of Proposition 1) In order to prove (5), we first prove that [x]; < x. To this aim, consider the following
cases onx € R\ {0}:
—fmax <X <0V fmin <x: by (2) we have [x]] = max{z € F |z <x}, hence [x]; <x;
0 <x < fmin: by (2) we have [x], = —0<x;
X < —fmax : by (2) we have [x]| = —co <x.
We now prove that x < [x];. Consider the following cases on x € R\ {0}:
x> fmax : by (1) we have [x]4 = +oco and thus x < [x]; holds;
X< —fmin V 0 <x < finax : by (1) we have [x]y = min{z € F |z > x}, hence x < [x]; holds;
—fmin <X <0: by (1) we have [x]; = —0 hence x < [x]4 holds.
In order to prove (6), consider the following cases on x € R\ {0}:
x>0: by (3) we have [x]o = [x]| < [x]4;
x<0: by (3) wehave [x]| < [x]s = [x]o.
In order to prove (7), consider the following cases on x € R\ {0}:
— fmax <X < fmax : We have the following cases
|[x]¢ —x‘ < |[x}¢ —x| v (Hxh —x| = |[x]¢ —x‘) Aeven([x];): by (4), we have [x]n =[x], < [x]4;
]y — x| > |[xl+ —x| v (|[x]y — x| = |[x]y —x| A—even([x],)): by (4) we have [x], < [x]4 = [x].
— fmax > x: we have the following cases
—2mx (2 —27P) < x < — fmax: by (4) we have [x]| < [x]y = [x]s.
x < —2max (2 —27P): by (4) we have [x], = [x]; < [x]4;
Jfmax < x: we have the following cases
20max (2 —27P) > x> fax: by (4) we have [x], = [x]; < [x]4;
x> 2max(2—27P): by (4) we have [x]; < [x]; = [x],.

In order to prove (8), let us compute —[—x];. There are the following cases:

—X> finax : this implies that x < — fiax and, by (1), [—x]y = 4-e9; hence, by (2), —[—x]4 = —co = [x];

—X < —fmin V 0 < —x < finax © this implies that x > fiin V' — fmax > x > 0 and, by (1), we have [—x]; =
min{z € F | z> —x}; therefore, by (2), =[x}y = —min{z€F|z> —x} =max{z€F|z<x} = [x],

—fmin < —x < 0: this implies that 0 < x < fiin and, by (1), [—x]; = —0; hence, by (2), —[—x]y = +0 = [x],.

B.2 Proofs of Results in Section 3

Proof (Rest of the proof of Proposition 2) We prove the second part of Proposition 2, regarding rounding
mode selectors for inverse propagators. Before doing so, we need to prove the following result. Let [& €
{8,8,,}, and let r and s be two IEEE 754 rounding modes, such that for any a,b € TF,

ap@l,b<aplb.

Moreover, let x,z € IF, and let j; be the minimum ys € F such that x = ys [, z. Then, for any y; € IF such that
x =y [Bly z we have

VsBrzxys sz
=x

=y z.

This leads us to write
[}75 OZ]r < [yr OZ]r
which, due to the isotonicity of all IEEE 754 rounding modes, implies

Ysoz=yroz.

Finally, if operator ‘o’ is isotone we have
Vs < Vrs
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which implies that y is the minimum y € F such that x =y [, z or x = y [&l; z. On the other hand, if ‘o’ is
antitone we have

Vs = Yr;

and ¥ is the maximum y € F such that x = y [¢], z or x = y 6], z. An analogous result can be proved regarding
the upper bound for y in case the operator is isotone, and regarding the lower bound for y in case it is antitone.

The above claim allows us to prove the following. Assume first that [8 is isotone with respect to y in
x =y[@lz Let §; be the minimum y; € F such that x = y; Bly z = [y Bl 2]y, let §; be the minimum y, € F such
that x = y, By 2 = [yn @ 2]y and, finally, let §; be the minimum y; € F such thatx =y, @ z = [y, Blz];. We
will prove that

yT < yn =< yl'

Since we assumed that [9] is isotone with respect to y in x = y 6] z, the rounding mode that gives the minimal
y solution of x = [y B z], is the one that yields a bigger (w.r.t. < order) floating point number, as we proved
before. We must now separately treat the following cases:

yEIz#0: By (7), we have [y@lz]; < [y@z], < [y@z]t. Since in this case y @z # 0, we have that [yR1z], <
[y@z]n < [y@z]4. This implies < 91 < ;.
yElz=0: Inthis case, [yElz]; < [yBz]a = [y@2];. This implies §; < $u < 9.

Moreover, let §; be the maximum y; € IF such that x = y; @1z = [yt @4, let §, be the maximum y, € F such
that x = y; By z = [yn @ z]n and, finally, let §| be the maximum y| € F such that x =y, [l z = [y, @z];. We
will prove the fact that

Since we assumed that [3] is isotone with respect to y in x = y 6z, the rounding mode that gives a maximum y

solution of x = y @ z, is the one that gives a smaller (w.r.t. < order) floating point number. We must now deal
with the following cases:

yEz#0: By (7), we have [y@z]; < [yBlz]y < [y@z)t. Since in this case y[Elz # 0, we have [y@ ]| <
[y Bl z]n < [y B z)4. This implies §; < Fin < 5.
yElz=0: Inthis case [y@z], < [y@2]n = [y 2]t This implies 1 < Jn < 7).

The inequalities $ < Ju < | and §; < Ju < | allow us to claim that the rounding mode selectors 7¢(S, @, b)
and 7, (S, b) are correct when [3] is isotone with respect to y. In a similar way it is possible to prove that, in case
[ is antitone with respect to argument y, the above-mentioned rounding mode selectors can be exchanged:
74(S,b) can be used to obtain the lower bound for y, while 7 (S, =, b) can be used to obtain the upper bound.

Note that, in general, the roundTowardZero rounding mode is equivalent to roundTowardPositive if the
result of the rounded operation is negative, and to roundTowardNegative if it is positive. The only case in
which this is not true is when the result is +0 and the operation is a sum or a subtraction: this value can come
from the rounding toward negative infinity of a strictly positive exact result, or the sum of +0 and —0, which
behaves like roundTowardPositive, yielding +0. This case must be treated separately, and it is significant
only in (S, @, ), which is used when seeking for the lowest possible value of the variable to be refined that
yields 4-0.

Definition 8 also contains selectors that can choose between rounding mode selectors 7¢(S,b) and #,(S,b)
by distinguishing whether the operator is isotone or antitone with respect to the operand y to be derived
by propagation; they take the result of the operation b and the known operand a into account. In particu-
lar, ff(S,b, @©,a), 7(S,b,B,a) choose the appropriate selector for the leftmost operand, and 7(S,b,8,a),
7,(S,b,[8,a) are valid for the rightmost one.

Proof (of Proposition 3) We first prove (15). By Definition 9, we have the following cases:

X¢ = —fmax: Then,

Xx¢+ V;7 (XE)/Z = —fmax + (*fmax - Succ(*.fmax))/z
= _pemx (2 — 21717) + (_zemux (2- 21,1,) +20max (2 — l=p _ 21*17))/2
= pemx (2 _2lP 1277 1 42!7P)
— _D€max (2 _ 2*1’)
On the other hand, consider any x such that x; < x < x,.. Since x € F, this implies that succ(— fiax) <

x < x,. In this case
x+ V5~ (x)/2 = (x+pred(x)) /2.
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Since ‘pred’ is monotone, the minimum can be found when x = succ(— fmax ). In this case, we have that

(x+pred(x))/2 = (suce(— finax) — fmax)/2
= (—2¢max (2 —217P —217P) _emax (2 _21-P)) /2
= (—2¢mx (2 —2'7P 217”42 217P)) /2
= —2fmx(2-3.27P)
>xe+Vy (x0)/2
= —pemax(2-27P),
Hence we can conclude that miny, <<y, (x+ V57 (x)/2) = x; + V5~ (x/) /2.

X¢ > —fmax: In this case
X+ V)7 (x)/2 = (x+pred(x)) /2.

Since ‘pred’ is monotone, miny, <x<x, (x+ V5~ (x¢)/2) =x¢+ V5~ (x)/2.
We now prove (16). By Definition 9, we have the following cases:

Xy = fmax: Then,

X+ V5 (04) /2= finax + (fmax — pred(finax) ) /2
= 2¢max (2 - 217P) 4 (20max (2 —17P) —pemax (2 217 _21=P)) /2
=2emx (2 —21°P 4] 277 — 1 4217P)
= 2emax (2 _27P),

Now, consider any x such that x, < x < x,. Since x € IF, this implies that x;, < x < pred(fmax). In this case
x+ V5 (x)/2 = (x+succ(x))/2.
Since ‘succ’ is monotone, the maximum can be found when x = pred(fmax). In this case, we have that

(x+succ(x))/2 = (pred(fmax) + fmax ) /2
= (2max (2= 2177 —21=P)  gemx (2 _217P)) /2
= (2fmax (2 —2!7P —2'"P 42 217P)) /2
— pemax (2 _3. 2—1’)
> X+ V5 (xu)/2
= gemx (2 - 27P).
Hence we can conclude that maxy, <x<xy, (x*+ V37 (x)/2) = x, + V57 (x,) /2.

Xy < fmax: In this case
x+ V5 (x)/2 = (x+succ(x)) /2.

Since ‘succ’ is monotone, maxy, <x<y, (x+ V5 (x)/2) = x, + Vit (x,) /2.

We now introduce and prove Proposition 6, which contains properties of the rounding error functions
that are only needed in the proof of Proposition 4.

Proposition 6 For each r € R\ {0} we have

0<r—[r]y <V¥([r])) 43)
Vi) <r=[y <0 (44)
V3 ([r1n) /2 < 7= [rln < V3* ([rln) /2, 45)

where the two inequalities of (45) are strict if [y is odd.
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Proof Suppose r € R was rounded down to x € [F. Then the error that was committed, r —x, is a nonnegative
extended real that is strictly bounded from above by V¥ (x) = succ(x) — x, that is, 0 < r —x < succ(x) — x, for
otherwise we would have r > succ(x) or r < x and, in both cases r would not have been rounded down to x.
Note that V+ (fmax) = oo, coherently with the fact that the error is unbounded from above in this case.

Dually, if r € R was rounded up to x € F the error that was committed, » — x, is a nonpositive extended
real that is strictly bounded from below by V' (x) = pred(x) — x, that is, pred(x) —x < r —x < 0 since, clearly,
pred(x) < r < x. Note that V1 (— fyax) = —oo, coherently with the fact that the error is unbounded from below
in this case.

Suppose now that r € R was rounded-to-nearest to x € F. Then the error that was committed, r — x, is
such that V5~ (x)/2 < r —x < V4% (x) /2, where the two inequalities are strict if x is odd.

In fact, if x & {—oco, — finax }, then V3~ (x)/2 = (pred(x) —x) /2 < r — x, for otherwise r would be closer
to pred(x). If x = —oo, then V5~ (x)/2 = +ec and r —x = 4o, s0 V5~ (x)/2 < r —x holds. If x = — fiax, then

V3™ (%)/2 = (= frmax — succ(—fnax)) /2
= (—2¢max (2 —217P) g 2max (2 21=P _21=P)) /2
= (=2emx(2—2!7P —2 42177 4 217P)) /2
= —2mxpl=p /)
— _zemaxﬂfp/z

— _DCfmax—P
and thus, considering that — fia is odd, V3™ (x)/2 < r — x is equivalent to

V57 (x)/2 4 x = — (20mxP y pemax (3 217P))
= —emx(27P 4.2 217P)
= —pmax(2 - 27P)
<r

which must hold, for otherwise » would have been rounded to —eo [24, Section 4.3.1].
Suppose now x ¢ {4, fmax }: then V4 (x) /2 = (suce(x) —x) /2 > r —x, for otherwise r would be closer

to succ(x). If x = +oo, then VA% (x)/2 = —oo and r —x = =oco, and thus V¥ (x)/2 > r —x holds. If x = finax,
then
V3+ (x)/2 = (fmax = Pred(fmax))/z
= (2°mx(2—2'7P) —2emm (2 —21"P —2177)) 2
= (2fmx (2 - 2P —242!7P 4 217P)) /2
— zfmalefp/z
— zﬂ'mz\x‘*’lfp/z

— Q¢max—P
and thus, considering that finay is odd, V5 (x)/2 > r — x is equivalent to

Vg+(x)/2 +x= (26'“""‘*1’ 4 26max (2 — 217,;))
(2012 21 )
= 2fmax (2 —2P)
>,

which must hold, for otherwise » would have been rounded to +oo.

Proof (of Proposition 4) In order to prove (17), first observe that x < y @ z implies that x < y 8] z. Assume
first that y el z € R UR_. In this case, y @], z = [yoz], . By inequality (5) of Proposition 1, y[l; z = [yoz]; <
yoz. Therefore, x <yl z = [yo zh < yoz. Then, assume that y [e]) z = +co. In this case, since the rounding
towards minus infinity never rounds to oo, it follows that y &) z = y o z. Hence, x < y oz = oo, holds.
Assume now that y [e]) z = —eco. In this case it must be that x = —oo then x < y oz, holds. Finally, assume that
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yBl,z=+0ory@ z= —0. In any case x < +0 that implies x < 0. On the other hand, we have two cases,
yoz#0oryoz=0. For the first case, by Definition 5, 0 < yoz < fmin, then x < yoz, holds. For the second
case, since x <0 thenx < yoz.

In order to prove (18), as before observe that x < y @4 z implies that x <y 64 z. Note that x + vt (x) =
pred(x). So we are left to prove pred(x) < yoz. Assume now that 0 < yoz < fmax or x < — fiin. Moreover,
note that it cannot be the case that pred(x) > y oz, otherwise, by Definition 5, y[@; z < pred(x) and, therefore,
x < y@ly z would not hold. Then, in this case, we can conclude pred(x) < yoz. Now, assume that — fpin <
yoz < 0. In this case y @y z = —0. Hence, x < 0. By Definition 4, pred(x) < — fiin. Hence, pred(x) < yoz,
holds. Next, assume y oz > fiax. In this case y Bly z = oo. Hence, x < eo. By Definition 4, pred(x) < fax.
Hence pred(x) < yoz, holds. Next assume yoz = 0. In this case y @z = +0 or y[ly z = —0. Hence, x < 0. By
Definition 4, pred(x) < — fiin. Hence pred(x) < y oz, holds. Finally assume y oz = co. In this case y @} z = co.
Hence x < oo and therefore x < co. By Definition 4, pred(x) < fmax. Hence pred(x) < yoz, holds.

In order to prove (19), as the previous two cases, note that x < y [, z implies that x <y [&, z. First
observe that for x # —oo, x+ V5~ (x)/2 < x. Indeed, assume first that x # — fiax, then, by Definition 9,
V3~ (x) = x—succ(x). Hence x+ V5~ (x) /2 = x+ (x — succ(x)) /2 = (3x — suce(x) ) /2. Since x < succ(x), we
can conclude that x + V)~ (x)/2 < x. Assume now that x = — finax. By Definition 9, V3~ (x) = pred(x) — x.
Hence x+ V5™ (x)/2 = x+ (pred(x) —x)/2 = (x+pred(x))/2. Since x > pred(x), we can conclude that x+
Vi (x)/2 <x.

Now, by Definition 5, we have to consider the following cases for x6l,y € Ry UR_:

Y@z = [yoz],. In this case, by inequality (5) of Proposition 1, x+ V3~ (x)/2 <x < yElyz = [yoz] < yoz.

Therefore, x+ V)™ (x) /2 < yoz, holds.

yEhz=[y ozh. Assume first that x < y [6], z. In this case, by Definition 5, since x € IF and x < y [, z, it

must be the case that x < yoz. Then, we can conclude that x4 V5~ (x)/2 < x < yoz. Therefore, x +

V3~ (x)/2 < yoz, holds. Assume now that x = y e, z and even(x). In this case, by Proposition 6, we have

that V5~ ([yoz]n)/2 < (yoz) — [yoz]n. Since, in this case x =y By z, we obtain V3~ (x)/2 < (yoz) —x.

Hence, x+ V3~ (x)/2 < yoz. If odd(x), by Proposition 6, we have that V3~ ([yoz]s) /2 < (yoz) — [yoz)n.

Hence, x+ V3™ (x)/2 <yoz.

Consider now the case that y©l,z =40 or y@laz = —0.If yoz #0, then y@ly,z = [yoz], or y@laz = [yoz]y.
In this case we can reason as above. Assume then that yoz = 0. Since x < +0 or x < —0 implies that x < 0.
Therefore, we can conclude that x+ V3~ (x) < x < 0 holds. Assume now that y [, z = +oco. If y 0z # o then
yEaz = [yoZz]t. In this case we can reason as above. On the other hand if yoz = 4o then x4+ V3~ (x) < oo
holds.

In order to prove (20), remember that x = y &) z implies that x > y @], z. Note that x + V*(x) = succ(x).
So we are left to prove succ(x) > yoz. Assume now that —fmax < y02z < 0 0r fiyin < y02z < fmax. Note
that it cannot be the case that succ(x) < yoz, otherwise, by Definition 5, y [0 122> succ(x) and x > y [ 12
would not hold. Then, in this case, we can conclude that succ(x) > yoz. Next, assume that 0 < yoz < fiin-
In this case y e} z = 4-0. Hence, x > 0. By Definition 4, succ(x) > fin. Hence succ(x) > y oz, holds. Next,
assume y oz < — fiax. In this case y [ z = —oo. Hence x > —oo. By Definition 4, succ(x) > — fmax. Hence
succ(x) > yoz, holds. Next assume yoz = 0. In this case y[@) z = +0 or y @ z = —0. In any case, x > 0. By
Definition 4, succ(x) > fmin. Hence succ(x) > yoz, holds. Finally assume yoz = —eo. In this case y[&l| z = —co.
Hence, since x = —eco, x > —oo. By Definition 4, succ(x) > — fmax. Hence, succ(x) > yoz, holds.

In order to prove (21), as before, observe that x 3= y @y z implies that x > y By z. Assume first that
yElyz € Ry UR_. In this case, y @t z = [yoz]y. By (5) from Proposition 1, y By z = [y oz]4 > yoz. Then,
assume that y 8]y z = —oo. In this case, since the rounding towards plus infinity never rounds to —eo, it follows
that y @y z = yoz. Hence, x > yoz = —oo, holds. Assume now that y gl z = +oo. In this case, x = +oo then
X > yog, holds. Finally, assume that y o1y z = +0 or y [el4 z = —0. In any case x = —0 that implies x > 0. On
the other hand, we have two cases, yoz # 0 or yoz = 0. For the first case, by Definition 5, — fi,in < yoz <0,
then x > yoz, holds. For the second case, since x > 0 thenx > yoz.

In order to prove (22), note that x = y [6l, z implies that x > y [6l, z. First observe that for x # oo,
x+ V5T (x)/2 > x. Indeed, assume first that x # fiax, then, by Definition 9, V5 (x) = x — pred(x). Hence x+
V51 (x)/2 =x+ (x—pred(x))/2 = (3x—pred(x)) /2. Since x > pred(x), we can conclude that x+ V5 (x) /2 >
x. Assume now that x = fmax. By Definition 9, V5™ (x) = succ(x) —x. Hence x+ V57 (x) /2 = x + (succ(x) —
x)/2 = (x+succ(x))/2. Since x < succ(x), we can conclude that x+ V57 (x)/2 > x.

By Definition 5, we have to consider the following cases for x[@l,y € Ry UR_:

¥ Bz = [yoz];. In this case, by inequality (5) of Proposition 1, x+ V)" (x)/2 > x> yBlyz = [yoz]; > yoz.
Therefore, x+ V57 (x) /2 > yoz, holds.

yBlyz=[yoz];. Assume first that x > y @], z. In this case, by Definition 5, since x € F and x > y @l z, it must
be the case that x > yoz. Hence, as in the previous case, by inequality (5) Proposition 1, x+ V5" (x)/2 >
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x > yoz. Therefore, x + Vg*(x)/Z > yoz, holds. Assume now that x = y [, z and even(x). In this case,
by Proposition 6, we have that V‘Z‘Jr (b o z]n) /2> (yoz) — [yozls. Since, in this case x = y [, z, we
obtain V5" (x)/2 > (yoz) —x. Hence, x+ V¥ (x)/2 > yoz. If odd(x), by Proposition 6, we have that
V5t (vozln)/2 > yoz—[yoz)n. Hence, x+ V5 ¥ (x) /2 > yoz.
Consider now the case that y@l, z=+0ory@l,z=—0.If yoz #0, then yEl,z = [yoz] oryEl,z = [yoz];. In
this case we can reason as above. Assume now that yoz = 0. Since x >> 40 or x = —0 implies that x > 0, we can
conclude that x + Vg* (x)/2 > x>0 holds. Assume now that y@l, z = —co. If yoz # —co then y By z = [yoz];.
In this case we can reason as above. On the other hand if yoz = —eo then x+ V57 (x) /2 > —oo holds.

Proof (of Proposition 5) We first prove (25). By inequality (5) from Proposition 1, e > [e]. Hence, x > [¢], .

Since by hypothesis, e € Er is an expression that evaluates on R to a nonzero value, we have three cases:

le]; #0and x # 0: In this case x > [e] implies x = [e]; .

[e]; = +0: In this case, 0 < e < fmin. Then, it must be the case that x > 0. Therefore x = [¢]; holds.

x=0: In this case x must be strictly greater than e since e € Ef evaluates to a nonzero value. Therefore,
e < 0. Hence, by Definition 5, [e]| < — finin. Then x 3= [¢]; holds.

In all cases, we have that x 3= [e]|. By Definition 10, we conclude that x = [e]]; .

We now prove (26). By inequality (5) from Proposition 1, as in the previous case, e > [e];. Hence,
x> [e],. Since by hypothesis e € Ep is an expression that evaluates on R to a nonzero value, we have three
cases:

le], #0and x # 0: In this case x > [e]; implies x > [¢],.

[e]; = +0: In this case, 0 < e < fmin. Hence, x > 0. Therefore x > [e] holds.

x=0: In this case x must be strictly greater than e since e € Ef evaluates to a nonzero value. Therefore,
e < 0. Hence, by Definition 5, [¢]| < — fmin. Then x > [e]; holds.

In all cases, we have that x > [¢];. By Definition 10, we conclude that x > [e]|. Then, by Definition 4, we
have the following cases on [e]);:

[el; = fmax: In this case succ([e]}) = +eo. Since x > [e], this implies that x = 4. Then x 3= succ([e] ),
holds.

— fmax < [lel; < —fmin Of fmin < [€]} < fmax: In this case succ([e] ) = min{y € F | y > [e], }. Since x >
[el;.xe{yeF|y> [[e]]l.}.Hence,x>succ([[e]h),hqlds. S .

[e]l, = +0or [e], = —0: In this case succ([e];) = fmin. Since x > [e], this implies that x > fn;,. Hence,
x = succ([e] ), holds.

[e]} = —fmin: Inthis case succ([e] ;) = —0. Since x > [e] | = — fiin, x = —0. Hence, x = succ([e]; ), holds.

[[e]]ihzlgoc: In this case succ([e]|) = —fimax. Since x > [e]| = —oo, x = — finax. Hence, x = succ([e]; ),

olds.

We now prove (27). By inequality (5) from Proposition 1, e < [e]+. Hence, like before, x < [¢];. Since by
hypothesis e € Ey is an expression that evaluates on R to a nonzero value, we have three cases:

[e]y # 0 and x # 0: In this case x < [e] implies x < [e];.

[e]y = —0: In this case, — finin < e < 0. Hence, x < 0. Therefore x < [e] holds.

x =0: In this case it must be the case that x is strictly smaller than e, since e € Ep evaluates to a nonzero
value. Therefore, e > 0. Hence, by Definition 5, [e]4 > finin. Then x ¢ [e] holds.

In any case, x < [e] holds. By Definition 10, we conclude that x < [e];.
Next we prove (28). By, again, inequality (5) from Proposition 1, e < [e]+. Hence, x < [e];. Since by
hypothesis e € Er is an expression that evaluates on R to a nonzero value, we have three cases:

le]t # 0 and x # 0: In this case x < [e]y implies x < [e];.

[e]y = —0: In this case, — fmin < € < 0. Hence, x < 0. Therefore x < [e]} holds.

x =0: In this case it must be the case that x is strictly smaller than e, since e € Ef evaluates to a nonzero
value. Therefore, e > 0. Hence, by Definition 3, [e]y > finin. Then x < [e]4 holds.

In any case, x < [e]; holds. By Definition 10, we conclude that x < [e]. By Definition 4, we have the
following cases on [e];:

[el+ = — fmax: In this case pred([e];) = —oo. Since x < [e];, this implies that x = —eo. Then x < pred([e]),
holds.

Smin < [e]t < finax Of — finax < [e]t < —fmin: In this case pred([e]+) = max{y € F |y < [e]4 }. Since x <
[ely.x € {y€F|y< [e]s }. Hence, x < pred([e]), holds.

[el+ = +O0or [e] = —0: In this case pred([e]y) = — fimin- Since x < [e]+, this implies that x < — fin.
Hence, x < pred([e]), holds.
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[el4 = fumin : In this case pred([e]+) = 40. Since x < [e]y = fmin, X < +0. Hence, x < pred([e]4), holds.
[e], = +eo: Inthis case pred([e]) = fmax- Since x < [e]4 = o, X < finax. Hence, x < pred([e]), holds.

In order to prove (29) we first want to prove that x 3= [¢];. To this aim consider the following cases for e:

€> fmax: Inthis case [e]; = +oo. On the hand, x > e > fiax. Since x € F implies that x = +oco. Hence x = [e];.

€ < —fimin 0r 0 < e < finax: Inthis case [e}y =min{z € F |z>e}. Sincex>e,x€ {z€F|z>e}. Hence,
x> [e]4, holds and also x = [e];.

— fmin < e < 0: In this case [e]; = —0. Since x > ¢ and x € IF, x = —0, holds.

e = —oco: In this case [e]y = —eo and x = —eo holds.

Since by hypothesis [¢]; = [e]l;, we can conclude that x = [e] holds.
In order to prove (30) we first want to prove that x < [e]. To this aim consider the following cases for e:

e < —fmax: In this case [e]| = —eo. On the hand, x < e < — fiax. Since x € F implies that x = —eo. Hence
x<e]y.

€ > finin OF — fmax < e < 0: In this case [e]), =max{z€F|z<e}. Sincex<e,xe {z€F|z<e}. Hence,
x < [e]}, holds and also x < [e];.

0 < e < fmin: Inthis case [e], = +0. Since x < e and x € F, x < +0, holds.

e = +oo: In this case [¢]; = oo and x < +oo holds.

Since by hypothesis [e]; = [e];, we can conclude that x < [e]]; holds.

B.3 Proofs of Results in Section 4.3

Proof (of Theorem 3) Given the constraint x =y gz withx € X = [xg,x,), y €Y = [y, yu] and z € Z = [z¢,2,],
Algorithm 3 computes a new refining interval X’ for variable x. Note that X’ = [}, x],] N X, which assures us
that X' C X.

As for the proof of Theorem 10, it is easy to verify that y; and wy, (resp., yy and wy) computed using
function 7 of Figure 5, are the boundaries of ¥ and W upon which x touches its minimum (resp., maxi-
mum). Moreover, remember that by Proposition 2, following the same reasoning of the proofs of the previous
theorems, we can focus on finding a lower bound for y., 4,, wy. and an upper bound for yy &, wy .

We will now comment only on the most critical entries of function dd, of Figure 6: let us briefly discuss
the cases in which y; = —co and wy = oo,

wr, = —co. In this case, by function 7 of Figure 5 (see the first three cases), we have y;, =y, = —oo, while
either w;, = wy or w = wy. Since by the IEEE 754 Standard [24] dividing £oo by *eo is an invalid
operation, we are left to consider the case wy, = wy. In this case, recall that by the IEEE 754 Standard
[24], dividing —eo by a finite negative number yields +o. Hence, we can conclude x; = +oo.

wp, = +oo. By function 7 of Figure 5 (see the fourth and last case), we have y;, = y, = —oo, while wy, = wy =
+-o0. Hence, xy = —0, since dividing a negative finite number by +oo gives —0.

A similar reasoning applies for the cases y;, = 4oo, wy, = Z-oo. Dually, the only critical entries of function dd,
of Figure 6 are those in which y;; = £o0 and wyy = +e0 and can be handled analogously.

We are left to prove that VX" C X,3re S,y € Y,z€Z:yA,z ¢ X". Let us focus on the lower bound
xf proving that, if [xzr,xzr] # &, then there exist r € S,y € Y,z € Z such that y1, z = xzr Consider the
particular values yr, zy = wr and ry that correspond to x;r in Algorithm 3, i.e. y, and wy and ry are such
that ddy(yL,wr,re) = xj. By Algorithm 3, such y; and w; must exist. First consider the cases in which
yr € (RCURL) or wr & (R-URY). A brute-force verification was successfully conducted, in this cases,
to prove that y, Ay, wy, = x;. For the cases in which y;, € (R-UR,) and w; € (R- UR,) we have, by
definition of dd, of Figure 6, that x;r = yL @y, wr. Remember that, by Proposition 2, there exists r € § such
that y, Py, w = yL D wi. Since y, € Y and wy, € Z, we can conclude that x| ¢ X" implies that y Zy wy & X",
for any X” C X’. An analogous reasoning applies to x; , to x, and x; . This allows us to prove the optimality
claim.

Proof (of Theorem 4) Given the constraint x =y sz withx € X = [x¢,x,], y €Y = [y, yu] and z € Z = [z, 2],
Algorithm 4 computes a new, refining interval Y’ for variable y. It returns either Y' := (Y N [y, ,y, )W(¥ N
v/ ,yi]) or Y’ = &: hence, in both cases, we are sure that Y’ C Y.

By Proposition 2, we can focus on finding a lower bound for y € Y by exploiting the constraint y A, z = x
and an upper bound for y by exploiting the constraint y 47, z = x.

In order to compute correct bounds for y, Algorithm 5 first splits the interval of z into the sign-homogeneous
intervals Z_ and Z,, since knowing the sign of z is crucial to determine correct bounds for y. Hence, for
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W = Z_ (and, analogously, for W = Z.), it calls function ¢ of Figure 7 to determine the appropriate extrema
of intervals X and W to be used to compute the new lower and upper bounds for y. As we did in the proof
of Theorem 9, it is easy to verify that x; and wy (resp., xy and wy), computed using function ¢ of Figure 7,
are the boundaries of X and W upon which y touches its minimum (resp., maximum). Functions idéf, of Fig-
ure 8 and id{ of Figure 9 are then used to find the new bounds for y. The so obtained intervals for y will be
eventually joined using convex union to obtain the refining interval for y.

We will now prove the non-trivial parts of the definitions of functions id? and idf . Concerning the case
analysis of id{ (Fig 8) marked as a4, the result changes depending on the selected rounding mode:

7¢ =1: we clearly must have y = +oo, according to the IEEE 754 Standard [24];

Fe=1: itmustbey/wr < — fmax and thus, since wy, is negative, y > — fmax - wr and, by (26) of Proposition 5,
¥ = succ(— fmax [y wi).

Fe=n: since odd(fmax), for wy = —co we need y to be greater than or equal to (f Smax + V5 (—fmax)/ 2) .
wr. If [[(7fmaX + Vg’(ffmax)/Z) cwi ]y = [(7fmaX +Vy (7fmax)/2) -w]t, by (29) of Proposition 5,
we can conclude y 5= ﬂ(ffmax +Vi- (7fmax)/2) -wr]1. On the other hand, if [[(ffmaX +Vi- (7fmax)/2) .
wilt # [(—fmax + V5 (= fmax)/2) - wi]+, then we can only apply (25) of Proposition 5, obtaining
Y= H(*fmax + V37 (7fmax)/2) . WL]]L-

The case analysis of id{ (Fig 8) marked as as can be explained as follows:

7¢ =1 : we must have y = o0, according to the IEEE 754 Standard [24];

Fe=7: inequality y/wr > fmax must hold and thus, since wy, is positive, y > fmax - wz and, by (26) of
Proposition 5, y 3= succ( fmax Ly wi).

Fe=n: since odd(fmax), for x; = +oco we need y to be greater than or equal to (fmax + V’21+(f;nax)/2) WL
It [[(fmax + Vg* (fmax)/Z) wi]y = [(fmax + VT (fmax)/Z) -wi]1, by (29) of Proposition 5, we can con-
clude y = [ (fmax + V5" (fmnax)/2) -we]t- On the other hand, if [( fimax + V5T (fimax)/2) - wels # [(fiax +
Vg* (fmx)/Z) -wi]; then, we can only apply (25) of Proposition 5, obtaining y = [[(fm.dx + Vg* (fmﬂx)/2) wr];.

The explanation for the case analysis of id? (Fig 8) marked as ag is the following:

7y =7: the lowest value of y that yields x;, = +0 with w;, € R_ is clearly y = —0;

Fe=1: inequality y/wr < fmin should hold and thus, since wy, is negative, y > fmin - wr and, by (26) of
Proposition 5, y = succ( finin &) wr).

Fe=n: since odd(fmin), for xz = +0 we need y to be greater than or equal to (fmin - wr)/2. Since in this
case [(fmin - wL)/2]t = [(fmin - wL)/2}t = (fmin B4 wr)/2, by (29) of Proposition 5, we can conclude
¥ = (fmin BT wr)/2.

Concerning the case analysis of idf (Fig 8) marked as a7, we must distinguish between the following
cases:

7y =1 : considering x; = —0 and wy, € R4, we clearly must have y = —0;

Fo=7: itshouldbey/wy > — fiin and thus, since wy, is positive, y > — fmin - wz and, by (26) of Proposition 5,
¥ = succ(— finin &Iy wr).

F¢=n: since odd(fuin), for xp = —0 we need y be to greater than or equal to (—f,m11 ~WL)/2. Since in
this case [[(—fimn . WL)/ZIIT = [(—fmin -wL)/Z]T = (—fmin [y wr)/2, by (29) of Proposition 5, we can
conclude y = (— finin [y wi) /2.

Similar arguments can be used to prove the case analyses of id] of Fig 9 marked as ag, a9, aj; and aj;.
We will now analyze the case analyses of id; of Fig 8 marked as a3 and a;r, and the ones of id'[: of

Fig 9 marked as ag and a . We can assume, of course, X = [x¢,x,], ¥ = [ys,yu] and Z = [wy, w,], where

X0, Xu,we,wy € FNR, xp < xy, we < wy, and sgn(wy) = sgn(w,). Exploiting x < y Az and x > yAz, by

Proposition 4, we have

=X, ifry =1
> x4 VI(x) =pred(x), if Fp="1;
v/ nE) pred(x), if 7y =1 . 46)
>x+Vy (x)/2, if 7y = n and even(x);
>x+ Vi (x)/2, if 7y = n and odd(x).
<x+VH(x) =suce(x), ifF, =1
<x, ifr, =13
47
¥/z <x+Vit(x)/2, if 7, = n and even(x); “n
<x+Vit(x)/2 if 7, = n and odd(x).
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Since the case z = 0 is handled separately by id{ of Fig 8 and by id£ of Fig 9, we can assume z # 0. Thanks
to the split of Z into a positive and a negative part, the sign of z is determinate. In the following, we will prove
the case analyses marked as a; and agr, hence assuming z > 0. From the previous case analysis we can derive

>x-z, if 7p=1;
> pred(x) - z, ifrp=1
¥ < - e ) (48)
> (x+V5 (x)/2) -z, if 7 =n and even(x);
> (x+V57(x)/2) -z, if 7 =n and odd(x);
< suce(x) - z, if 7, =1;
<x-z ifry =1
49
N < (x+V5*(x)/2) -z, if F, =nand even(x); “9)
< (x+V5*t(x)/2) -z, if 7, =nand odd(x).

Note that the members of the product are independent. Therefore, we can find the minimum of the
product by minimizing each member of the product. Since we are analyzing the case in which W = Z, let
(xz,xu,wr,wy) as defined in function o of Figure 7, replacing the role of y with z and the role of z with x.
Hence, by Proposition 3 and the monotonicity of ‘pred” and ‘succ’ we obtain

> XL WL, if 7o = 1;
> pred(xz) - wr, if/p =1
AT ne e . (50
> (xp+ V5 (x1)/2) -wr, if 7 =nand even(x);
> (xL +Vy© (xL)/Z) -wr, if Fp =nand odd(x);
< suce(xy) - wy, if 7, = s
y <xy-wu, ifr, =13 1)
< (xy + V5T (xw)/2) -wy, if F, = nand even(x);
< (xy + V5 (xv)/2) -wy, if 7, =nand odd(x).
‘We can now exploit Proposition 5 and obtain:
| if /g =1,
¥, def ) xpChwe, 17 4 52)
succ (pred(xL) 0o, wL)7 if /g =15
, def | pred(succ(xy) Drwy), if A =1 53)
u F =
xyld wy, ifr, =1.

Indeed, if 7y = 1 and x;, # 0, then part (29) of Proposition 5 applies and we have y = x; [J; wy. On the other
hand, if x; = 0, since by hypothesis z > 0 implies w;, > 0, according to IEEE 754 [24, Section 6.3], we have
xz By wg = sgn(xz) - 0 and, indeed, for each non-NaN, nonzero and finite w € F N [+0, 40|, sgn(xz) - 0 is the
least value for y that satisfies sgn(x.) -0 =y, w.

Analogously, if 7y =1 and x; # fmin, then Proposition 5 applies and we have succ (pred(xL) Gy wL).
On the other hand, if x; = fun, in this case, succ (pred(xL) Gy WL) = fmin Which is consistent with the fact
that, for each non-NaN, nonzero and finite w € N [+0,+oo|, fiin is the lowest value for y that satisfies
f min =Y ZT w.

A symmetric argument justifies (53).

As before, we need to approximate the values of the expressions ¢ = (x; + V3~ (xz)/2) -wy and e} =
(xu + V5" (xy)/2) - wy . We leave this as an implementation choice, thus taking into account the case [e; ]+ =
lef]; and [e} ], = [e;7], as well as [e] [+ > [¢/]1 and [e ]} < [e;/],. Therefore, when [¢,[ ]| < [e;]; by (51)
and (27) of Proposition 5 we obtain y < [e; ]+, while, when [[eZ]h > [e[]l by (51) and (25) of Proposition 5
we obtain y = [e .

Thus, for the case in which 7y = n, since ej # 0 and e; # 0, by Proposition 5, we have

o lef 1+ if even(xz ) and [e/ ]+ = [ef]1;

¥ E < lef 1, if even(xz) and [e/ ]+ # [ef ]+ (54
succ([ef];), otherwise;
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whereas, for the case in which 7, = n,

[l et na el = ).
Yu = ue;]]% if CVCH(XU) and He;]]l 7& [e;r]l; (55
pred([ef]+), otherwise.

An analogous reasoning, but with z < 0, allows us to obtain the case analyses marked as a3 and ag .

Proof (of Theorem 5) Given the constraint x =y sz withx € X = [xg,x,], y €Y = [y, yu] and z € Z = [z, 2],
Algorithm 5 finds a new, refined interval Z’ for variable z.

Since it assigns either Z' := (ZN [z} ,z, ) W(ZN[z] %] ]) or Z' = @, in both cases we are sure that Z' C Z.
By Proposition 2, as in the previous proofs, we can focus on finding a lower bound for z € Z by exploiting
the constraint y A7, z = x and an upper bound for z by exploiting the constraint y 75, z = x.

We first need to split interval X into the sign-homogeneous intervals X_ and X, because knowing the
sign of x is crucial for determining correct bounds for z. Hence, for V = X_ (and, analogously, for V = X)
function 7 of Figure 5 determines the appropriate interval extrema of ¥ and V to be used to compute the new
lower and upper bounds for z. As in the previous proofs (see, for example, proof of Theorem 10), it is easy
to verify that y;, and vy, (resp., yy and vyy) computed using function 7 of Figure 5 are the boundaries of Y and
V upon which z touches its minimum (resp., maximum). Functions id; of Figure 10 and id;, of Figure 11 are
then used to find the new bounds for z. The so obtained intervals for z will be then joined with convex union
in order to obtain the refining interval for z.

We will prove the most important parts of the definitions of idj (Figure 10) and id;, (Figure 11) only, start-
ing with the case analysis marked as a4. Depending on the rounding mode in effect, the following arguments
are given:

7¢ =1 : in this case, the only possible way to obtain —0 as the result of the division is having z = +oco (with
yeR_);

Fe=7: itshould be y1/z > — fmin and thus, since yz, and x, are negative, we can conclude that z is positive.
Thus, yz > — fmin - z implies yz/ — fmin < 2, and by (26) of Proposition 5, z = succ(zz A} — fmin)-

Fe=m: since odd(—fuin), for v, = —0 we need y1./z > (~fuin + V5" (= finin)/2) = (—fnin + finin/2) =
— fmin/2. As before, since y; and vy are negative, we can conclude that z is positive: hence y; >
(= fmin/2) -z. Therefore, z >y /(= fmin/2) =2 > (y£/ — fmin) - 2. Since in this case [(vz/ — fmin) - 2] =
[(y2/ = fmin) - 2+ = (y£ D¢ — fmin) - 2, by (29) of Proposition 5, we can conclude y = (yz 4 — fmin) - 2.

As for the case analysis of idj (Figure 10) marked as as, we must distinguish between the following
cases:

7¢ =71: we must have z = +oo in order to obtain x = +0;

Fo=1: inequality y;/z < fmin must hold and thus, since positive y; and v, imply a positive z, Z > yr/ fmin
and, by (26) of Proposition 5, z = succ(yz | fmin)-

Fr=n: since odd(fiin), for v, =40 we need yz/z < fmin/2. As z is positive in this case, (y2/fmin) -2 < z.
Since [(yz/fmin) - 2I+ = [(£/fmin) - 2}t = (Y2 B4 fnin) - 2, by (29) of Proposition 5, we can conclude
vz (VL Bt fmin) - 2-

Concerning the case analysis of id; (Fig 10) marked as ag, we must distinguish between the following
cases:

7¢ =1 : the lowest value of z that gives x = oo withy € R_ is z = —0;

Fe=7: inequality yr/z > fmax must hold; since y; is negative and vz, is positive, z must be negative, and
therefore y;, < fmax - 2. Hence, yr / fmax < z. By (26) of Proposition 5, we obtain z = succ(yz 4| fmax)-

Fe=n: since odd(fmax), for vp = +eo weneed yr/z > (fmax + Vg* (fmax)/2). As before, since wy, is negative
and v, is positive, we can conclude that z is negative, and, therefore, yz, < (fmax + Vg*‘(.fmax) /2)-z
holds. As a consequence, yr./(fmax + V5 (fnax)/2) < 2. If [y1/(fmax + V3T (fmax)/2)]+ = [0/ (fmax +
V5" (fimax)/2)]1, by (29) of Proposition 5, we can conclude z = [y /(fmax + Vg*(fmﬂx)/Z)]]T. On the
other hand, if [yz/(fmax + V5" (fmax)/2)]+ # D/ (fmax + V5T (fmax)/2)]+ then, we can only apply (25)
of Proposition 5, obtaining z 3= [y2./(fmax + V51 (finax)/2)]}-

Regarding the case analysis of idj (Fig 10) marked as a7, we have the following cases:

7¢ =1: the lowest value of z that yields x = —co withy € R is z = —0;
Fo =1 : inequality y;/z < — fmax must hold and thus, since a positive y;, and a negative vz, imply that the sign
of zis negative, y;, > — fmax - 2. Hence, y1./ — fax < z. By (26) of Proposition 5, z = succ(yr 4] — fmax)-
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Fg=n: since 0dd(— fiax), for v = —eo we need y /z < — finax + V5~ (—fmax)/2. Since z in this case is neg-
ative, we obtain the inequality z > yr/(— fmax + V3 (—fmax)/2). If [[)'L/(—fmax + ng(—fmax)/z)]]T =

e/ (= fnax + V5~ (= fmax)/2)]+. by (29) of Proposition 5, we can conclude y = [y / (— finax + V5~ (—fmax)/2) I+

On the other hand, if [yz/ (= fmax + V5~ (—finax)/2) 1t # L/ (= fmax + V5~ (= finax)/2)]+, then we can

only apply (25) of Proposition 5, obtaining y = [/ (— fimax + V3~ (= fmax)/2) 14

Similar arguments can be used to prove the case analyses of function id}, of Figure 11 marked as ag, aj,
alg and aln.

We will now analyze the case analyses of idj of Figure 10 marked as a3 and agr, and the ones of id;,
of Figure 9 marked as ag and ag'. In this proof, we can assume y;,v; € RCURy, yy,vy € RCUR, and
sgn(vy) = sgn(vy). First, note that the argument that leads to (48) and (49) starting from x < yAz and
X = y[Azis in common with the proof of Theorem 4.

Provided that interval X is split into intervals X, and X_, it is worth discussing the reasons why it is
not necessary to partition also Y directly in Algorithm 5. Assume ¥ = [—a,b] with a,b > 0 and consider
the partition of ¥ into two sign-homogeneus intervals ¥ N [—oo, —0] and ¥ N [+0, +oo], as usual. Note that the
values —0 € Y N[—co, —0] = [—a, —0] and the values +0 € ¥ N [+0, +-oc] = [+0,b] can never be the boundaries
of Y upon which z touches its minimum (resp., maximum). This is because y will be the numerator of fractions
(see expressions (56) and (57)). Moreover, by the definition of functions idj of Fig 10 and id;, of Fig 11, it
easy to verify that the partition of ¥ would not prevent the interval computed for y from being equal to the
empty set. That is, if id}(yr,vz,7) = unsat. or id} (yy,vy,7,) = unsat., then partitioning also ¥ into sign-
homogeneus intervals and then applying the procedure of Algorithm 5 to the two distinct intervals results
again into an empty refining interval for z.

Hence, to improve efficiency, Algorithm 5 does not split interval Y into sign-homogeneous intervals.
However, in this proof it is necessary to partition Y into intervals Y_ and Y in order to determine the correct
formulas for lower and upper bounds for z. In the following, for the sake of simplicity, we will analyze the
special case X, and ¥ =Y, so that ¥ does not need to be split because it is already a sign-homogeneous
interval. The remaining cases in which Y is sign-homogeneous as well as those in which it is not can be
derived analogously. To sum up, in this case we assume x > 0 and y > 0, and therefore z > 0.

Now, we need to prove the cases marked as a;r and agr. The case analysis of (46) and (47) yields (48)
and (49). Remember that the case x = £0 is handled separately by functions id; of Figure 10 and id;, of
Figure 11, hence assuming x > 0, we obtain

<y/x it 7y =4

<y/pred(x), if 7y =1 and x # fiin;

Z24 < fmax, if 7y =T and X = finin} (56)
<y/(x+V5 (x)/2), if 7 =nand even(x);

<y/(x+V57(x)/2), if 7, =nand odd(x);

> y/suce(x), if 7, = | and x # — fiin:
> — finax, if 7y = | and x = — fiin;
79 >y/x, if /e =13 (57

>y/ ()H’ V3+(x)/2)7 if 7, = n and even(x);
>y/(x+Vi*(x)/2), if 7 =nand odd(x).

Since the members of the divisions are independent, we can find the minimum of said divisions by
minimizing each one of their members. Let (yz,yu,vr,vy) be as returned by function 7 of Figure 5. By
Proposition 3 and the monotonicity of ‘pred’ and ‘succ’ we obtain

<y /vu, if 7y =1;

<yu/pred(vy), if 7, = 1T and vy # finin;

29 < fiaxs if 7, =1 and vy = fuin; (58)
<yu/(vu+V5 (vy)/2), if F,=nandeven(vy);

<yu/(vu+V5 (vy)/2), if s =nand odd(vy);

> yr/succ(vy), if 7y = | and v, # — finin:

> — fmax, if 7y = | and vi = — fiin;
z4 >yr/vL, ifrg=1; (59
>yr/(ve+V5*(ve)/2), if 7 =nandeven(v);

> yL/(VL+Vg+(VL)/2),
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We can now exploit Proposition 5 and obtain:

s def | yL @y ve, ifrg =13
= o (60)
succ (yL v, succ(vL))7 if 7o =] and vi, # — finin;
o def pred(yu Bt pred(vy)), if 7y =T and vy # fin; o)
yu ZLVUa if}_‘u:i_

Since y;, # 0, then yz/succ(vy) # 0. Hence, Proposition 5 applies and we have z = y; By v, if 7y = 1 and
2 3= succ(y/succ(vy)) if 7 = | and vy, # — finin. Analogously, since yy # 0, then yy / pred(v.,) # 0. Hence,
by Proposition 5 we obtain (61).

Note that, since division by zero is not defined on real numbers, we had to separately address the case
7y =1 and x = fiin in (56), and the case 7y = | and x = — fi, in (57). Division by zero is, however, defined
on IEEE 754 floating-point numbers. Indeed, if we evaluate the second case of (60) with v;, = — fiin, We
obtain succ(y B succ(—fmin)) = — fmax» Which happens to be the correct value for zj, provided y, > 0. The
same happens for (61). Therefore, there is no need for a separate treatment when variable x takes the values
:tflnin .

As before, we need to approximate the values of the expressions e &ef yu/(vu+V5~ (vy)/2) and e/ E
v/ (v +V5¥(ve)/2). Thus, when [e;]; < [e;], by (51) and (27) of Proposition 5 we obtain y < [¢; ]+,
while, when [e/ ]| > [e/ ], by (51) and (25) of Proposition 5 we obtain y = [e; ] . Thus, for the case where
F¢ = n, since e, # 0 and ej’ # 0, by Proposition 5, we have

lef 1+ if even(vz) and [e/ ]+ = [ef ]+
d .
V= lef 1y if even(vz) and [e/ ]+ # [ef ]t (62)
succ([ef];), otherwise;

<8

whereas, for the case in which 7, = n,

N (L P
Yu = 9 Led Tt if even(vy) and ;7] # [e;],: (63)
pred([ef]+), otherwise.

An analogous reasoning allows us to prove the case analyses marked as a3 and ag .

Proof (of Theorem 9) Given the constraintx = y[gz withx € X = [x7,x,],y €Y = [ys,y] and z € Z = [z¢,2,),
then X’ = [x},x,] N X. Hence, we are sure that X' C X.

It should be immediate to verify that function ¢ of Figure 7, related to the case sgn(y¢) = sgn(y,),
chooses the appropriate interval extrema yz,,yy,2r,2u, necessary for computing bounds for x. Indeed, note
that such choice is completely driven by the sign of the resulting product. Analogously, the correct interval
extrema yr,yy,zr,2y related to the case sgn(zy) = sgn(z,) can be determined by applying function ¢ of
Figure 7, but swapping the role of y and z. Hence, if the sign of y or of z is constant (see the second part of
Algorithm 9) function ¢ of Figure 7 finds the appropriate extrema for y and z to compute the bound for x.

Concerning the cases sgn(yy) = sgn(z¢) = —1 and sgn(y,) = sgn(z,) = 1 (first part of Algorithm 9), note
that we have only two possibilities for the interval extrema y;, and zz, that are y, and z, or y, and z;. Since
the product of y;, and z; will have a negative sign in both cases, the right extrema for determining the lower
bound x} have to be chosen by selecting the smallest product of y;, and z;. Analogously, for yy and zy there
are two possibilities: y, and z, or y, and z,. Since the product of yy and zyy will have a positive sign in both
cases, the appropriate extrema for determining the upper bound x/, have to be chosen as the biggest product
of yy and zp.

Remember that by Proposition 2, following the same reasoning as in the previous proofs, it suffices to
find a lower bound for y;, [, 7z, and an upper bound for yy CJ,, zu.

We now comment on some critical case analyses of function dm, of Figure 17. Consider, for example,

when y; = to0 and z;, = £-0. In particular, we analyze the case in which y; = —oo and z;, = £0. Note that
yL = —oo implies y, = —oo. Assume, first, that z;, = 4-0. Recall that by the IEEE 754 Standard [24] d-e0 140
is an invalid operation. However, since yy = —eo, we have two cases:

Yu > —fmax : note that, in this case, — fiax L +0 = —0;
yu = —oo: in this case, z;, must correspond to z, (see the last three cases of function ). Since —eo [z for
z < 0 results in 40, we can conclude that —0 is a correct lower bound for x.
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A similar reasoning applies for the cases y;, = +oo, z;, = £0. Dually, the only critical entries of function
dm,, of Figure 17 are those in which yy = e and zy = £0. In these cases we can reason in a similar way,
too.

We are left to prove that VX" C X : 3re S,y Y,z€ Z .y, z ¢ X". Let us focus on the lower bound
xj, proving that there exist values € S,y € Y,z € Z such that y [, z = x. Consider the particular values
of yz, zz and ry that correspond to the value of xj chosen by Algorithm 9, that is y;, zz and ry are such
that dmy(yL,zz,7¢) = xj. By Algorithm 9, such values of y, and z; must exist. First, consider the cases
in which y;, ¢ (R_UR,) or z; € (R_ UR,). In these cases, a brute-force verification was successfully
conducted to verify that y[,, z = x}. For the cases in which y, € (R_UR ) and z; € (R_ UR ) we have, by
definition of dm, of Figure 17, that x@ =y [y, z. Remember that, by Proposition 2, there exist ¥ € S such
that y; O, zz = yr [y 2. Since y, € Y and z;, € Z, we can conclude that x, ¢ X” implies that y; [y z; & X”.
An analogous reasoning allows us to conclude that 3r € S for which the following holds: x|, & X" implies
yuBrzy €X".

Proof (of Theorem 10) Given the constraint x = y[gz withx € X = [x7,x,],y €Y = [ys,yu] and z € Z = [z¢,24],
Algorithm 10 computes Y’, a new and refined interval for variable y.

First, note that either Y’ := (Y N[y, ,y; )WY N[y;,y]) or Y/ = @, hence, in both cases, we are sure
that Y’ C Y holds.

By Proposition 2, we can focus on finding a lower bound for y € Y by exploiting the constraint y[Jz, z = x
and an upper bound for y € Y by exploiting the constraint y [z, z = x.

Now, in order to compute correct bounds for y, we first need to split the interval of z into the sign-
homogeneous intervals Z_ and Z,, because it is crucial to be sure of the sign of z. As a consequence, for
W =Y_ (and, analogously, for W = Y, ) function 7 of Figure 5 picks the appropriate interval extrema of X
and W to be used to compute the new lower and upper bounds for y. It is easy to verify that the values of
xz, and wy, (resp., xy and wy) computed using function 7 of Figure 5 are the boundaries of X and W upon
which y touches its minimum (resp., maximum). Functions im, of Figure 18 and im, of Figure 19 are then
employed to find the new bounds for y. The so obtained intervals for y are then joined using convex union
between intervals, in order to obtain the refining interval for y.

Observe that functions imy of Fig 18 and im,, of Fig 19 are dual to each other: every row/column of one
table can be found in the other table reversed and changed of sign. This is due to the fact that, for each r € R
and each D C F x IF, we have

min{y €F| (x,z) €D,x =y, z}
=-—max{y€cF|(xz) €D, —x=y[,z}
=-max{y€F|(x,z7) eED,x=yE,—z}.

Concerning the case analysis of imy marked as a4 of Fig 18, we must consider the following cases:

¢ =1: we clearly must have y = oo in this case;

Fe=1: inequality y-wr < —fmax must hold and thus, since wy, is negative, y > — fnax/wr, and, by (26) of
Proposition 5, y = succ(— fmax ) wr ).

Fe=n: since odd(fmax), for x, = —oo we need y to be greater or equal than (—fmax +Vy (—fmax)/Z)/wL.
If [[(_fmax +V3~ (_fmax)/z) Jwilt = [ fmax + V5~ (—fmax)/2) /wi]s, by (29) of Proposition 5, we can
conclude y = [[(—fmax +V5 (—fmax)/Z) /wi]+. On the other hand, if [[(—fmax +V3- (—fmax)/Z) Jwi]s #
[—fmax + V3~ (—fmax)/Z) /wt]t, then we can only apply (25) of Proposition 5, obtaining y = [[(—fmax +
V37 (_fmax)/z) /WLHL'

Regarding the case analysis of im, marked a as of Fig 18, we have the following cases:

7¢ =1 : in this case, we must have y = —0;

Fe=7: inequality y-wy > — fmin must hold and thus, since wy, is positive, y > — fiin/wz and, by (28) of
Proposition 5, y = succ(— fmin ) wr).

7 =n: since odd(fmin), for x, = —0 we need y to be greater or equal than — fiin /(2w ). Since in this case
[—fmin/(2-wL)]+ = [= fmin/ (2-wL)]lt = (= fimin) B4 (2-wr), by (29) of Proposition 5, we can conclude
Y%= —fmin B4 (2-wr).

As for the case analysis of im, marked as ag of Figure 18, the following cases must be studied:

7y =71: we must have y = 40 in this case;
Fo=1: itshould be y-wy < fmin and thus, since wy, is negative, y > fmin/wr and, by (28) of Proposition 5,
¥ = succ(—finin @y WL)-
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Fe=n: since odd(fmin), for x; = —0 we need y to be greater than or equal to (fmin/(Z . WL)). Since in this
case [fmin/(2-wr)lt = [fmin/(2-wL)lt = fimin @1 (2-wr), by (29) of Proposition 5 we can conclude
Y= fuin B4 (2-wr).

Finally, for the case analysis of im; marked as a7 of Fig 18, the following cases must be considered:
7¢=1: in this case we must have y = +oo;

Fe=7: itshouldbey-wy > — finax and thus, since wy, is positive, y > fmax/wr and, by (26) of Proposition 5,
¥ = succ( fnax @) wr).

Fe=n: since 0dd(finax), for x;, = +oo we need y to be greater than or equal to (fmax + V‘Z‘Jr (fmax)/Z)/wL,
If [(fimax + V5T (fimax)/2) /welt = [fmax + V5T (fmax)/2) /wel+, by (29) of Proposition 5, we can con-
clude y = [(fimax + V5" (fmax)/2) /we]+. On the other hand, if [(fimax + V5T (fmax)/2) /Wilt # [fmax +
V5 (finax)/2) /wLl1, then we can only apply (25) of Proposition 5, obtaining y 3= [ (finax + V5 (fmax)/2) /we], -

Similar arguments can be used to prove the case analyses of im,, of Figure 19 marked as ao, @19, a1 and
an.

We now analyze the case analyses of imy of Fig 18 marked as a; and a; and the ones of im, of Fig 19
marked as ag and ag, for which we can assume xz,wz, € FNR and xy, wy € FNR, and sgn(wg) = sgn(wy).
Exploiting x < y[z and x = y [z, by Proposition 4 we have

> x, ity =1J;
2 >)C+VT(X) :pred(x), if ry :T; (64)
Y >x+V3 (x)/2, if 7, = n and even(x);
>x+V3(x)/2, if 7y = n and odd(x).
<x+VHx) = suce(x), ifF, =1
<x, ifr, =1
. ' 65
7 < x+Vit(x)/2, if 7, = n and even(x); ©5)
<x+Vit(x)/2, if 7, = n-and odd(x).

Since the case z = 0 is handled separately by im; of Figure 18 and by im,, of Figure 19, we can assume z # 0.
Thanks to the splitting of Z into a positive and a negative part, the sign of z is determined. In the following,
we will prove the case analyses marked as a3+ and a;. Hence, assuming z > 0, the previous case analysis
gives us

>x/z, if 7=
) >pred(x)/z, ifFp =1 )
’ > (x+V57(x)/2)/z, if ;; =nand even(x);
> (x+ V3" (x)/2)/z, if 7 = n and odd(x);
<succe(x)/z, if 7y =
<x/z, if 7 =13
3 < (x+ V3+(x)/2)/z, if 7, = n and even(x); ©7)
< (x+ V3" (x)/2)/z, if 7, =nand odd(x).

Note that the numerator and the denominator of the previous fractions are independent. Therefore, we
can find the minimum of the fractions by minimizing the numerator and maximizing the denominator. Since
we are analyzing the case in which W = Z_., let (xz, wr,xy, wy ) as the result of function 7 of Figure 5. Hence,
by Proposition 3 and the monotonicity of ‘pred’ and ‘succ we obtain

>xp/wi, ifrp=|;
> pred(xL)/wL, ifrg =17
AN ( - oo . (68)
> (x+ V5 (x2)/2)/wr, if F, =nand even(x);
> (xp+ V5~ (x£)/2)/we, if 7y =n and odd(x);
< succ(xy)/wy, ifr, =1;
y <xy/wu, ifr, =1 69)
< (w+ V5" (xv)/2)/wy, if F, =nand even(x);
< (v +V5"(xv)/2)/wy, if F, =nand odd(x).
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We can now exploit Proposition 5 and obtain:

; def ) XLy wr, iffp=1;

a 70
Ve {succ (pred(xL) bl WL), if 7ip =1 (70)

/ der | pred(succ(xy) Brwy), i Fu =1 o
Yu XU ZHWU./ iffu :T

Indeed, if x;, # 0, then Proposition 5 applies and we have y = x; 2+ wi. On the other hand, if x; = 0, since by
hypothesis z > 0 implies w, > 0, according to IEEE 754 [24, Section 6.3], we have (x; 4y wz) = sgn(xz) -0
and, indeed, for each non-NaN, nonzero and finite w € F N [+0, 40|, sgn(xz) - 0 is the least value for y that
satisfies sgn(xz) -0 = y [l w.

Analogously, if x;, # fin, then Proposition 5 applies and we have succ (pred(xL) v, wL). On the other
hand, if x;, = fiin, succ (pred(xL) A, WL) = fmin, Which is consistent with the fact that, for each non-NaN,
nonzero and finite w € FN[40,4-00], finin is the lowest value of y that satisfies fiin =y w.

A symmetric argument justifies (71).

As before, we will consider both the cases [e/ |+ = [¢/ ]+ and [ej ], = [ef], as well as [/ [+ > [e/]+
and [¢} ], < [e/f];. Thus, when [/} ], < [¢,], by (69) and (27) of Proposition 5 we obtain y < [e;; ;. Instead,
when [e/ ] > [ef],, by (69) and (25) of Proposition 5 we obtain y 3= [¢; ], . In conclusion, for the case in
which 7y = n, since ¢, # 0 and ¢y # 0, by Proposition 5, we have

lef 1+ if even(xz) and [e/ ]+ = [e/[]1;
V= lef 1y if even(xz) and [e/ ]+ # (e[ ]+ (72)
succ([e;],), otherwise;

o
Q.

whereas, for the case in which 7, = n,
[l ifeenty) and el = el
C] N
Yu = 9 LDt if even(xy) and [ef ] # [ef]y; 73)
pred([e;f]1), otherwise.

An analogous reasoning with z < 0 allows us to obtain the case analyses marked as a3 and ag .
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