
Electronic Supplementary Material Appendices

A Filtering algorithms: Subtraction and Multiplication

A.1 Subtraction

Here we deal with constraints of the form x = y�S z.
Assume X = [x`,xu], Y = [y`,yu] and Z = [z`,zu].
Again, thanks to Proposition 2 we need not be concerned with sets of rounding modes, as any such

set S ⊆ R can always be mapped to a pair of “worst-case rounding modes” which, in addition are never
round-to-zero.

Direct Propagation. For direct propagation, we use Algorithm 6 and functions ds` and dsu, as defined in
Figure 12.

Algorithm 6 Direct projection for subtraction constraints.
Require: x = y�S z, x ∈ X = [x`,xu], y ∈ Y = [y`,yu] and z ∈ Z = [z`,zu].
Ensure: X ′ ⊆ X and ∀r ∈ S,x ∈ X ,y ∈ Y,z ∈ Z : x = y�r z =⇒ x ∈ X ′ and ∀X ′′ ⊂ X ,∃r ∈ S,y ∈ Y,z ∈ Z :

y�r z 6∈ X ′′.
1: r` := r`(S,y`,�,zu); ru := ru(S,yu,�,z`);
2: x′` := ds`(y`,zu,r`); x′u := dsu(yu,z`,ru);
3: X ′ := X ∩ [x′`,x′u];

ds`(y`,zu,r`) −∞ R− −0 +0 R+ +∞

−∞ +∞ −∞ −∞ −∞ −∞ −∞

R− +∞ y`�r` zu y` y` y`�r` zu −∞

−0 +∞ −zu a1 −0 −zu −∞

+0 +∞ −zu +0 a1 −zu −∞

R+ +∞ y`�r` zu y` y` y`�r` zu −∞

+∞ +∞ +∞ +∞ +∞ +∞ +∞

a1 =

{
−0, if r` = ↓,
+0, otherwise;

dsu(yu,z`,ru) −∞ R− −0 +0 R+ +∞

−∞ −∞ −∞ −∞ −∞ −∞ −∞

R− +∞ yu�ru z` yu yu yu�ru z` −∞

−0 +∞ −z` a2 −0 −z` −∞

+0 +∞ −z` +0 a2 −z` −∞

R+ +∞ yu�ru z` yu yu yu�ru z` −∞

+∞ +∞ +∞ +∞ +∞ +∞ −∞

a2 =

{
−0, if ru = ↓,
+0, otherwise.

Fig. 12 Direct projection of subtraction: function ds` (resp., dsu); values for y` (resp., yu) on rows, values for
zu (resp., z`) on columns.

Theorem 6 Algorithm 6 satisfies its contract.

42

is f
` (x`,z`, r̄`) −∞ R− −0 +0 R+ +∞

−∞ −∞ −∞ −∞ −∞ −∞ −∞

R− − fmax a3 x` x` a3 unsat.
−0 − fmax z` −0 −0 z` unsat.
+0 − fmax a4 a5 a4 a4 unsat.
R+ − fmax a3 x` x` a3 unsat.
+∞ − fmax a6 +∞ +∞ +∞ unsat.

e` ≡ x`+∇
n−
2 (x`)/2+ z`;

a3 =

−0, if r̄` = n, ∇
n−
2 (x`) =− fmin and x` =−z`;

x`�↑ z`, if r̄` = n, ∇
n−
2 (x`) =− fmin and x` 6=−z`;

Je`K↑, if r̄` = n, even(x`), ∇
n−
2 (x`) 6=− fmin and Je`K↑ = [e`]↑;

Je`K↓, if r̄` = n, even(x`), ∇
n−
2 (x`) 6=− fmin and Je`K↑ > [e`]↑;

succ
(
Je`K↓

)
, if r̄` = n, otherwise;

−0, if r̄` = ↓ and x` =−z`;
x`�↑ z`, if r̄` = ↓ and x` 6=−z`;
succ

(
pred(x`)�↓ z`

)
, if r̄` = ↑;

(a4,a5) =

{
(succ(z`),+0), r̄` = ↓;
(z`,−0), otherwise;

a6 =

+∞, r̄` = ↓;
succ(fmax�↓ z`), r̄` = ↑;
fmax�↑

(
∇

n+
2 (fmax)/2�↑ z`

)
, otherwise.

Fig. 13 First inverse projection of subtraction: function is f
` .

Inverse Propagation. For inverse propagation, we have to deal with two different cases depending on
which variable we are computing: the first inverse projection on y or the second inverse projection on z.

The first inverse projection of subtraction is somehow similar to the direct projection of addition. In this
case we define Algorithm 7 and functions is f

` and is f
u , as defined in Figure 13 and 14 respectively.

Algorithm 7 First inverse projection for subtraction constraints.
Require: x = y�S z, x ∈ X = [x`,xu], y ∈ Y = [y`,yu] and z ∈ Z = [z`,zu].
Ensure: Y ′ ⊆ Y and ∀r ∈ S,x ∈ X ,y ∈ Y,z ∈ Z : x = y�r z =⇒ y ∈ Y ′.
1: r̄` := r̄``(S,x`,�,z`); r̄u := r̄`u(S,xu,�,zu);
2: y′` := is f

` (x`,z`, r̄`); y′u := is f
u (xu,zu, r̄u);

3: if y′` ∈ F and y′u ∈ F then
4: Y ′ := Y ∩ [y′`,y′u];
5: else
6: Y ′ :=∅;
7: end if

Theorem 7 Algorithm 7 satisfies its contract.

The second inverse projection of subtraction is quite similar to the case of direct projection of subtraction.
Here we define Algorithm 8 and functions iss

` and iss
u, as defined in Figures 15 and 16 respectively.

Theorem 8 Algorithm 8 is correct.

Since subtraction is very closely related to addition, the proofs of Theorems 7 and 8 can be obtained
by reasoning in the same way as for the projections of addition. Moreover, it is worth noting that in order
to obtain more precise results, inverse projections for subtraction need to be intersected with maximum ULP
filtering [5], as in the case of addition.

43

is f
u (xu,zu, r̄u) −∞ R− −0 +0 R+ +∞

−∞ unsat. −∞ −∞ −∞ a9 fmax
R− unsat. a7 xu xu a7 fmax
−0 unsat. a8 a8 a8 a8 fmax
+0 unsat. zu +0 +0 zu fmax
R+ unsat. a7 xu xu a7 fmax
+∞ +∞ +∞ +∞ +∞ +∞ +∞

eu ≡ xu +∇
n+
2 (xu)/2+ zu;

a7 =

+0, if r̄u = n, ∇
n+
2 (xu) = fmin and xu =−zu;

xu�↓ zu, if r̄u = n, ∇
n+
2 (xu) = fmin and xu 6=−zu;

JeuK↓, if r̄u = n, even(xu), ∇
n+
2 (xu) 6= fmin and JeuK↓ = [eu]↓;

JeuK↑, if r̄u = n, even(xu), ∇
n+
2 (xu) 6= fmin and JeuK↓ < [eu]↓;

pred
(
JeuK↑

)
, if r̄u = n, otherwise;

pred
(
succ(xu)�↑ zu

)
, if r̄u = ↓;

+0, if r̄u = ↑ and xu =−zu;
xu�↓ zu, if r̄u = ↑ and xu 6=−zu;

a8 =

{
zu, if r̄u = ↓;
pred(zu), otherwise;

a9 =

−∞, if r̄u = ↑;
pred(zu�↑− fmax), if r̄u = ↓;
− fmax�↓

(
∇

n−
2 (− fmax)/2�↓ zu

)
, otherwise.

Fig. 14 First inverse projection of subtraction: function is f
u .

Algorithm 8 Second inverse projection for subtraction constraints.
Require: x = y�S z, x ∈ X = [x`,xu], y ∈ Y = [y`,yu] and z ∈ Z = [z`,zu].
Ensure: Z′ ⊆ Z and ∀r ∈ S,x ∈ X ,y ∈ Y,z ∈ Z : x = y�r z =⇒ z ∈ Z′.
1: r̄` := r̄r

`(S,xu,�,y`); r̄u := r̄r
u(S,x`,�,yu);

2: z′` := iss
`(y`,xu, r̄`); z′u := iss

u(yu,x`, r̄u);
3: if z′` ∈ F and z′u ∈ F then
4: Z′ := Z∩ [z′`,z′u];
5: else
6: Z′ :=∅;
7: end if

A.2 Multiplication

Here we deal with constraints of the form x= y�S z. As usual, assume X = [x`,xu], Y = [y`,yu] and Z = [z`,zu].

Direct Propagation. For direct propagation, a case analysis is performed in order to select the interval
extrema yL and zL (resp., yU and zU) to be used to compute the new lower (resp., upper) bound for x.

Firstly, whenever sgn(y`) 6= sgn(yu) and sgn(z`) 6= sgn(zu), there is no unique choice for yL and zL (resp.,
yU and zU); therefore we need to compute the two candidate lower (and upper) bounds for x and then choose
the minumum (the maximum, resp).

The choice is instead unique in all cases where the signs of one among y and z, or both of them, are
constant over the respective intervals. Function σ of Figure 7 determines the extrema of y and z useful to
compute the new lower (resp., upper) bound for y when the sign of z is constant. When the sign of y is
constant, the appropriate choice for the extrema of y and z can be determined by swapping the role of y and z
in function σ .

Once the extrema (yL,yU ,zL,zU) have been selected, functions dm` and dmu of Figure 17 are used to
find new bounds for x. It is worth noting that it is not necessary to compute new values of r` and ru for the
application of functions dm` and dmu at line 6 of Algorithm 9. This is true because, by Definition 7, the

44

iss
`(y`,xu, r̄`) −∞ R− −0 +0 R+ +∞

−∞ − fmax − fmax − fmax − fmax − fmax −∞

R− a13 a10 a11 y` a10 −∞

−0 +∞ −xu a12 −0 −xu −∞

+0 +∞ −xu a11 −0 −xu −∞

R+ +∞ a10 a11 y` a10 −∞

+∞ unsat. unsat. unsat. unsat. unsat. −∞

e` ≡ y`−
(
xu +∇

n+
2 (xu)/2

)
;

a10 =

−0, if r̄` = n, ∇
n+
2 (xu) = fmin and xu = y`;

y`�↑ xu, if r̄` = n, ∇
n+
2 (xu) = fmin and xu 6= y`;

Je`K↑, if r̄` = n, even(xu), ∇
n+
2 (xu) 6= fmin and Je`K↑ = [e`]↑;

Je`K↓, if r̄` = n, even(xu), ∇
n+
2 (xu) 6= fmin and Je`K↑ > [e`]↑;

succ
(
Je`K↓

)
, if r̄` = n, otherwise;

−0, if r̄` = ↑ and xu = y`;
y`�↑ xu, if r̄` = ↑ and xu 6= y`;
succ

(
y`�↓ succ(xu)

)
, if r̄` = ↓;

(a11,a12) =

{
(y`,−0), if r̄` = ↓;
(succ(y`),+0), otherwise;

a13 =

+∞, if r̄` = ↑;
succ(y`�↓ fmax), if r̄` = ↓;
fmax�↑

(
∇

n+
2 (fmax)/2�↑ y`

)
, otherwise.

Fig. 15 Second inverse projection of subtraction: function iss
`.

iss
u(yu,x`, r̄u) −∞ R− −0 +0 R+ +∞

−∞ +∞ unsat. unsat. unsat. unsat. unsat.
R− +∞ a14 yu a15 a14 −∞

−0 +∞ −x` +0 a15 −x` −∞

+0 +∞ −x` +0 a16 −x` −∞

R+ +∞ a14 yu a15 a14 a17
+∞ +∞ fmax fmax fmax fmax fmax

eu ≡ yu−
(
x`+∇

n−
2 (xu)/2

)
;

a14 =

+0, if r̄u = n, ∇
n−
2 (x`) =− fmin and x` = yu;

yu�↓ x`, if r̄u = n, ∇
n−
2 (x`) =− fmin and x` 6= yu;

JeuK↓, if r̄u = n, even(x`), ∇
n−
2 (x`) 6=− fmin and JeuK↓ = [eu]↓;

JeuK↑, if r̄u = n, even(xu), ∇
n−
2 (xu) 6=− fmin and JeuK↓ < [eu]↓;

pred
(
JeuK↑

)
, if r̄u = n, otherwise;

pred
(
yu�↑ pred(x`)

)
, if r̄u = ↑;

+0, if r̄u = ↓ and x` = yu;
yu�↓ x`, if r̄u = ↓ and x` 6= yu;

(a15,a16) =

{
(pred(yu),−0), if r̄u = ↓;
(yu,+0), otherwise;

a17 =

−∞, if r̄u = ↓;
pred(yu�↑ fmax), if r̄u = ↑;
− fmax�↓

(
∇

n−
2 (− fmax)/2�↓ yu

)
, otherwise.

Fig. 16 Second inverse projection of subtraction: function iss
u.

45

choice of r` (of ru, resp.) is driven by the sign of yL� zL (of yU � zU , resp.) only. Since, in this case, the sign
of yL� zL (of yU � zU , resp.) as defined at line 2 and the sign of yL� zL (of yU � zU , resp.) as defined at line 5
are the same, we do not need to compute r` and ru another time.

Algorithm 9 Direct projection for multiplication constraints.
Require: x = y�S z, x ∈ X = [x`,xu], y ∈ Y = [y`,yu] and z ∈ Z = [z`,zu].
Ensure: X ′ ⊆ X and ∀r ∈ S,x ∈ X ,y ∈ Y,z ∈ Z : x = y�r z =⇒ x ∈ X ′ and ∀X ′′ ⊂ X : ∃r ∈ S,y ∈ Y,z ∈ Z .

y�r z 6∈ X ′′.
1: if sgn(y`) 6= sgn(yu) and sgn(z`) 6= sgn(zu) then
2: (yL,yU ,zL,zU) := (y`,y`,zu,z`);
3: r` := r`(S,yL,�,zL); ru := ru(S,yU ,�,zU);
4: v` := dm`(yL,zL,r`); vu := dmu(yU ,zU ,ru);
5: (yL,yU ,zL,zU) := (yu,yu,z`,zu);
6: w` := dm`(yL,zL,r`); wu := dmu(yU ,zU ,ru);
7: x′` := min{v`,w`}; x′u := max{vu,wu};
8: else
9: if sgn(y`) = sgn(yu) then

10: (yL,yU ,zL,zU) := σ(y`,yu,z`,zu);
11: else
12: (zL,zU ,yL,yU) := σ(z`,zu,y`,yu);
13: end if
14: r` := r`(S,yL,�,zL); ru := ru(S,yU ,�,zU);
15: x′` := dm`(yL,zL,r`); x′u := dmu(yU ,zU ,ru);
16: end if
17: X ′ := X ∩ [x′`,x′u];

Theorem 9 Algorithm 9 satisfies its contract.

Inverse Propagation. For inverse propagation, Algorithm 10 partitions interval Z into the sign-homogeneous

intervals Z−
def
= Z∩ [−∞,−0] and Z+

def
= Z∩ [+0,+∞]. This is done because the sign of Z must be taken into

account in order to derive correct bounds for Y . Hence, once Z has been partitioned into sign-homogeneous
intervals, we use intervals X and Z− to obtain interval [y−` ,y

−
u], and X and Z+ to obtain [y+` ,y

+
u]. To do so, the

algorithm determines the appropriate extrema of intervals X and W = Z− or W = Z+ to be used for constraint
propagation. To this aim, function τ of Figure 5 is employed; note that the sign of W is, by construction, con-
stant over the interval. The chosen extrema are then passed as parameters to functions im` of Figure 18 and
imu of Figure 19, that compute the new, refined bounds for y, by using the inverse operation of multiplication,
i.e., division. The so obtained intervals Y ∩ [y−` ,y

−
u] and Y ∩ [y+` ,y

+
u] will be then joined with convex union,

denoted by
⊎

, to obtain Y ′.

Theorem 10 Algorithm 10 satisfies its contract.

Of course, the refinement Z′ of Z can be defined analogously.

46

dm`(yL,zL) −∞ R− −0 +0 R+ +∞

−∞ +∞ +∞ +∞ −0 −∞ −∞

R− +∞ yL�r` zL +0 −0 yL�r` zL −∞

−0 +∞ +0 +0 −0 −0 −0
+0 −0 −0 −0 +0 +0 +∞

R+ −∞ yL�r` zL −0 +0 yL�r` zL +∞

+∞ −∞ −∞ −0 +∞ +∞ +∞

dmu(yU ,zU) −∞ R− −0 +0 R+ +∞

−∞ +∞ +∞ +0 −∞ −∞ −∞

R− +∞ yU�ru zU +0 −0 yU�ru zU −∞

−0 +0 +0 +0 −0 −0 −∞

+0 −∞ −0 −0 +0 +0 +0
R+ −∞ yU�ru zU −0 +0 yU�ru zU +∞

+∞ −∞ −∞ −∞ +0 +∞ +∞

Fig. 17 Direct projection of multiplication: functions dm` and dmu.

Algorithm 10 Inverse projection for multiplication constraints.
Require: x = y�S z, x ∈ X = [x`,xu], y ∈ Y = [y`,yu] and z ∈ Z = [z`,zu].
Ensure: Y ′ ⊆ Y and ∀r ∈ S,x ∈ X ,y ∈ Y,z ∈ Z : x = y�r z =⇒ y ∈ Y ′.
1: Z− := Z∩ [−∞,−0];
2: if Z− 6=∅ then
3: W := Z−;
4: (xL,xU ,wL,wU) := τ(x`,xu,w`,wu);
5: r̄` := r̄``(S,xL,�,wL); r̄u := r̄`u(S,xU ,�,wU);
6: y−` := im`(xL,wL, r̄`); y−u := imu(xU ,wU , r̄u);
7: if y−` ∈ F and y−u ∈ F then
8: Y ′− = Y ∩ [y−` ,y

−
u];

9: else
10: Y ′− =∅;
11: end if
12: else
13: Y ′− =∅;
14: end if
15: Z+ := Z∩ [+0,+∞];
16: if Z+ 6=∅ then
17: W := Z+;
18: (xL,xU ,wL,wU) := τ(x`,xu,w`,wu);
19: r̄` := r̄``(S,xL,�,wL); r̄u := r̄`u(S,xU ,�,wU);
20: y+` := im`(xL,wL, r̄`); y+u := imu(xU ,wU , r̄u);
21: if y+` ∈ F and y+u ∈ F then
22: Y ′+ = Y ∩ [y+` ,y

+
u];

23: else
24: Y ′+ =∅;
25: end if
26: else
27: Y ′+ =∅;
28: end if
29: Y ′ := Y ′−

⊎
Y ′+;

47

im`(xL,wL) −∞ R− −0 +0 R+ +∞

−∞ fmin a4 unsat. −∞ −∞ −∞

R− fmin a−3 unsat. − fmax a+3 fmin
−0 +0 +0 +0 − fmax a5 fmin
+0 fmin a6 − fmax +0 +0 +0
R+ fmin a−3 − fmax unsat. a+3 fmin
+∞ −∞ −∞ −∞ unsat. a7 fmin

e+` ≡ (xL +∇
n−
2 (xL)/2)/wL;

a+3 =

Je+` K↑, if r̄` = n, even(xL) and Je+` K↑ = [e+`]↑;
Je+` K↓, if r̄` = n, even(xL) and Je+` K↑ > [e+`]↑;
succ

(
Je+` K↓

)
, if r̄` = n, otherwise;

xL�↑ wL, if r̄` = ↓;
succ

(
pred(xL)�↓ wL

)
, if r̄` = ↑;

e−` ≡ (xL +∇
n+
2 (xL)/2)/wL;

a−3 =

Je−` K↑, if r̄` = n, even(xL) and Je+` K↑ = [e+`]↑;
Je−` K↓, if r̄` = n, even(xL) and Je−` K↑ > [e−`]↑;
succ

(
Je−` K↓

)
, if r̄` = n, otherwise;

xL�↑ wL, if r̄` = ↑;
succ

(
succ(xL)�↓ wL

)
, if r̄` = ↓;

e1
` ≡ (− fmax +∇

n−
2 (− fmax)/2)/wL;

a4 =

+∞, if r̄` = ↑;
succ(− fmax�↓ wL), if r̄` = ↓;
Je1

`K↑, if r̄` = n and Je1
`K↑ = [e1

`]↑;
Je1

`K↓, if r̄` = n, otherwise;

(a5,a6) =

(−0, succ(fmin�↓ wL)), if r̄` = ↓;
(succ(− fmax�↓ wL), −0), if r̄` = ↑;
(− fmin�↑ (2 ·wL), fmin�↑ (2 ·wL)), if r̄` = n;

e2
` ≡ (fmax +∇

n+
2 (fmax)/2)/wL;

a7 =

+∞, if r̄` = ↓;
succ(fmax�↓ wL), if r̄` = ↑;
Je2

`K↑, if r̄` = n and Je2
`K↑ = [e2

`]↑;
Je2

`K↓, if r̄` = n, otherwise.

Fig. 18 Inverse projection of multiplication: function im`.

48

imu(xU ,wU) −∞ R− −0 +0 R+ +∞

−∞ +∞ +∞ +∞ unsat. a9 − fmin
R− − fmin a−8 fmax unsat. a+8 − fmin
−0 − fmin a10 fmax −0 −0 −0
+0 −0 −0 −0 fmax a11 − fmin
R+ − fmin a−8 unsat. fmax a+8 − fmin
+∞ − fmin a12 unsat. +∞ +∞ +∞

e+u ≡ (xU +∇
n+
2 (xU)/2)/wU ;

a+8 =

Je+u K↓, if r̄u = n, even(xU) and Je+u K↑ = [e+u]↑;
Je+u K↑, if r̄u = n, even(xU) and Je+u K↑ > [e+u]↑;
pred

(
Je+u K↑

)
, if r̄u = n, otherwise;

pred
(
succ(xU)�↑ wU

)
, if r̄u = ↓;

xU �↓ wU , if r̄u = ↑;

e−u ≡ (xU +∇
n−
2 (xU)/2)/wU ;

a−8 =

Je−u K↓, if r̄u = n, even(xU) and Je−u K↑ = [e−u]↑;
Je−u K↑, if r̄u = n, even(xU) and Je−u K↑ > [e−u]↑;
pred

(
Je−u K↑

)
, if r̄u = n, otherwise;

pred
(
pred(xU)�↑ wU

)
, if r̄u = ↑;

xU �↓ wU , if r̄u = ↓;

e1
u ≡ (− fmax +∇

n−
2 (− fmax)/2)/wU ;

a9 =

−∞, if r̄u = ↑;
pred(− fmax�↑ wU), if r̄u = ↓;
Je1

uK↓ if r̄u = n and Je1
uK↓ = [e1

u]↓;
Je1

uK↑ if r̄u = n, otherwise;

(a10,a11) =

(+0, pred(fmin�↑ wU)), if r̄u = ↓;
(pred(− fmin�↑ wU), +0), if r̄u = ↑;
(− fmin�↓ (2 ·wU), fmin�↓ (2 ·wU)), if r̄u = n;

e2
u ≡ (fmax +∇

n+
2 (fmax)/2)/wU ;

a12 =

−∞, if r̄u = ↓;
pred(fmax�↑ wU), if r̄u = ↑;
Je2

uK↓ if r̄u = n and Je2
uK↓ = [e2

u]↓;
Je2

uK↑ if r̄u = n, otherwise.

Fig. 19 Inverse projection of multiplication: function imu.

49

B Proofs of Results

B.1 Proofs of Results in Section 2

Proof (of Proposition 1) In order to prove (5), we first prove that [x]↓ ≤ x. To this aim, consider the following
cases on x ∈ R\{0}:
− fmax ≤ x < 0 ∨ fmin ≤ x : by (2) we have [x]↓ = max{z ∈ F | z≤ x}, hence [x]↓ ≤ x;
0 < x < fmin : by (2) we have [x]↓ =−0≤ x;
x <− fmax : by (2) we have [x]↓ =−∞≤ x.

We now prove that x≤ [x]↑. Consider the following cases on x ∈ R\{0}:
x > fmax : by (1) we have [x]↑ =+∞ and thus x≤ [x]↑ holds;
x≤− fmin ∨ 0 < x≤ fmax : by (1) we have [x]↑ = min{z ∈ F | z≥ x}, hence x≤ [x]↑ holds;
− fmin < x < 0 : by (1) we have [x]↑ =−0 hence x≤ [x]↑ holds.

In order to prove (6), consider the following cases on x ∈ R\{0}:
x > 0 : by (3) we have [x]0 = [x]↓ ≤ [x]↑;
x < 0 : by (3) we have [x]↓ ≤ [x]↑ = [x]0.

In order to prove (7), consider the following cases on x ∈ R\{0}:
− fmax ≤ x≤ fmax : we have the following cases∣∣[x]↓− x

∣∣< ∣∣[x]↑− x
∣∣∨ (∣∣[x]↓− x

∣∣= ∣∣[x]↑− x
∣∣)∧ even

(
[x]↓
)
: by (4), we have [x]n = [x]↓ ≤ [x]↑;∣∣[x]↓− x

∣∣> ∣∣[x]↑− x
∣∣∨ (∣∣[x]↓− x

∣∣= ∣∣[x]↑− x
∣∣∧¬even

(
[x]↓
))

: by (4) we have [x]↓ ≤ [x]↑ = [x]n.
− fmax > x : we have the following cases
−2emax (2−2−p)< x <− fmax: by (4) we have [x]↓ ≤ [x]↑ = [x]n.
x≤−2emax (2−2−p): by (4) we have [x]n = [x]↓ ≤ [x]↑;

fmax < x : we have the following cases
2emax (2−2−p)> x > fmax: by (4) we have [x]n = [x]↓ ≤ [x]↑;
x≥ 2emax (2−2−p): by (4) we have [x]↓ ≤ [x]↑ = [x]n.

In order to prove (8), let us compute −[−x]↑. There are the following cases:

−x > fmax : this implies that x <− fmax and, by (1), [−x]↑ =+∞; hence, by (2), −[−x]↑ =−∞ = [x]↓;
−x≤− fmin ∨ 0 <−x≤ fmax : this implies that x ≥ fmin ∨ − fmax ≥ x > 0 and, by (1), we have [−x]↑ =

min{z ∈ F | z≥−x}; therefore, by (2), −[−x]↑ =−min{z ∈ F | z≥−x}= max{z ∈ F | z≤ x}= [x]↓,
− fmin <−x < 0 : this implies that 0 < x < fmin and, by (1), [−x]↑ =−0; hence, by (2),−[−x]↑ =+0 = [x]↓.

B.2 Proofs of Results in Section 3

Proof (Rest of the proof of Proposition 2) We prove the second part of Proposition 2, regarding rounding
mode selectors for inverse propagators. Before doing so, we need to prove the following result. Let � ∈
{�,�,�,�}, and let r and s be two IEEE 754 rounding modes, such that for any a,b ∈ F,

a�r b4 a�s b.

Moreover, let x,z ∈ F, and let ȳs be the minimum ys ∈ F such that x = ys�s z. Then, for any yr ∈ F such that
x = yr�r z we have

ȳs�r z4 ȳs�s z

= x

= yr�r z.

This leads us to write
[ȳs ◦ z]r 4 [yr ◦ z]r

which, due to the isotonicity of all IEEE 754 rounding modes, implies

ȳs ◦ z4 yr ◦ z.

Finally, if operator ‘◦’ is isotone we have
ȳs 4 yr,

50

which implies that ȳs is the minimum y ∈ F such that x = y�r z or x = y�s z. On the other hand, if ‘◦’ is
antitone we have

ȳs < yr,

and ȳs is the maximum y ∈ F such that x = y�r z or x = y�s z. An analogous result can be proved regarding
the upper bound for y in case the operator is isotone, and regarding the lower bound for y in case it is antitone.

The above claim allows us to prove the following. Assume first that � is isotone with respect to y in
x = y� z. Let ŷ↑ be the minimum y↑ ∈ F such that x = y↑�↑ z = [y↑� z]↑, let ŷn be the minimum yn ∈ F such
that x = yn �n z = [yn � z]n and, finally, let ŷ↓ be the minimum y↓ ∈ F such that x = y↓�↓ z = [y↓� z]↓. We
will prove that

ŷ↑ 4 ŷn 4 ŷ↓.

Since we assumed that � is isotone with respect to y in x = y� z, the rounding mode that gives the minimal
y solution of x = [y� z]r is the one that yields a bigger (w.r.t. 4 order) floating point number, as we proved
before. We must now separately treat the following cases:

y� z 6= 0 : By (7), we have [y� z]↓ ≤ [y� z]n ≤ [y� z]↑. Since in this case y� z 6= 0, we have that [y� z]↓ 4
[y� z]n 4 [y� z]↑. This implies ŷ↑ 4 ŷn 4 ŷ↓.

y� z = 0 : In this case, [y� z]↓ 4 [y� z]n = [y� z]↑. This implies ŷ↑ 4 ŷn 4 ŷ↓.

Moreover, let ỹ↑ be the maximum y↑ ∈ F such that x = y↑�↑ z = [y↑� z]↑, let ỹn be the maximum yn ∈ F such
that x = yn �n z = [yn� z]n and, finally, let ỹ↓ be the maximum y↓ ∈ F such that x = y↓�↓ z = [y↓� z]↓. We
will prove the fact that

ỹ↑ 4 ỹn 4 ỹ↓.

Since we assumed that � is isotone with respect to y in x = y� z, the rounding mode that gives a maximum y
solution of x = y� zr is the one that gives a smaller (w.r.t. 4 order) floating point number. We must now deal
with the following cases:

y� z 6= 0 : By (7), we have [y� z]↓ ≤ [y� z]n ≤ [y� z]↑. Since in this case y� z 6= 0, we have [y� z]↓ 4
[y� z]n 4 [y� z]↑. This implies ỹ↑ 4 ỹn 4 ỹ↓.

y� z = 0 : In this case [y� z]↓ 4 [y� z]n = [y� z]↑. This implies ỹ↑ 4 ỹn 4 ỹ↓.

The inequalities ŷ↑ 4 ŷn 4 ŷ↓ and ỹ↑ 4 ỹn 4 ỹ↓ allow us to claim that the rounding mode selectors r̂`(S,�,b)
and r̂u(S,b) are correct when� is isotone with respect to y. In a similar way it is possible to prove that, in case
� is antitone with respect to argument y, the above-mentioned rounding mode selectors can be exchanged:
r̂u(S,b) can be used to obtain the lower bound for y, while r̂`(S,�,b) can be used to obtain the upper bound.

Note that, in general, the roundTowardZero rounding mode is equivalent to roundTowardPositive if the
result of the rounded operation is negative, and to roundTowardNegative if it is positive. The only case in
which this is not true is when the result is +0 and the operation is a sum or a subtraction: this value can come
from the rounding toward negative infinity of a strictly positive exact result, or the sum of +0 and −0, which
behaves like roundTowardPositive, yielding +0. This case must be treated separately, and it is significant
only in r̂`(S,�,b), which is used when seeking for the lowest possible value of the variable to be refined that
yields +0.

Definition 8 also contains selectors that can choose between rounding mode selectors r̂`(S,b) and r̂u(S,b)
by distinguishing whether the operator is isotone or antitone with respect to the operand y to be derived
by propagation; they take the result of the operation b and the known operand a into account. In particu-
lar, r̄``(S,b,�,a), r̄`u(S,b,�,a) choose the appropriate selector for the leftmost operand, and r̄r

`(S,b,�,a),
r̄r

u(S,b,�,a) are valid for the rightmost one.

Proof (of Proposition 3) We first prove (15). By Definition 9, we have the following cases:

x` =− fmax: Then,

x`+∇
n−
2 (x`)/2 =− fmax +

(
− fmax− succ(− fmax)

)
/2

=−2emax (2−21−p)+
(
−2emax (2−21−p)+2emax (2−21−p−21−p)

)
/2

=−2emax (2−21−p +1−2−p−1+21−p)

=−2emax (2−2−p)

On the other hand, consider any x such that x` < x ≤ xu. Since x ∈ F, this implies that succ(− fmax) ≤
x≤ xu. In this case

x+∇
n−
2 (x)/2 = (x+pred(x))/2.

51

Since ‘pred’ is monotone, the minimum can be found when x = succ(− fmax). In this case, we have that

(x+pred(x))/2 = (succ(− fmax)− fmax)/2

=
(
−2emax (2−21−p−21−p)−2emax (2−21−p)

)
/2

=
(
−2emax (2−21−p−21−p +2−21−p)

)
/2

=−2emax (2−3 ·2−p)

> x`+∇
n−
2 (x`)/2

=−2emax (2−2−p).

Hence we can conclude that minx`≤x≤xu

(
x+∇

n−
2 (x)/2

)
= x`+∇

n−
2 (x`)/2.

x` >− fmax: In this case
x+∇

n−
2 (x)/2 = (x+pred(x))/2.

Since ‘pred’ is monotone, minx`≤x≤xu

(
x+∇

n−
2 (x`)/2

)
= x`+∇

n−
2 (x`)/2.

We now prove (16). By Definition 9, we have the following cases:

xu = fmax: Then,

xu +∇
n+
2 (xu)/2 = fmax +

(
fmax−pred(fmax)

)
/2

= 2emax (2−21−p)+
(
2emax (2−21−p)−2emax (2−21−p−21−p)

)
/2

= 2emax (2−21−p +1−2−p−1+21−p)

= 2emax (2−2−p).

Now, consider any x such that x` ≤ x < xu. Since x ∈ F, this implies that x` ≤ x≤ pred(fmax). In this case

x+∇
n+
2 (x)/2 = (x+ succ(x))/2.

Since ‘succ’ is monotone, the maximum can be found when x = pred(fmax). In this case, we have that

(x+ succ(x))/2 = (pred(fmax)+ fmax)/2

=
(
2emax (2−21−p−21−p)+2emax (2−21−p)

)
/2

=
(
2emax (2−21−p−21−p +2−21−p)

)
/2

= 2emax (2−3 ·2−p)

> xu +∇
n+
2 (xu)/2

= 2emax (2−2−p).

Hence we can conclude that maxx`≤x≤xu

(
x+∇

n+
2 (x)/2

)
= xu +∇

n+
2 (xu)/2.

xu < fmax: In this case
x+∇

n+
2 (x)/2 = (x+ succ(x))/2.

Since ‘succ’ is monotone, maxx`≤x≤xu

(
x+∇

n+
2 (x)/2

)
= xu +∇

n+
2 (xu)/2.

We now introduce and prove Proposition 6, which contains properties of the rounding error functions
that are only needed in the proof of Proposition 4.

Proposition 6 For each r ∈ R\{0} we have

0≤ r− [r]↓ < ∇
↓([r]↓) (43)

∇
↑([r]↓)< r− [r]↑ ≤ 0 (44)

∇
n−
2
(
[r]n
)
/2≤ r− [r]n ≤ ∇

n+
2
(
[r]n
)
/2, (45)

where the two inequalities of (45) are strict if [r]n is odd.

52

Proof Suppose r ∈R was rounded down to x ∈ F. Then the error that was committed, r−x, is a nonnegative
extended real that is strictly bounded from above by ∇↓(x) = succ(x)−x, that is, 0≤ r−x < succ(x)−x, for
otherwise we would have r ≥ succ(x) or r < x and, in both cases r would not have been rounded down to x.
Note that ∇↓(fmax) = +∞, coherently with the fact that the error is unbounded from above in this case.

Dually, if r ∈ R was rounded up to x ∈ F the error that was committed, r− x, is a nonpositive extended
real that is strictly bounded from below by ∇↑(x) = pred(x)−x, that is, pred(x)−x < r−x≤ 0 since, clearly,
pred(x)< r≤ x. Note that ∇↑(− fmax) =−∞, coherently with the fact that the error is unbounded from below
in this case.

Suppose now that r ∈ R was rounded-to-nearest to x ∈ F. Then the error that was committed, r− x, is
such that ∇

n−
2 (x)/2≤ r− x≤ ∇

n+
2 (x)/2, where the two inequalities are strict if x is odd.

In fact, if x /∈ {−∞,− fmax}, then ∇
n−
2 (x)/2 =

(
pred(x)− x

)
/2≤ r− x, for otherwise r would be closer

to pred(x). If x =−∞, then ∇
n−
2 (x)/2 =+∞ and r− x =+∞, so ∇

n−
2 (x)/2≤ r− x holds. If x =− fmax, then

∇
n−
2 (x)/2 =

(
− fmax− succ(− fmax)

)
/2

=
(
−2emax (2−21−p)+2emax (2−21−p−21−p)

)
/2

=
(
−2emax (2−21−p−2+21−p +21−p)

)
/2

=−2emax 21−p/2

=−2emax+1−p/2

=−2emax−p

and thus, considering that − fmax is odd, ∇
n−
2 (x)/2 < r− x is equivalent to

∇
n−
2 (x)/2+ x =−

(
2emax−p +2emax (2−21−p)

)
=−2emax (2−p +2−21−p)

=−2emax (2−2−p)

< r,

which must hold, for otherwise r would have been rounded to −∞ [24, Section 4.3.1].
Suppose now x /∈ {+∞, fmax}: then ∇

n+
2 (x)/2 =

(
succ(x)−x

)
/2≥ r−x, for otherwise r would be closer

to succ(x). If x =+∞, then ∇
n+
2 (x)/2 =−∞ and r− x =−∞, and thus ∇

n+
2 (x)/2≥ r− x holds. If x = fmax,

then

∇
n+
2 (x)/2 =

(
fmax−pred(fmax)

)
/2

=
(
2emax (2−21−p)−2emax (2−21−p−21−p)

)
/2

=
(
2emax (2−21−p−2+21−p +21−p)

)
/2

= 2emax 21−p/2

= 2emax+1−p/2

= 2emax−p

and thus, considering that fmax is odd, ∇
n+
2 (x)/2 > r− x is equivalent to

∇
n+
2 (x)/2+ x =

(
2emax−p +2emax (2−21−p)

)
= 2emax (2−p +2−21−p)

= 2emax (2−2−p)

> r,

which must hold, for otherwise r would have been rounded to +∞.

Proof (of Proposition 4) In order to prove (17), first observe that x4 y�↓ z implies that x≤ y�↓ z. Assume
first that y�↓ z∈R+∪R−. In this case, y�↓ z = [y◦z]↓. By inequality (5) of Proposition 1, y�↓ z = [y◦z]↓ ≤
y◦ z. Therefore, x≤ y�↓ z = [y◦ z]↓ ≤ y◦ z. Then, assume that y�↓ z =+∞. In this case, since the rounding
towards minus infinity never rounds to +∞, it follows that y�↓ z = y ◦ z. Hence, x ≤ y ◦ z = +∞, holds.
Assume now that y�↓ z =−∞. In this case it must be that x =−∞ then x≤ y◦ z, holds. Finally, assume that

53

y�↓ z = +0 or y�↓ z = −0. In any case x 4 +0 that implies x ≤ 0. On the other hand, we have two cases,
y◦ z 6= 0 or y◦ z = 0. For the first case, by Definition 5, 0≤ y◦ z < fmin, then x≤ y◦ z, holds. For the second
case, since x≤ 0 then x≤ y◦ z.

In order to prove (18), as before observe that x 4 y�↑ z implies that x ≤ y�↑ z. Note that x+∇↑(x) =
pred(x). So we are left to prove pred(x) < y ◦ z. Assume now that 0 < y ◦ z ≤ fmax or x ≤ − fmin. Moreover,
note that it cannot be the case that pred(x)≥ y◦ z, otherwise, by Definition 5, y�↑ z≤ pred(x) and, therefore,
x ≤ y�↑ z would not hold. Then, in this case, we can conclude pred(x) < y ◦ z. Now, assume that − fmin <
y ◦ z < 0. In this case y�↑ z = −0. Hence, x ≤ 0. By Definition 4, pred(x) ≤ − fmin. Hence, pred(x) ≤ y ◦ z,
holds. Next, assume y ◦ z > fmax. In this case y�↑ z = ∞. Hence, x ≤ ∞. By Definition 4, pred(x) ≤ fmax.
Hence pred(x)< y◦z, holds. Next assume y◦z = 0. In this case y�↑ z =+0 or y�↑ z =−0. Hence, x≤ 0. By
Definition 4, pred(x)≤− fmin. Hence pred(x)< y◦ z, holds. Finally assume y◦ z = ∞. In this case y�↑ z = ∞.
Hence x4 ∞ and therefore x≤ ∞. By Definition 4, pred(x)≤ fmax. Hence pred(x)< y◦ z, holds.

In order to prove (19), as the previous two cases, note that x 4 y�n z implies that x ≤ y�n z. First
observe that for x 6= −∞, x + ∇

n−
2 (x)/2 < x. Indeed, assume first that x 6= − fmax, then, by Definition 9,

∇
n−
2 (x) = x− succ(x). Hence x+∇

n−
2 (x)/2 = x+(x− succ(x))/2 = (3x− succ(x))/2. Since x < succ(x), we

can conclude that x+∇
n−
2 (x)/2 < x. Assume now that x = − fmax. By Definition 9, ∇

n−
2 (x) = pred(x)− x.

Hence x+∇
n−
2 (x)/2 = x+(pred(x)− x)/2 = (x+pred(x))/2. Since x > pred(x), we can conclude that x+

∇
n−
2 (x)/2 < x.

Now, by Definition 5, we have to consider the following cases for x�n y ∈ R+ ∪R−:

y�n z = [y◦ z]↓. In this case, by inequality (5) of Proposition 1, x+∇
n−
2 (x)/2 < x≤ y�n z = [y◦ z]↓ ≤ y◦ z.

Therefore, x+∇
n−
2 (x)/2 < y◦ z, holds.

y�n z = [y ◦ z]↑. Assume first that x < y�n z. In this case, by Definition 5, since x ∈ F and x < y�n z, it
must be the case that x < y ◦ z. Then, we can conclude that x+∇

n−
2 (x)/2 < x < y ◦ z. Therefore, x+

∇
n−
2 (x)/2 < y◦z, holds. Assume now that x = y�n z and even(x). In this case, by Proposition 6, we have

that ∇
n−
2
(
[y◦ z]n

)
/2≤ (y◦ z)− [y◦ z]n. Since, in this case x = y�n z, we obtain ∇

n−
2 (x)/2≤ (y◦ z)− x.

Hence, x+∇
n−
2 (x)/2≤ y◦z. If odd(x), by Proposition 6, we have that ∇

n−
2
(
[y◦z]n

)
/2 < (y◦z)− [y◦z]n.

Hence, x+∇
n−
2 (x)/2 < y◦ z.

Consider now the case that y�n z =+0 or y�n z =−0. If y◦ z 6= 0, then y�n z = [y◦ z]↓ or y�n z = [y◦ z]↑.
In this case we can reason as above. Assume then that y◦ z = 0. Since x 4+0 or x 4−0 implies that x ≤ 0.
Therefore, we can conclude that x+∇

n−
2 (x)< x ≤ 0 holds. Assume now that y�n z =+∞. If y◦ z 6= ∞ then

y�n z = [y ◦ z]↑. In this case we can reason as above. On the other hand if y ◦ z = +∞ then x+∇
n−
2 (x) ≤ ∞

holds.
In order to prove (20), remember that x< y�↓ z implies that x≥ y�↓ z. Note that x+∇↓(x) = succ(x).

So we are left to prove succ(x) > y ◦ z. Assume now that − fmax < y ◦ z < 0 or fmin < y ◦ z ≤ fmax. Note
that it cannot be the case that succ(x) ≤ y ◦ z, otherwise, by Definition 5, y�↓ z ≥ succ(x) and x ≥ y�↓ z
would not hold. Then, in this case, we can conclude that succ(x) > y◦ z. Next, assume that 0 < y◦ z < fmin.
In this case y�↓ z = +0. Hence, x ≥ 0. By Definition 4, succ(x) ≥ fmin. Hence succ(x) ≥ y◦ z, holds. Next,
assume y ◦ z < − fmax. In this case y�↓ z = −∞. Hence x ≥ −∞. By Definition 4, succ(x) ≥ − fmax. Hence
succ(x)> y◦ z, holds. Next assume y◦ z = 0. In this case y�↓ z =+0 or y�↓ z =−0. In any case, x≥ 0. By
Definition 4, succ(x)≥ fmin. Hence succ(x)> y◦z, holds. Finally assume y◦z=−∞. In this case y�↓ z=−∞.
Hence, since x<−∞, x≥−∞. By Definition 4, succ(x)≥− fmax. Hence, succ(x)> y◦ z, holds.

In order to prove (21), as before, observe that x < y�↑ z implies that x ≥ y�↑ z. Assume first that
y�↑ z ∈ R+ ∪R−. In this case, y�↑ z = [y ◦ z]↑. By (5) from Proposition 1, y�↑ z = [y ◦ z]↑ ≥ y ◦ z. Then,
assume that y�↑ z =−∞. In this case, since the rounding towards plus infinity never rounds to−∞, it follows
that y�↑ z = y ◦ z. Hence, x ≥ y ◦ z = −∞, holds. Assume now that y�↑ z = +∞. In this case, x = +∞ then
x ≥ y◦ z, holds. Finally, assume that y�↑ z =+0 or y�↑ z =−0. In any case x <−0 that implies x ≥ 0. On
the other hand, we have two cases, y◦ z 6= 0 or y◦ z = 0. For the first case, by Definition 5, − fmin < y◦ z < 0,
then x≥ y◦ z, holds. For the second case, since x≥ 0 then x≥ y◦ z.

In order to prove (22), note that x < y�n z implies that x ≥ y�n z. First observe that for x 6= +∞,
x+∇

n+
2 (x)/2 > x. Indeed, assume first that x 6= fmax, then, by Definition 9, ∇

n+
2 (x) = x−pred(x). Hence x+

∇
n+
2 (x)/2= x+(x−pred(x))/2= (3x−pred(x))/2. Since x > pred(x), we can conclude that x+∇

n+
2 (x)/2>

x. Assume now that x = fmax. By Definition 9, ∇
n+
2 (x) = succ(x)− x. Hence x+∇

n+
2 (x)/2 = x+(succ(x)−

x)/2 = (x+ succ(x))/2. Since x < succ(x), we can conclude that x+∇
n+
2 (x)/2 > x.

By Definition 5, we have to consider the following cases for x�n y ∈ R+ ∪R−:

y�n z = [y◦ z]↑. In this case, by inequality (5) of Proposition 1, x+∇
n+
2 (x)/2 > x≥ y�n z = [y◦ z]↑ ≥ y◦ z.

Therefore, x+∇
n+
2 (x)/2 > y◦ z, holds.

y�n z = [y◦z]↓. Assume first that x > y�n z. In this case, by Definition 5, since x ∈ F and x > y�n z, it must
be the case that x > y◦ z. Hence, as in the previous case, by inequality (5) Proposition 1, x+∇

n+
2 (x)/2 >

54

x > y◦ z. Therefore, x+∇
n+
2 (x)/2 > y◦ z, holds. Assume now that x = y�n z and even(x). In this case,

by Proposition 6, we have that ∇
n+
2
(
[y ◦ z]n

)
/2 ≥ (y ◦ z)− [y ◦ z]n. Since, in this case x = y�n z, we

obtain ∇
n+
2 (x)/2 ≥ (y ◦ z)− x. Hence, x+∇

n+
2 (x)/2 ≥ y ◦ z. If odd(x), by Proposition 6, we have that

∇
n+
2
(
[y◦ z]n

)
/2 > y◦ z− [y◦ z]n. Hence, x+∇

n+
2 (x)/2 > y◦ z.

Consider now the case that y�n z =+0 or y�n z =−0. If y◦z 6= 0, then y�n z = [y◦z]↓ or y�n z = [y◦z]↑. In
this case we can reason as above. Assume now that y◦z= 0. Since x<+0 or x<−0 implies that x≥ 0, we can
conclude that x+∇

n+
2 (x)/2 > x≥ 0 holds. Assume now that y�n z =−∞. If y◦ z 6=−∞ then y�n z = [y◦ z]↓.

In this case we can reason as above. On the other hand if y◦ z =−∞ then x+∇
n+
2 (x)/2≥−∞ holds.

Proof (of Proposition 5) We first prove (25). By inequality (5) from Proposition 1, e≥ [e]↓. Hence, x≥ [e]↓.
Since by hypothesis, e ∈ EF is an expression that evaluates on R to a nonzero value, we have three cases:

[e]↓ 6= 0 and x 6= 0: In this case x≥ [e]↓ implies x< [e]↓.
[e]↓ =+0: In this case, 0 < e < fmin. Then, it must be the case that x > 0. Therefore x< [e]↓ holds.
x = 0: In this case x must be strictly greater than e since e ∈ EF evaluates to a nonzero value. Therefore,

e < 0. Hence, by Definition 5, [e]↓ ≤− fmin. Then x< [e]↓ holds.

In all cases, we have that x< [e]↓. By Definition 10, we conclude that x< JeK↓.
We now prove (26). By inequality (5) from Proposition 1, as in the previous case, e ≥ [e]↓. Hence,

x > [e]↓. Since by hypothesis e ∈ EF is an expression that evaluates on R to a nonzero value, we have three
cases:

[e]↓ 6= 0 and x 6= 0: In this case x > [e]↓ implies x� [e]↓.
[e]↓ =+0: In this case, 0 < e < fmin. Hence, x > 0. Therefore x� [e]↓ holds.
x = 0: In this case x must be strictly greater than e since e ∈ EF evaluates to a nonzero value. Therefore,

e < 0. Hence, by Definition 5, [e]↓ ≤− fmin. Then x� [e]↓ holds.

In all cases, we have that x � [e]↓. By Definition 10, we conclude that x � JeK↓. Then, by Definition 4, we
have the following cases on JeK↓:

JeK↓ = fmax: In this case succ(JeK↓) = +∞. Since x � JeK↓, this implies that x =+∞. Then x < succ(JeK↓),
holds.

− fmax ≤ JeK↓ <− fmin or fmin ≤ JeK↓ < fmax: In this case succ(JeK↓) = min{y ∈ F | y > JeK↓ }. Since x >
JeK↓, x ∈ {y ∈ F | y > JeK↓ }. Hence, x< succ(JeK↓), holds.

JeK↓ =+0 or JeK↓ =−0: In this case succ(JeK↓) = fmin. Since x > JeK↓, this implies that x ≥ fmin. Hence,
x< succ(JeK↓), holds.

JeK↓ =− fmin: In this case succ(JeK↓) =−0. Since x > JeK↓ =− fmin, x<−0. Hence, x< succ(JeK↓), holds.
JeK↓ =−∞: In this case succ(JeK↓) = − fmax. Since x > JeK↓ = −∞, x < − fmax. Hence, x < succ(JeK↓),

holds.

We now prove (27). By inequality (5) from Proposition 1, e≤ [e]↑. Hence, like before, x≤ [e]↑. Since by
hypothesis e ∈ EF is an expression that evaluates on R to a nonzero value, we have three cases:

[e]↑ 6= 0 and x 6= 0: In this case x≤ [e]↑ implies x4 [e]↑.
[e]↑ =−0: In this case, − fmin < e < 0. Hence, x < 0. Therefore x4 [e]↑ holds.
x = 0: In this case it must be the case that x is strictly smaller than e, since e ∈ EF evaluates to a nonzero

value. Therefore, e > 0. Hence, by Definition 5, [e]↑ ≥ fmin. Then x4 [e]↑ holds.

In any case, x4 [e]↑ holds. By Definition 10, we conclude that x4 JeK↑.
Next we prove (28). By, again, inequality (5) from Proposition 1, e ≤ [e]↑. Hence, x < [e]↑. Since by

hypothesis e ∈ EF is an expression that evaluates on R to a nonzero value, we have three cases:

[e]↑ 6= 0 and x 6= 0: In this case x < [e]↑ implies x≺ [e]↑.
[e]↑ =−0: In this case, − fmin < e < 0. Hence, x < 0. Therefore x≺ [e]↑ holds.
x = 0: In this case it must be the case that x is strictly smaller than e, since e ∈ EF evaluates to a nonzero

value. Therefore, e > 0. Hence, by Definition 5, [e]↑ ≥ fmin. Then x≺ [e]↑ holds.

In any case, x ≺ [e]↑ holds. By Definition 10, we conclude that x ≺ JeK↑. By Definition 4, we have the
following cases on JeK↑:

JeK↑ =− fmax: In this case pred(JeK↑) =−∞. Since x≺ JeK↑, this implies that x =−∞. Then x4 pred(JeK↑),
holds.

fmin < JeK↑ ≤ fmax or − fmax < JeK↑ ≤− fmin: In this case pred(JeK↑) = max{y ∈ F | y < JeK↑ }. Since x <
JeK↑, x ∈ {y ∈ F | y < JeK↑ }. Hence, x4 pred(JeK↑), holds.

JeK↑ =+0 or JeK↑ =−0: In this case pred(JeK↑) = − fmin. Since x < JeK↑, this implies that x ≤ − fmin.
Hence, x4 pred(JeK↑), holds.

55

JeK↑ = fmin : In this case pred(JeK↑) = +0. Since x < JeK↑ = fmin, x4+0. Hence, x4 pred(JeK↑), holds.
JeK↓ =+∞ : In this case pred(JeK↑) = fmax. Since x < JeK↑ = ∞, x4 fmax. Hence, x4 pred(JeK↑), holds.

In order to prove (29) we first want to prove that x< [e]↑. To this aim consider the following cases for e:

e > fmax: In this case [e]↑ =+∞. On the hand, x≥ e> fmax. Since x∈F implies that x=+∞. Hence x< [e]↑.
e≤− fmin or 0 < e≤ fmax: In this case [e]↑ = min{z ∈ F | z≥ e}. Since x≥ e, x ∈ {z ∈ F | z≥ e}. Hence,

x≥ [e]↑, holds and also x< [e]↑.
− fmin < e < 0: In this case [e]↑ =−0. Since x≥ e and x ∈ F, x<−0, holds.
e =−∞: In this case [e]↑ =−∞ and x<−∞ holds.

Since by hypothesis [e]↑ = JeK↑, we can conclude that x< JeK↑ holds.
In order to prove (30) we first want to prove that x4 [e]↓. To this aim consider the following cases for e:

e <− fmax: In this case [e]↓ = −∞. On the hand, x ≤ e < − fmax. Since x ∈ F implies that x = −∞. Hence
x4 [e]↓.

e≥ fmin or − fmax ≤ e < 0: In this case [e]↓ = max{z ∈ F | z≤ e}. Since x≤ e, x ∈ {z ∈ F | z≤ e}. Hence,
x≤ [e]↓, holds and also x4 [e]↓.

0 < e < fmin: In this case [e]↓ =+0. Since x≤ e and x ∈ F, x4+0, holds.
e =+∞: In this case [e]↓ = ∞ and x4+∞ holds.

Since by hypothesis [e]↓ = JeK↓, we can conclude that x4 JeK↓ holds.

B.3 Proofs of Results in Section 4.3

Proof (of Theorem 3) Given the constraint x= y�S z with x∈ X = [x`,xu], y∈Y = [y`,yu] and z∈ Z = [z`,zu],
Algorithm 3 computes a new refining interval X ′ for variable x. Note that X ′ = [x′`,x

′
u]∩X , which assures us

that X ′ ⊆ X .
As for the proof of Theorem 10, it is easy to verify that yL and wL (resp., yU and wU) computed using

function τ of Figure 5, are the boundaries of Y and W upon which x touches its minimum (resp., maxi-
mum). Moreover, remember that by Proposition 2, following the same reasoning of the proofs of the previous
theorems, we can focus on finding a lower bound for yL�r` wL and an upper bound for yU �ru wU .

We will now comment only on the most critical entries of function dd` of Figure 6: let us briefly discuss
the cases in which yL =−∞ and wL =±∞.

wL =−∞. In this case, by function τ of Figure 5 (see the first three cases), we have yL = yu = −∞, while
either wL = w` or wL = wu. Since by the IEEE 754 Standard [24] dividing ±∞ by ±∞ is an invalid
operation, we are left to consider the case wL = w`. In this case, recall that by the IEEE 754 Standard
[24], dividing −∞ by a finite negative number yields +∞. Hence, we can conclude x` =+∞.

wL =+∞. By function τ of Figure 5 (see the fourth and last case), we have yL = y` =−∞, while wL = w` =
+∞. Hence, x` =−0, since dividing a negative finite number by +∞ gives −0.

A similar reasoning applies for the cases yL =+∞, wL =±∞. Dually, the only critical entries of function ddu
of Figure 6 are those in which yU =±∞ and wU =±∞ and can be handled analogously.

We are left to prove that ∀X ′′ ⊂ X ,∃r ∈ S,y ∈ Y,z ∈ Z : y�r z 6∈ X ′′. Let us focus on the lower bound
x+` proving that, if [x+` ,x

+
`] 6= ∅, then there exist r ∈ S,y ∈ Y,z ∈ Z such that y�r z = x+` . Consider the

particular values yL, z` = wL and r` that correspond to x+` in Algorithm 3, i.e. yL and wL and r` are such
that dd`(yL,wL,r`) = x+` . By Algorithm 3, such yL and wL must exist. First consider the cases in which
yL 6∈ (R− ∪R+) or wL 6∈ (R− ∪R+). A brute-force verification was successfully conducted, in this cases,
to prove that yL �r` wL = x+` . For the cases in which yL ∈ (R− ∪R+) and wL ∈ (R− ∪R+) we have, by
definition of dd` of Figure 6, that x+` = yL �r` wL. Remember that, by Proposition 2, there exists r ∈ S such
that yL�r` wL = yL�r wL. Since yL ∈Y and wL ∈ Z, we can conclude that x+` 6∈ X ′′ implies that yL�r wL 6∈ X ′′,
for any X ′′ ⊆ X ′. An analogous reasoning applies to x−` , to x+u and x−u . This allows us to prove the optimality
claim.

Proof (of Theorem 4) Given the constraint x= y�S z with x∈ X = [x`,xu], y∈Y = [y`,yu] and z∈ Z = [z`,zu],
Algorithm 4 computes a new, refining interval Y ′ for variable y. It returns either Y ′ := (Y ∩ [y−` ,y

−
u])
⊎
(Y ∩

[y+` ,y
+
u]) or Y ′ =∅: hence, in both cases, we are sure that Y ′ ⊆ Y .

By Proposition 2, we can focus on finding a lower bound for y∈Y by exploiting the constraint y�r̄` z= x
and an upper bound for y by exploiting the constraint y�r̄u z = x.

In order to compute correct bounds for y, Algorithm 5 first splits the interval of z into the sign-homogeneous
intervals Z− and Z+, since knowing the sign of z is crucial to determine correct bounds for y. Hence, for

56

W = Z− (and, analogously, for W = Z+), it calls function σ of Figure 7 to determine the appropriate extrema
of intervals X and W to be used to compute the new lower and upper bounds for y. As we did in the proof
of Theorem 9, it is easy to verify that xL and wL (resp., xU and wU), computed using function σ of Figure 7,
are the boundaries of X and W upon which y touches its minimum (resp., maximum). Functions id f

` of Fig-
ure 8 and id f

u of Figure 9 are then used to find the new bounds for y. The so obtained intervals for y will be
eventually joined using convex union to obtain the refining interval for y.

We will now prove the non-trivial parts of the definitions of functions id f
` and id f

u . Concerning the case
analysis of id f

` (Fig 8) marked as a4, the result changes depending on the selected rounding mode:
r̄` = ↑ : we clearly must have y =+∞, according to the IEEE 754 Standard [24];
r̄` = ↓ : it must be y/wL <− fmax and thus, since wL is negative, y>− fmax ·wL and, by (26) of Proposition 5,

y< succ(− fmax�↓ wL).
r̄` = n : since odd(fmax), for wL =−∞ we need y to be greater than or equal to

(
− fmax +∇

n−
2 (− fmax)/2

)
·

wL. If J
(
− fmax +∇

n−
2 (− fmax)/2

)
·wLK↑ = [

(
− fmax +∇

n−
2 (− fmax)/2

)
·wL]↑, by (29) of Proposition 5,

we can conclude y< J
(
− fmax+∇

n−
2 (− fmax)/2

)
·wLK↑. On the other hand, if J

(
− fmax+∇

n−
2 (− fmax)/2

)
·

wLK↑ 6= [
(
− fmax + ∇

n−
2 (− fmax)/2

)
· wL]↑, then we can only apply (25) of Proposition 5, obtaining

y< J
(
− fmax +∇

n−
2 (− fmax)/2

)
·wLK↓.

The case analysis of id f
` (Fig 8) marked as a5 can be explained as follows:

r̄` = ↓ : we must have y =+∞, according to the IEEE 754 Standard [24];
r̄` = ↑ : inequality y/wL > fmax must hold and thus, since wL is positive, y > fmax ·wL and, by (26) of

Proposition 5, y< succ(fmax�↓ wL).
r̄` = n : since odd(fmax), for xL = +∞ we need y to be greater than or equal to

(
fmax +∇

n+
2 (fmax)/2

)
·wL.

If J
(

fmax +∇
n+
2 (fmax)/2

)
·wLK↑ = [

(
fmax +∇

n+
2 (fmax)/2

)
·wL]↑, by (29) of Proposition 5, we can con-

clude y< J
(

fmax +∇
n+
2 (fmax)/2

)
·wLK↑. On the other hand, if J

(
fmax +∇

n+
2 (fmax)/2

)
·wLK↑ 6= [

(
fmax +

∇
n+
2 (fmax)/2

)
·wL]↑ then, we can only apply (25) of Proposition 5, obtaining y< J

(
fmax+∇

n+
2 (fmax)/2

)
·wLK↓.

The explanation for the case analysis of id f
` (Fig 8) marked as a6 is the following:

r̄` = ↑ : the lowest value of y that yields xL =+0 with wL ∈ R− is clearly y =−0;
r̄` = ↓ : inequality y/wL < fmin should hold and thus, since wL is negative, y > fmin ·wL and, by (26) of

Proposition 5, y< succ(fmin�↓ wL).
r̄` = n : since odd(fmin), for xL = +0 we need y to be greater than or equal to (fmin ·wL)/2. Since in this

case J(fmin ·wL)/2K↑ = [(fmin ·wL)/2]↑ = (fmin�↑ wL)/2, by (29) of Proposition 5, we can conclude
y< (fmin�↑ wL)/2.

Concerning the case analysis of id f
` (Fig 8) marked as a7, we must distinguish between the following

cases:
r̄` = ↓ : considering xL =−0 and wL ∈ R+, we clearly must have y =−0;
r̄` = ↑ : it should be y/wL >− fmin and thus, since wL is positive, y>− fmin ·wL and, by (26) of Proposition 5,

y< succ(− fmin�↓ wL).
r̄` = n : since odd(fmin), for xL = −0 we need y be to greater than or equal to

(
− fmin ·wL

)
/2. Since in

this case J
(
− fmin ·wL

)
/2K↑ = [

(
− fmin ·wL

)
/2]↑ = (− fmin�↑ wL)/2, by (29) of Proposition 5, we can

conclude y< (− fmin�↑ wL)/2.

Similar arguments can be used to prove the case analyses of id f
u of Fig 9 marked as a9, a10, a11 and a12.

We will now analyze the case analyses of id f
` of Fig 8 marked as a−3 and a+3 , and the ones of id f

u of
Fig 9 marked as a−8 and a+8 . We can assume, of course, X = [x`,xu], Y = [y`,yu] and Z = [w`,wu], where
x`,xu,w`,wu ∈ F∩R, x` ≤ xu, w` ≤ wu and sgn(w`) = sgn(wu). Exploiting x 4 y� z and x < y� z, by
Proposition 4, we have

y/z

≥ x, if r̄` = ↓;
> x+∇↑(x) = pred(x), if r̄` = ↑;
≥ x+∇

n−
2 (x)/2, if r̄` = n and even(x);

> x+∇
n−
2 (x)/2, if r̄` = n and odd(x).

(46)

y/z

< x+∇↓(x) = succ(x), if r̄u = ↓;
≤ x, if r̄u = ↑;
≤ x+∇

n+
2 (x)/2, if r̄u = n and even(x);

< x+∇
n+
2 (x)/2, if r̄u = n and odd(x).

(47)

57

Since the case z = 0 is handled separately by id f
` of Fig 8 and by id f

u of Fig 9, we can assume z 6= 0. Thanks
to the split of Z into a positive and a negative part, the sign of z is determinate. In the following, we will prove
the case analyses marked as a+3 and a+8 , hence assuming z > 0. From the previous case analysis we can derive

y

≥ x · z, if r̄` = ↓;
> pred(x) · z, if r̄` = ↑
≥
(
x+∇

n−
2 (x)/2

)
· z, if r̄` = n and even(x);

>
(
x+∇

n−
2 (x)/2

)
· z, if r̄` = n and odd(x);

(48)

y

< succ(x) · z, if r̄u = ↓;
≤ x · z, if r̄u = ↑;
≤
(
x+∇

n+
2 (x)/2

)
· z, if r̄u = n and even(x);

<
(
x+∇

n+
2 (x)/2

)
· z, if r̄u = n and odd(x).

(49)

Note that the members of the product are independent. Therefore, we can find the minimum of the
product by minimizing each member of the product. Since we are analyzing the case in which W = Z+, let
(xL,xU ,wL,wU) as defined in function σ of Figure 7, replacing the role of y with z and the role of z with x.
Hence, by Proposition 3 and the monotonicity of ‘pred’ and ‘succ’ we obtain

y

≥ xL ·wL, if r̄` = ↓;
> pred(xL) ·wL, if r̄` = ↑
≥
(
xL +∇

n−
2 (xL)/2

)
·wL, if r̄` = n and even(x);

>
(
xL +∇

n−
2 (xL)/2

)
·wL, if r̄` = n and odd(x);

(50)

y

< succ(xU) ·wU , if r̄u = ↓;
≤ xU ·wU , if r̄u = ↑;
≤
(
xU +∇

n+
2 (xU)/2

)
·wU , if r̄u = n and even(x);

<
(
xU +∇

n+
2 (xU)/2

)
·wU , if r̄u = n and odd(x).

(51)

We can now exploit Proposition 5 and obtain:

y′`
def
=

{
xL�↑ wL, if r̄` = ↓;
succ

(
pred(xL)�↓ wL

)
, if r̄` = ↑;

(52)

y′u
def
=

{
pred

(
succ(xU)�↑ wU

)
, if r̄u = ↓;

xU �↓ wU , if r̄u = ↑.
(53)

Indeed, if r̄` = ↑ and xL 6= 0, then part (29) of Proposition 5 applies and we have y< xL�↑ wL. On the other
hand, if xL = 0, since by hypothesis z > 0 implies wL > 0, according to IEEE 754 [24, Section 6.3], we have
xL�↑wL = sgn(xL) ·0 and, indeed, for each non-NaN, nonzero and finite w ∈ F∩ [+0,+∞], sgn(xL) ·0 is the
least value for y that satisfies sgn(xL) ·0 = y�↓ w.

Analogously, if r̄` = ↑ and xL 6= fmin, then Proposition 5 applies and we have succ
(
pred(xL)�↓ wL

)
.

On the other hand, if xL = fmin, in this case, succ
(
pred(xL)�↓ wL

)
= fmin which is consistent with the fact

that, for each non-NaN, nonzero and finite w ∈ F∩ [+0,+∞], fmin is the lowest value for y that satisfies
fmin = y�↑ w.

A symmetric argument justifies (53).
As before, we need to approximate the values of the expressions e+` =

(
xL +∇

n−
2 (xL)/2

)
·wL and e+u =(

xU +∇
n+
2 (xU)/2

)
·wU . We leave this as an implementation choice, thus taking into account the case Je+` K↑ =

[e+`]↑ and Je+u K↓ = [e+u]↓ as well as Je+` K↑ > [e+`]↑ and Je+u K↓ < [e+u]↓. Therefore, when Je+u K↓ < [e+u]↓ by (51)
and (27) of Proposition 5 we obtain y4 Je+u K↑, while, when Je+` K↓ > [e+`]↓ by (51) and (25) of Proposition 5
we obtain y< Je+` K↓.

Thus, for the case in which r̄` = n, since e+u 6= 0 and e+` 6= 0, by Proposition 5, we have

y′`
def
=

Je+` K↑, if even(xL) and Je+` K↑ = [e+`]↑;
Je+` K↓, if even(xL) and Je+` K↑ 6= [e+`]↑;
succ

(
Je+` K↓

)
, otherwise;

(54)

58

whereas, for the case in which r̄u = n,

y′u
def
=

Je+u K↓, if even(xU) and Je+u K↓ = [e+u]↓;
Je+u K↑, if even(xU) and Je+u K↓ 6= [e+u]↓;
pred

(
Je+u K↑

)
, otherwise.

(55)

An analogous reasoning, but with z < 0, allows us to obtain the case analyses marked as a−3 and a−8 .

Proof (of Theorem 5) Given the constraint x= y�S z with x∈ X = [x`,xu], y∈Y = [y`,yu] and z∈ Z = [z`,zu],
Algorithm 5 finds a new, refined interval Z′ for variable z.

Since it assigns either Z′ := (Z∩ [z−` ,z
−
u])
⊎
(Z∩ [z+` ,z

+
u]) or Z′ =∅, in both cases we are sure that Z′ ⊆ Z.

By Proposition 2, as in the previous proofs, we can focus on finding a lower bound for z ∈ Z by exploiting
the constraint y�r̄` z = x and an upper bound for z by exploiting the constraint y�r̄u z = x.

We first need to split interval X into the sign-homogeneous intervals X− and X+, because knowing the
sign of x is crucial for determining correct bounds for z. Hence, for V = X− (and, analogously, for V = X+)
function τ of Figure 5 determines the appropriate interval extrema of Y and V to be used to compute the new
lower and upper bounds for z. As in the previous proofs (see, for example, proof of Theorem 10), it is easy
to verify that yL and vL (resp., yU and vU) computed using function τ of Figure 5 are the boundaries of Y and
V upon which z touches its minimum (resp., maximum). Functions ids

` of Figure 10 and ids
u of Figure 11 are

then used to find the new bounds for z. The so obtained intervals for z will be then joined with convex union
in order to obtain the refining interval for z.

We will prove the most important parts of the definitions of ids
` (Figure 10) and ids

u (Figure 11) only, start-
ing with the case analysis marked as a4. Depending on the rounding mode in effect, the following arguments
are given:

r̄` = ↓ : in this case, the only possible way to obtain −0 as the result of the division is having z =+∞ (with
y ∈ R−);

r̄` = ↑ : it should be yL/z >− fmin and thus, since yL and xL are negative, we can conclude that z is positive.
Thus, yL >− fmin · z implies yL/− fmin < z, and by (26) of Proposition 5, z< succ(zL�↓− fmin).

r̄` = n : since odd(− fmin), for vL = −0 we need yL/z ≥ (− fmin +∇
n+
2 (− fmin)/2) = (− fmin + fmin/2) =

− fmin/2. As before, since yL and vL are negative, we can conclude that z is positive: hence yL ≥
(− fmin/2) ·z. Therefore, z≥ yL/(− fmin/2) = z≥ (yL/− fmin) ·2. Since in this case J(yL/− fmin) ·2K↑ =
[(yL/− fmin) ·2]↑ = (yL�↑− fmin) ·2, by (29) of Proposition 5, we can conclude y< (yL�↑− fmin) ·2.

As for the case analysis of ids
` (Figure 10) marked as a5, we must distinguish between the following

cases:

r̄` = ↑ : we must have z =+∞ in order to obtain x =+0;
r̄` = ↓ : inequality yL/z < fmin must hold and thus, since positive yL and vL imply a positive z, z > yL/ fmin

and, by (26) of Proposition 5, z< succ(yL�↓ fmin).
r̄` = n : since odd(fmin), for vL =+0 we need yL/z≤ fmin/2. As z is positive in this case, (yL/ fmin) ·2≤ z.

Since J(yL/ fmin) · 2K↑ = [(yL/ fmin) · 2]↑ = (yL �↑ fmin) · 2, by (29) of Proposition 5, we can conclude
y< (yL�↑ fmin) ·2.

Concerning the case analysis of ids
` (Fig 10) marked as a6, we must distinguish between the following

cases:

r̄` = ↓ : the lowest value of z that gives x =+∞ with y ∈ R− is z =−0;
r̄` = ↑ : inequality yL/z > fmax must hold; since yL is negative and vL is positive, z must be negative, and

therefore yL < fmax · z. Hence, yL/ fmax < z. By (26) of Proposition 5, we obtain z< succ(yL�↓ fmax).
r̄` = n : since odd(fmax), for vL =+∞ we need yL/z≥ (fmax+∇

n+
2 (fmax)/2). As before, since wL is negative

and vL is positive, we can conclude that z is negative, and, therefore, yL ≤ (fmax +∇
n+
2 (fmax)/2) · z

holds. As a consequence, yL/(fmax +∇
n+
2 (fmax)/2)≤ z. If JyL/(fmax +∇

n+
2 (fmax)/2)K↑ = [yL/(fmax +

∇
n+
2 (fmax)/2)]↑, by (29) of Proposition 5, we can conclude z < JyL/(fmax +∇

n+
2 (fmax)/2)K↑. On the

other hand, if JyL/(fmax +∇
n+
2 (fmax)/2)K↑ 6= [yL/(fmax +∇

n+
2 (fmax)/2)]↑ then, we can only apply (25)

of Proposition 5, obtaining z< JyL/(fmax +∇
n+
2 (fmax)/2)K↓.

Regarding the case analysis of ids
` (Fig 10) marked as a7, we have the following cases:

r̄` = ↑ : the lowest value of z that yields x =−∞ with y ∈ R+ is z =−0;
r̄` = ↓ : inequality yL/z <− fmax must hold and thus, since a positive yL and a negative vL imply that the sign

of z is negative, yL >− fmax · z. Hence, yL/− fmax < z. By (26) of Proposition 5, z< succ(yL�↓− fmax).

59

r̄` = n : since odd(− fmax), for vL =−∞ we need yL/z≤− fmax +∇
n−
2 (− fmax)/2. Since z in this case is neg-

ative, we obtain the inequality z≥ yL/(− fmax +∇
n−
2 (− fmax)/2). If JyL/

(
− fmax +∇

n−
2 (− fmax)/2

)
K↑ =

[yL/
(
− fmax+∇

n−
2 (− fmax)/2

)
]↑, by (29) of Proposition 5, we can conclude y< JyL/

(
− fmax+∇

n−
2 (− fmax)/2

)
K↑.

On the other hand, if JyL/
(
− fmax +∇

n−
2 (− fmax)/2

)
K↑ 6= [yL/

(
− fmax +∇

n−
2 (− fmax)/2

)
]↑, then we can

only apply (25) of Proposition 5, obtaining y< JyL/
(
− fmax +∇

n−
2 (− fmax)/2

)
K↓.

Similar arguments can be used to prove the case analyses of function ids
u of Figure 11 marked as a9, a10,

a11 and a12.
We will now analyze the case analyses of ids

` of Figure 10 marked as a−3 and a+3 , and the ones of ids
u

of Figure 9 marked as a−8 and a+8 . In this proof, we can assume yL,vL ∈ R− ∪R+, yU ,vU ∈ R− ∪R+ and
sgn(vL) = sgn(vU). First, note that the argument that leads to (48) and (49) starting from x 4 y� z and
x< y� z is in common with the proof of Theorem 4.

Provided that interval X is split into intervals X+ and X−, it is worth discussing the reasons why it is
not necessary to partition also Y directly in Algorithm 5. Assume Y = [−a,b] with a,b > 0 and consider
the partition of Y into two sign-homogeneus intervals Y ∩ [−∞,−0] and Y ∩ [+0,+∞], as usual. Note that the
values−0∈Y ∩ [−∞,−0] = [−a,−0] and the values +0∈Y ∩ [+0,+∞] = [+0,b] can never be the boundaries
of Y upon which z touches its minimum (resp., maximum). This is because y will be the numerator of fractions
(see expressions (56) and (57)). Moreover, by the definition of functions ids

` of Fig 10 and ids
u of Fig 11, it

easy to verify that the partition of Y would not prevent the interval computed for y from being equal to the
empty set. That is, if ids

`(yL,vL, r̄`) = unsat. or ids
u(yU ,vU , r̄u) = unsat., then partitioning also Y into sign-

homogeneus intervals and then applying the procedure of Algorithm 5 to the two distinct intervals results
again into an empty refining interval for z.

Hence, to improve efficiency, Algorithm 5 does not split interval Y into sign-homogeneous intervals.
However, in this proof it is necessary to partition Y into intervals Y− and Y+ in order to determine the correct
formulas for lower and upper bounds for z. In the following, for the sake of simplicity, we will analyze the
special case X+ and Y = Y+, so that Y does not need to be split because it is already a sign-homogeneous
interval. The remaining cases in which Y is sign-homogeneous as well as those in which it is not can be
derived analogously. To sum up, in this case we assume x≥ 0 and y≥ 0, and therefore z > 0.

Now, we need to prove the cases marked as a+3 and a+8 . The case analysis of (46) and (47) yields (48)
and (49). Remember that the case x = ±0 is handled separately by functions ids

` of Figure 10 and ids
u of

Figure 11, hence assuming x > 0, we obtain

z

≤ y/x, if r̄u = ↓;
< y/pred(x), if r̄u = ↑ and x 6= fmin;
≤ fmax, if r̄u = ↑ and x = fmin;
≤ y/

(
x+∇

n−
2 (x)/2

)
, if r̄u = n and even(x);

< y/
(
x+∇

n−
2 (x)/2

)
, if r̄u = n and odd(x);

(56)

z

> y/succ(x), if r̄` = ↓ and x 6=− fmin;
≥− fmax, if r̄` = ↓ and x =− fmin;
≥ y/x, if r̄` = ↑;
≥ y/

(
x+∇

n+
2 (x)/2

)
, if r̄` = n and even(x);

> y/
(
x+∇

n+
2 (x)/2

)
, if r̄` = n and odd(x).

(57)

Since the members of the divisions are independent, we can find the minimum of said divisions by
minimizing each one of their members. Let (yL,yU ,vL,vU) be as returned by function τ of Figure 5. By
Proposition 3 and the monotonicity of ‘pred’ and ‘succ’ we obtain

z

≤ yU/vU , if r̄u = ↓;
< yU/pred(vU), if r̄u = ↑ and vU 6= fmin;
≤ fmax, if r̄u = ↑ and vU = fmin;
≤ yU/

(
vU +∇

n−
2 (vU)/2

)
, if r̄u = n and even(vU);

< yU/
(
vU +∇

n−
2 (vU)/2

)
, if r̄u = n and odd(vU);

(58)

z

> yL/succ(vL), if r̄` = ↓ and vL 6=− fmin;
≥− fmax, if r̄` = ↓ and vL =− fmin;
≥ yL/vL, if r̄` = ↑;
≥ yL/

(
vL +∇

n+
2 (vL)/2

)
, if r̄` = n and even(vL);

> yL/
(
vL +∇

n+
2 (vL)/2

)
, if r̄` = n and odd(vL).

(59)

60

We can now exploit Proposition 5 and obtain:

z′`
def
=

{
yL�↑ vL, if r̄` = ↑;
succ

(
yL�↓ succ(vL)

)
, if r̄` = ↓ and vL 6=− fmin;

(60)

z′u
def
=

{
pred

(
yU �↑ pred(vU)

)
, if r̄u = ↑ and vU 6= fmin;

yU �↓ vU , if r̄u = ↓.
(61)

Since yL 6= 0, then yL/succ(vL) 6= 0. Hence, Proposition 5 applies and we have z < yL �↑ vL if r̄` = ↑ and
z< succ

(
yL/succ(vL)

)
if r̄` = ↓ and vL 6=− fmin. Analogously, since yU 6= 0, then yU/pred(vL) 6= 0. Hence,

by Proposition 5 we obtain (61).
Note that, since division by zero is not defined on real numbers, we had to separately address the case

r̄u = ↑ and x = fmin in (56), and the case r̄` = ↓ and x =− fmin in (57). Division by zero is, however, defined
on IEEE 754 floating-point numbers. Indeed, if we evaluate the second case of (60) with vL = − fmin, we
obtain succ(yL�↓ succ(− fmin)) =− fmax, which happens to be the correct value for z′`, provided yL > 0. The
same happens for (61). Therefore, there is no need for a separate treatment when variable x takes the values
± fmin.

As before, we need to approximate the values of the expressions e+u
def
= yU/

(
vU +∇

n−
2 (vU)/2

)
and e+`

def
=

yL/
(
vL +∇

n+
2 (vL)/2

)
. Thus, when Je+u K↓ < [e+u]↓ by (51) and (27) of Proposition 5 we obtain y 4 Je+u K↑,

while, when Je+` K↓ > [e+`]↓ by (51) and (25) of Proposition 5 we obtain y< Je+` K↓. Thus, for the case where
r̄` = n, since e+u 6= 0 and e+` 6= 0, by Proposition 5, we have

y′`
def
=

Je+` K↑, if even(vL) and Je+` K↑ = [e+`]↑;
Je+` K↓, if even(vL) and Je+` K↑ 6= [e+`]↑;
succ

(
Je+` K↓

)
, otherwise;

(62)

whereas, for the case in which r̄u = n,

y′u
def
=

Je+u K↓, if even(vU) and Je+u K↓ = [e+u]↓;
Je+u K↑, if even(vU) and Je+u K↓ 6= [e+u]↓;
pred

(
Je+u K↑

)
, otherwise.

(63)

An analogous reasoning allows us to prove the case analyses marked as a−3 and a−8 .

Proof (of Theorem 9) Given the constraint x = y�S z with x∈ X = [x`,xu], y∈Y = [y`,yu] and z∈ Z = [z`,zu],
then X ′ = [x′`,x

′
u]∩X . Hence, we are sure that X ′ ⊆ X .

It should be immediate to verify that function σ of Figure 7, related to the case sgn(y`) = sgn(yu),
chooses the appropriate interval extrema yL,yU ,zL,zU , necessary for computing bounds for x. Indeed, note
that such choice is completely driven by the sign of the resulting product. Analogously, the correct interval
extrema yL,yU ,zL,zU related to the case sgn(z`) = sgn(zu) can be determined by applying function σ of
Figure 7, but swapping the role of y and z. Hence, if the sign of y or of z is constant (see the second part of
Algorithm 9) function σ of Figure 7 finds the appropriate extrema for y and z to compute the bound for x.

Concerning the cases sgn(y`) = sgn(z`) =−1 and sgn(yu) = sgn(zu) = 1 (first part of Algorithm 9), note
that we have only two possibilities for the interval extrema yL and zL, that are y` and zu or yu and z`. Since
the product of yL and zL will have a negative sign in both cases, the right extrema for determining the lower
bound x′` have to be chosen by selecting the smallest product of yL and zL. Analogously, for yU and zU there
are two possibilities: y` and z` or yu and zu. Since the product of yU and zU will have a positive sign in both
cases, the appropriate extrema for determining the upper bound x′u have to be chosen as the biggest product
of yU and zU .

Remember that by Proposition 2, following the same reasoning as in the previous proofs, it suffices to
find a lower bound for yL�r` zL and an upper bound for yU �ru zU .

We now comment on some critical case analyses of function dm` of Figure 17. Consider, for example,
when yL = ±∞ and zL = ±0. In particular, we analyze the case in which yL = −∞ and zL = ±0. Note that
yL =−∞ implies y` =−∞. Assume, first, that zL =+0. Recall that by the IEEE 754 Standard [24] ±∞�±0
is an invalid operation. However, since y` =−∞, we have two cases:

yu ≥− fmax : note that, in this case, − fmax�+0 =−0;
yu =−∞ : in this case, zL must correspond to zu (see the last three cases of function σ). Since −∞� z for

z < 0 results in +∞, we can conclude that −0 is a correct lower bound for x.

61

A similar reasoning applies for the cases yL =+∞, zL =±0. Dually, the only critical entries of function
dmu of Figure 17 are those in which yU = ±∞ and zU = ±0. In these cases we can reason in a similar way,
too.

We are left to prove that ∀X ′′ ⊂ X : ∃r ∈ S,y ∈ Y,z ∈ Z . y�r z 6∈ X ′′. Let us focus on the lower bound
x′`, proving that there exist values r ∈ S,y ∈ Y,z ∈ Z such that y�r z = x′`. Consider the particular values
of yL, zL and r` that correspond to the value of x′` chosen by Algorithm 9, that is yL, zL and r` are such
that dm`(yL,zL,r`) = x′`. By Algorithm 9, such values of yL and zL must exist. First, consider the cases
in which yL 6∈ (R− ∪R+) or zL 6∈ (R− ∪R+). In these cases, a brute-force verification was successfully
conducted to verify that y�r` z = x′`. For the cases in which yL ∈ (R−∪R+) and zL ∈ (R−∪R+) we have, by
definition of dm` of Figure 17, that x′` = yL�r` zL. Remember that, by Proposition 2, there exist r′ ∈ S such
that yL�r` zL = yL�r′ zL. Since yL ∈ Y and zL ∈ Z, we can conclude that x′` 6∈ X ′′ implies that y′L�r′ zL 6∈ X ′′.
An analogous reasoning allows us to conclude that ∃r ∈ S for which the following holds: x′u 6∈ X ′′ implies
yU �r zU 6∈ X ′′.

Proof (of Theorem 10) Given the constraint x= y�S z with x∈X = [x`,xu], y∈Y = [y`,yu] and z∈ Z = [z`,zu],
Algorithm 10 computes Y ′, a new and refined interval for variable y.

First, note that either Y ′ := (Y ∩ [y−` ,y
−
u])
⊎
(Y ∩ [y+` ,y

+
u]) or Y ′ = ∅, hence, in both cases, we are sure

that Y ′ ⊆ Y holds.
By Proposition 2, we can focus on finding a lower bound for y∈Y by exploiting the constraint y�r̄` z = x

and an upper bound for y ∈ Y by exploiting the constraint y�r̄u z = x.
Now, in order to compute correct bounds for y, we first need to split the interval of z into the sign-

homogeneous intervals Z− and Z+, because it is crucial to be sure of the sign of z. As a consequence, for
W = Y− (and, analogously, for W = Y+) function τ of Figure 5 picks the appropriate interval extrema of X
and W to be used to compute the new lower and upper bounds for y. It is easy to verify that the values of
xL and wL (resp., xU and wU) computed using function τ of Figure 5 are the boundaries of X and W upon
which y touches its minimum (resp., maximum). Functions im` of Figure 18 and imu of Figure 19 are then
employed to find the new bounds for y. The so obtained intervals for y are then joined using convex union
between intervals, in order to obtain the refining interval for y.

Observe that functions im` of Fig 18 and imu of Fig 19 are dual to each other: every row/column of one
table can be found in the other table reversed and changed of sign. This is due to the fact that, for each r ∈ R
and each D⊆ F×F, we have

min
{

y ∈ F
∣∣ (x,z) ∈ D,x = y�r z

}
=−max

{
y ∈ F

∣∣ (x,z) ∈ D,−x = y�r z
}

=−max
{

y ∈ F
∣∣ (x,z) ∈ D,x = y�r−z

}
.

Concerning the case analysis of im` marked as a4 of Fig 18, we must consider the following cases:

r̄` = ↑ : we clearly must have y =+∞ in this case;
r̄` = ↓ : inequality y ·wL < − fmax must hold and thus, since wL is negative, y > − fmax/wL and, by (26) of

Proposition 5, y< succ(− fmax�↓ wL).
r̄` = n : since odd(fmax), for xL =−∞ we need y to be greater or equal than

(
− fmax +∇

n−
2 (− fmax)/2

)
/wL.

If J
(
− fmax+∇

n−
2 (− fmax)/2

)
/wLK↑ = [− fmax+∇

n−
2 (− fmax)/2

)
/wL]↑, by (29) of Proposition 5, we can

conclude y< J
(
− fmax+∇

n−
2 (− fmax)/2

)
/wLK↑. On the other hand, if J

(
− fmax+∇

n−
2 (− fmax)/2

)
/wLK↑ 6=

[− fmax +∇
n−
2 (− fmax)/2

)
/wL]↑, then we can only apply (25) of Proposition 5, obtaining y< J

(
− fmax +

∇
n−
2 (− fmax)/2

)
/wLK↓.

Regarding the case analysis of im` marked a a5 of Fig 18, we have the following cases:

r̄` = ↓ : in this case, we must have y =−0;
r̄` = ↑ : inequality y ·wL > − fmin must hold and thus, since wL is positive, y > − fmin/wL and, by (28) of

Proposition 5, y< succ(− fmin�↓ wL).
r̄` = n : since odd(fmin), for xL =−0 we need y to be greater or equal than− fmin/(2 ·wL). Since in this case

J− fmin/(2 ·wL)K↑ = [− fmin/(2 ·wL)]↑ = (− fmin)�↑ (2 ·wL), by (29) of Proposition 5, we can conclude
y<− fmin�↑ (2 ·wL).

As for the case analysis of im` marked as a6 of Figure 18, the following cases must be studied:

r̄` = ↑ : we must have y =+0 in this case;
r̄` = ↓ : it should be y ·wL < fmin and thus, since wL is negative, y > fmin/wL and, by (28) of Proposition 5,

y< succ(− fmin�↓ wL).

62

r̄` = n : since odd(fmin), for xL = −0 we need y to be greater than or equal to
(

fmin/(2 ·wL)
)
. Since in this

case J fmin/(2 ·wL)K↑ = [fmin/(2 ·wL)]↑ = fmin �↑ (2 ·wL), by (29) of Proposition 5 we can conclude
y< fmin�↑ (2 ·wL).

Finally, for the case analysis of im` marked as a7 of Fig 18, the following cases must be considered:

r̄` = ↓ : in this case we must have y =+∞;
r̄` = ↑ : it should be y ·wL >− fmax and thus, since wL is positive, y > fmax/wL and, by (26) of Proposition 5,

y< succ(fmax�↓ wL).
r̄` = n : since odd(fmax), for xL = +∞ we need y to be greater than or equal to

(
fmax +∇

n+
2 (fmax)/2

)
/wL.

If J
(

fmax +∇
n+
2 (fmax)/2

)
/wLK↑ = [fmax +∇

n+
2 (fmax)/2

)
/wL]↑, by (29) of Proposition 5, we can con-

clude y< J
(

fmax +∇
n+
2 (fmax)/2

)
/wLK↑. On the other hand, if J

(
fmax +∇

n+
2 (fmax)/2

)
/wLK↑ 6= [fmax +

∇
n+
2 (fmax)/2

)
/wL]↑, then we can only apply (25) of Proposition 5, obtaining y< J

(
fmax+∇

n+
2 (fmax)/2

)
/wLK↓.

Similar arguments can be used to prove the case analyses of imu of Figure 19 marked as a9, a10, a11 and
a12.

We now analyze the case analyses of im` of Fig 18 marked as a−3 and a+3 and the ones of imu of Fig 19
marked as a−8 and a+8 , for which we can assume xL,wL ∈ F∩R and xU ,wU ∈ F∩R, and sgn(w`) = sgn(wu).
Exploiting x4 y� z and x< y� z, by Proposition 4 we have

y · z

≥ x, if r̄` = ↓;
> x+∇↑(x) = pred(x), if r̄` = ↑;
≥ x+∇

n−
2 (x)/2, if r̄` = n and even(x);

> x+∇
n−
2 (x)/2, if r̄` = n and odd(x).

(64)

y · z

< x+∇↓(x) = succ(x), if r̄u = ↓;
≤ x, if r̄u = ↑;
≤ x+∇

n+
2 (x)/2, if r̄u = n and even(x);

< x+∇
n+
2 (x)/2, if r̄u = n and odd(x).

(65)

Since the case z = 0 is handled separately by im` of Figure 18 and by imu of Figure 19, we can assume z 6= 0.
Thanks to the splitting of Z into a positive and a negative part, the sign of z is determined. In the following,
we will prove the case analyses marked as a+3 and a+8 . Hence, assuming z > 0, the previous case analysis
gives us

y

≥ x/z, if r̄` = ↓;
> pred(x)/z, if r̄` = ↑
≥
(
x+∇

n−
2 (x)/2

)
/z, if r̄` = n and even(x);

>
(
x+∇

n−
2 (x)/2

)
/z, if r̄` = n and odd(x);

(66)

y

< succ(x)/z, if r̄u = ↓;
≤ x/z, if r̄u = ↑;
≤
(
x+∇

n+
2 (x)/2

)
/z, if r̄u = n and even(x);

<
(
x+∇

n+
2 (x)/2

)
/z, if r̄u = n and odd(x).

(67)

Note that the numerator and the denominator of the previous fractions are independent. Therefore, we
can find the minimum of the fractions by minimizing the numerator and maximizing the denominator. Since
we are analyzing the case in which W = Z+, let (xL,wL,xU ,wU) as the result of function τ of Figure 5. Hence,
by Proposition 3 and the monotonicity of ‘pred’ and ‘succ we obtain

y

≥ xL/wL, if r̄` = ↓;
> pred(xL)/wL, if r̄` = ↑
≥
(
xL +∇

n−
2 (xL)/2

)
/wL, if r̄` = n and even(x);

>
(
xL +∇

n−
2 (xL)/2

)
/wL, if r̄` = n and odd(x);

(68)

y

< succ(xU)/wU , if r̄u = ↓;
≤ xU/wU , if r̄u = ↑;
≤
(
xU +∇

n+
2 (xU)/2

)
/wU , if r̄u = n and even(x);

<
(
xU +∇

n+
2 (xU)/2

)
/wU , if r̄u = n and odd(x).

(69)

63

We can now exploit Proposition 5 and obtain:

y′`
def
=

{
xL�↑ wL, if r̄` = ↓;
succ

(
pred(xL)�↓ wL

)
, if r̄` = ↑;

(70)

y′u
def
=

{
pred

(
succ(xU)�↑ wU

)
, if r̄u = ↓;

xU �↓ wU , if r̄u = ↑.
(71)

Indeed, if xL 6= 0, then Proposition 5 applies and we have y< xL�↑wL. On the other hand, if xL = 0, since by
hypothesis z > 0 implies wL > 0, according to IEEE 754 [24, Section 6.3], we have (xL�↑ wL) = sgn(xL) ·0
and, indeed, for each non-NaN, nonzero and finite w ∈ F∩ [+0,+∞], sgn(xL) · 0 is the least value for y that
satisfies sgn(xL) ·0 = y�↓ w.

Analogously, if xL 6= fmin, then Proposition 5 applies and we have succ
(
pred(xL)�↓ wL

)
. On the other

hand, if xL = fmin, succ
(
pred(xL)�↓ wL

)
= fmin, which is consistent with the fact that, for each non-NaN,

nonzero and finite w ∈ F∩ [+0,+∞], fmin is the lowest value of y that satisfies fmin = y�↑ w.
A symmetric argument justifies (71).
As before, we will consider both the cases Je+` K↑ = [e+`]↑ and Je+u K↓ = [e+u]↓ as well as Je+` K↑ > [e+`]↑

and Je+u K↓ < [e+u]↓. Thus, when Je+u K↓ < [e+u]↓ by (69) and (27) of Proposition 5 we obtain y4 Je+u K↑. Instead,
when Je+` K↓ > [e+`]↓, by (69) and (25) of Proposition 5 we obtain y < Je+` K↓. In conclusion, for the case in
which r̄` = n, since eu 6= 0 and e` 6= 0, by Proposition 5, we have

y′`
def
=

Je+` K↑, if even(xL) and Je+` K↑ = [e+`]↑;
Je+` K↓, if even(xL) and Je+` K↑ 6= [e+`]↑;
succ

(
Je+` K↓

)
, otherwise;

(72)

whereas, for the case in which r̄u = n,

y′u
def
=

Je+u K↓, if even(xU) and Je+u K↓ = [e+u]↓;
Je+u K↑, if even(xU) and Je+u K↓ 6= [e+u]↓;
pred

(
Je+u K↑

)
, otherwise.

(73)

An analogous reasoning with z < 0 allows us to obtain the case analyses marked as a−3 and a−8 .

64

	CNT109322_compiled.pdf
	Introduction
	Preliminaries
	Rounding Modes and Rounding Errors
	Propagation for Simple Arithmetic Constraints
	Experimental Evaluation
	Discussion and Conclusion
	Filtering algorithms: Subtraction and Multiplication
	Proofs of Results

