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1 Extraction of Graphs from Simulated Evolutionary Scenarios

The simulations of evolutionary scenarios (described in the main text) result in an
event-labeled gene tree (T, t,σ) as well as an explicit reconciliation map µ : V (T )→
V (S)∪E(S). From these data we have to construct the orthology graph Θ(T, t) and
the RBMG G(T,σ). This can be achieved in O(L2) time using Tarjan’s off-line lowest
common ancestors algorithm (Tarjan, 1979; Gabow and Tarjan, 1983) to first tabu-
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University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany
E-mail: manuela@bioinf.uni-leipzig.de

Maribel Hernandez-Rosales, Alitzel López
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late lcaT (x,y) for all x,y ∈ L in quadratic total time or with the help of additional
data structures that then allow to answer least common ancestor queries in constant
time (Harel and Tarjan, 1984; Schieber and Vishkin, 1988). As show below, it is also
possible to avoid computation of the lca() function altogether.

1.1 Orthology Graphs

The orthology relation Θ(T, t) is easily constructed from the event-labeled gene tree
(T, t) by a simple recursive construction. For each v ∈ T̃ we define a graph Θ(v)
recursively: if v is a leaf, then Θ(v) is the K1 with vertex set {v} whenever v is an
extant gene and Θ(v) = /0, the empty graph, if v is a loss event. For inner vertices we
set

Θ(v) =


1

u∈child(v)
Θ(u) if t(v) = ⋃

u∈child(v)
Θ(u) otherwise

(1)

Since H1 /0 = H ∪ /0 = H, there is no contribution of the loss-leafs. Thus Θ(v) can
be computed in exactly the same manner from the observable gene tree T . Hence,
Θ(ρT ) = Θ(ρT̃ ) =: Θ is the orthology graph of the scenario. Note that the planted
root 0T does not appear as the last common ancestor of any two leaves in L(T ), hence
it suffices to consider the root. Although the next result is an immediate consequence
of the definition of cographs and their corresponding cotrees (Corneil et al., 1981):

Lemma 1 Let (T, t,σ) be an event-labeled, leaf-labeled tree. Then xy ∈ E(Θ(v)) if
and only if t(lcaT (x,y)) = .

By construction, Θ(u) is an induced subgraph of Θ(v) whenever u �T v. It is thus
sufficient to store the binary |L| × |L| adjacency matrix of Θ . Traversing T in post-
order, one sets Θxy = 1, i.e., xy∈ E(Θ), for all xy with x∈ L(T (u1)) and y∈ L(T (u2))
where u1 and u2 are distinct children of v, if and only if v is a speciation vertex. Since
the pair x,y is considered exactly once, namely when v = lca(x,y) is encountered in
the traversal of T , the total effort is O(|L|2).

1.2 Best Match Graphs

In order to compute the BMG ~G(T,σ) we associate every inner vertex v with the lists
Lr(v) := {x ∈ L(T (v))|σ(x) = r} of leaves below v with color r. We have Lr(v) =⋃

u∈child(v) Lr(u) for inner vertices, while leaves are initialized with Lr(v) = {v} if
σ(v) = r, and Lr(v) = /0 if σ(v) 6= r. Again this can be achieved in not more than
quadratic time. Now define C¬s(v) := {u ∈ child(v)|Ls(u) = /0} and Cs(v) := {u ∈
child(v)|Ls(u) 6= /0}. Best matches can be retrieved directly from these auxiliary sets:

Lemma 2 Let u1 and u2 be two distinct children of some inner vertex v of the leaf-
colored tree (T,σ) and let x ∈ L(T (u1)) with σ(x) = r and y∈ L(T (u2)) with σ(y) =
s 6= r. Then (x,y) is a best match in (T,σ) if and only if

u1 ∈Cr(v)∩C¬s(v) and u2 ∈Cs(v).
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Proof If Ls(u1) = /0, then there is no best match of color s for x in L(T (u1)), i.e., any
best match σ(y′) = s satisfies v � lca(x,y′). From lca(x,y) = v we see that (x,y) is
indeed a best match. On the other hand, if Ls(u1) 6= /0, then there is a leaf y′ ∈ Ls(u1)
with lca(x,y′)� u1 ≺ v = lca(x,y), and thus y is not a best match for x. ut

Algorithm 1 Construction of ~G(T,σ)

Require: leaf-colored tree (T,σ)
for all leaves v of T , colors r do

L(T (v)) = {v}
if σ(v) = r then

`vr = 1
else

`vr = 0
for all inner vertices v of T in postorder do

for all u1,u2 ∈ child(v), u1 6= u2 do
for all x ∈ L(T (u1)) and y ∈ L(T (u2)) do

(x,y) ∈ ~G(T,σ) if `u1σ(y) = 0
L(T (v)) =

⋃
u∈child(v) L(T (u))

for all u ∈ child(v), colors r ∈ S do
`vr = 1 if `ur = 1

This observation yields the very simple way to construct ~G(T,σ). Algorithm 1
iterates over all pairs of vertices x,y ∈ L such that each pair is visited exactly once by
considering for every interior vertex v exactly the pairs that are members of two dis-
tinct subtrees rooted at children u1 and u2 of v. Since y ∈ Lσ(y)(u2) and x ∈ Lσ(x)(u1)
is guaranteed by construction, (x,y) is a best match if and only if Lσ(y)(u1) = /0 by
Lemma 2. Using the precomputed binary variable `vr with value 1 if Lr(v) 6= /0 and
`vr = 0 otherwise, this can be done in constant time O(|L|). By traversing T in pos-
torder, finally, we can compute the lists of leaves L(v) on the fly. Since no subtree is
revisited, there is no need to retain the L(T (u)) for the children, i.e., for each vertex
v, the lists of its children can simply be concatenated. Similarly, the variables `vr can
be obtained while traversing T using the fact that `vr = 1 if and only if `ur = 1 for
at least one of its children. Hence, Algorithm 1 runs in O(|L|2) time with O(|L| |S|)
memory using a single postorder traversal of T .

The RBMG G(T,σ) is now easily obtained from the BMG ~G(T,σ) by extracting
its symmetric part. Clearly the effort for this step is also bounded by O(|L|2).

1.3 Good Quartets

We have seen in Section 6 that at least some false positive edges are identified by
good quartets. A convenient way of listing all good quartets Q in (~G,σ) makes use of
the degree sequence of ~G, that is, the list α = ((α+

x ,α−x )|x∈V (~G)) of pairs (α+
x ,α−x )

where α+
x is the out-degree and α−x is the in-degree of the vertex x ∈ V (~G) and the

list is ordered in positive lexicographical order. One easily checks that a good quartet
contains neither a 2-switch nor an induced 3-cycle, hence Q is uniquely defined by
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its degree sequence ((2,1),(2,3),(2,3),(2,1)) as a consequence of (Cloteaux et al.,
2014, Thm. 1). Regarding the coloring, it suffices to check that the two endpoints,
that is, the vertices with indegree 1, have the same color σ(u) = σ(x). This already
implies σ(v),σ(w) 6= σ(u) = σ(x). Since there is an edge between v and w, we also
have σ(v) 6= σ(w), i.e., the colors are determined up to a permutation of colors. The
false positive edge is the one connecting the two vertices with outdegree 3.
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2 Additional Information on Simulated Scenarios
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Order Distribution

Max. Min. Average
Species 100 3 44.5
Extant genes 722 3 84.62
Speciations (Sn) 667 2 73.46
Duplications (Dn) 88 0 14.66
Losses (Ln) 55 0 7.41
HGT (Hn%) 100% 0% 11.76%

Fig. 1 Summary statistics of the 14,000 simulated scenarios. (a)–(c) Distributions of fraction of duplica-
tions, losses, and HGTs, respectively in the true gene trees T̃ . (d) Distribution of the number of extant genes
in the observable gene tree T and thus the number of vertices (order) of the best match graph G(T,σ). The
spline in each panel is a kernel density estimate.
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Table 1 We simulated 11 batches with different ranges for the rates of duplications, losses, and HGT
(columns 3 to 5), where the rates have been varied in steps of 0.01. In each batch, we simulated for each
combination of rates exactly one scenario. The second column shows the total number of scenarios for
each batch.

Batch # Scenarios Duplication rates Loss rates HGT rates # Species
1 1000 0.75 - 0.84 0.7 - 0.79 0.1 - 0.19 3-100
2 1000 0.85 - 0.94 0.85 - 0.94 0.1 - 0.19 3-100
3 1000 0.80 - 0.89 0.80 - 0.89 0.1 - 0.19 3-100
4 1000 0.70 - 0.79 0.70 - 0.79 0.1 - 0.19 3-100
5 1000 0.90 - 0.99 0.90 - 0.99 0.1 - 0.19 3-100
6 1000 0.85 - 0.94 0.75 - 0.84 0.1 - 0.19 3-100
7 1000 0.90 - 0.99 0.90 - 0.99 0.15 - 0.24 3-100
8 1000 0.90 - 0.99 0.90 - 0.99 0.15 - 0.24 3-100
9 1000 0.65 - 0.74 0.65 - 0.74 0.10 - 0.19 3-100
10 1000 0.85 - 0.94 0.75 - 0.84 0.15 -0.24 3-100
11 4000 0.75 - 0.94 0.75 - 0.94 0.15 -0.24 3-50
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3 False Positive Edges in Non-Cograph 3-RBMGs

In the following, we identify further false positive orthology assignments in the
RBMG based on results that we recently derived in Geiß et al. (2019). We start by
defining a color-preserving thinness relation that has been introduced in Geiß et al.
(2019):

Definition 1 For an undirected colored graph (G,σ) two vertices a and b are in rela-
tion S, in symbols aSb, if N(a) = N(b) and σ(a) = σ(b). The equivalence class of a
is denoted by [a]. (G,σ) is called S-thin if no two distinct vertices are in relation S.

3.1 Type (B) 3-RBMGs

Let (G,σ) be a connected S-thin 3-RBMG of Type (B). Lemma 25 of (Geiß et al.,
2019) then implies that (G,σ) contains an induced path P := 〈x̂1ŷẑx̂2〉 with three
distinct colors σ(x̂1) = σ(x̂2) =: r, σ(ŷ) =: s, and σ(ẑ) =: t, and Nr(ŷ)∩Nr(ẑ) = /0
such that the vertex sets

LP
t,s := {y | 〈xyẑ〉 ∈ P3 for any x ∈ Nr(y)},

LP
t,r := {x |Nr(y) = {x} and 〈xyẑ〉 ∈ P3}∪{x | x ∈ L[r], Ns(x) = /0, L[s]\LP

t,s 6= /0},
LP

s,t := {z | 〈xzŷ〉 ∈ P3 for any x ∈ Nr(z)},
LP

s,r := {x | Nr(z) = {x} and xzŷ ∈ P3}∪{x | x ∈ L[r],Nt(x) = /0,L[t]\LP
s,t 6= /0},

LP
t := LP

t,s∪LP
t,r,

LP
s := LP

s,t ∪LP
s,r, and

LP
∗ := L\ (LP

t ∪LP
s )

satisfy the following conditions:

(B2.a) If x ∈ LP
∗ [r], then N(x) = LP

∗ \{x},
(B2.b) If x ∈ LP

t [r], then Ns(x)⊂ LP
t and |Ns(x)| ≤ 1, and Nt(x) = LP

∗ [t],
(B2.c) If x ∈ LP

s [r], then Nt(x)⊂ LP
s and |Nt(x)| ≤ 1, and Ns(x) = LP

∗ [s]
(B3.a) If y ∈ LP

∗ [s], then N(y) = LP
s ∪ (LP

∗ \{y}),
(B3.b) If y ∈ LP

t [s], then Nr(y)⊂ LP
t and |Nr(y)| ≤ 1, and Nt(y) = L[t],

(B4.a) If z ∈ LP
∗ [t], then N(z) = LP

t ∪ (LP
∗ \{z}),

(B4.b) If z ∈ LP
s [t], then Nr(z)⊂ LP

s and |Nr(z)| ≤ 1, and Ns(z) = L[s].

By construction, σ(LP
t ) = {r,s} and σ(LP

s ) = {r, t} and, as a consequence of Lemma
25 of Geiß et al. (2019), the sets LP

s , LP
t , and LP

∗ form a partition of V (G). Further-
more, Lemma 33 of Geiß et al. (2019) implies that any 3-colored induced path P of
the form (r,s, t,r) that satisfies (B2.a) to (B4.b) is a good quartet w.r.t. some (T,σ)
explaining a BMG (~G,σ) that contains (G,σ) as its symmetric part.

Our goal is to identify edges in (G,σ) that can cannot be present in the orthology
graph Θ . To this end we extend the leaf sets LP

∗ ,L
P
s ,L

P
t that have been introduced in

Geiß et al. (2019) for S-thin 3-RBMGs, to general 3-RBMGs:
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Definition 2 Let (G,σ) be a 3-RBMG of Type (B) with vertex set L and colors S =
{r,s, t}, and (G/S,σ/S) with vertex set L be its S-thin version. We set

LP
s := {x | x ∈ L, [x] ∈ LP

s }

LP
t := {x | x ∈ L, [x] ∈ LP

t }

LP
∗ := {x | x ∈ L, [x] ∈ LP

∗}

if (G,σ) is of Type (B) and (G/S,σ/S) B-like w.r.t. to the induced path P.

The cases of Type (B) and (C) 3-RBMGs will be treated separately, starting with
Type (B). We first need a technical result:

Lemma 3 Let (G,σ) be a connected 3-RBMG of Type (B) with vertex set L,
(G/S,σ/S) its S-thin version with vertex set L, and (T,σ) a leaf-labeled tree that
explains (G,σ). Moreover, let P := 〈[x̃1][ỹ][z̃][x̃2]〉 for some good quartet 〈x̃1ỹz̃x̃2〉
in ~G(T,σ), and set v := lcaT (x̃1, x̃2, ỹ, z̃). Then the leaf sets LP

s , LP
t , and LP

∗ , where
σ(x̃1) = σ(x̃2) = r, σ(ỹ) = s, and σ(z̃) = t, satisfy:

(i) LP
t ,L

P
s ⊆ L(T (v)),

(ii) If LP
c ∩L(T (v′)) 6= /0 for some v′ ∈ child(v) and c ∈ {s, t}, then

(a) LP
c ∩L(T (v′)) = /0, where c ∈ {s, t},c 6= c,

(b) σ(L(T (v′)))⊆ σ(LP
c ),

(iii) lcaT (a,b) = v for any a ∈ LP
∗ , b /∈ LP

∗ with ab ∈ E(G).

Proof Throughout this proof we will often use the fact that xy ∈ E(G) if and only if
[x][y] ∈ E(G/S) for any x,y ∈ L (cf. Lemma 5 of Geiß et al. (2019)).

Lemma 25 of Geiß et al. (2019) implies [x̃1], [ỹ] ∈ LP
t and [x̃2], [z̃] ∈ LP

s , thus,
by definition, we have x̃1, ỹ ∈ LP

t and x̃2, z̃ ∈ LP
s . Moreover, by Lemma 36 of Geiß

et al. (2019), there exist distinct children v1,v2 ∈ child(v) such that x̃1, ỹ �T v1 and
x̃2, z̃�T v2. Therefore ỹz̃∈ E(G) implies σ(L(T (v1))) = {r,s}; otherwise there exists
a leaf z′ ∈ L(T (v1))∩L[t] which implies lcaT (ỹ,z′)≺T v = lcaT (ỹ, z̃); a contradiction
to ỹz̃ ∈ E(G). Analogously we obtain σ(L(T (v2))) = {r, t}.
(i) By symmetry, it suffices to consider LP

t in more detail, analogous arguments can
then be applied to LP

s . Let a ∈ LP
t , or equivalently [a] ∈ LP

t by definition, and sup-
pose first σ(a) = s. Then Property (B3.b) implies [a][z̃] ∈ E(G/S). As a consequence
of Lemma 5 of Geiß et al. (2019) we thus have az̃ ∈ E(G). Hence, ỹz̃ ∈ E(G) im-
plies lcaT (a, z̃) = lcaT (ỹ, z̃) = v and thus, a�T v. We therefore conclude LP

t ∩L[s]⊆
L(T (v)). Now assume σ(a) = r. By Property (B2.b), we either have Ns([a]) = /0 or
there exists a vertex y ∈ L[s] such that [y] ∈ LP

t and Ns([a]) = {[y]}. In the latter case,
since [y] ∈ LP

t implies y ∈ LP
t and, in addition, it holds LP

t ∩L[s]⊆ L(T (v)), we have
y�T v. Moreover, by (B3.b), it holds [x̃2][y] /∈E(G/S), hence x̃2y /∈E(G). As a conse-
quence of the latter and the fact that [a][y] ∈ E(G/S) implies ay ∈ E(G), it must hold
lcaT (a,y)≺T lcaT (x̃2,y)�T v and thus, a�T v. Otherwise, if Ns([a]) = /0, then there
must exist a leaf z ∈ L[t] such that [z] ∈ Nt([a]) due to the connectedness of G/S,
which is implied by the connectedness of G (cf. Lemma 5 of Geiß et al. (2019)).
Since [a] ∈ LP

t , Properties (B4.a) and (B4.b) immediately imply [z] ∈ LP
∗ . Then, by
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(B4.a), the edge [x̃1][z] must be contained in G/S, thus x̃1z ∈ E(G). Since x̃1, z̃ �T v
by Lemma 36 of Geiß et al. (2019), it must thus hold lcaT (x̃1,z)�T lcaT (x̃1, z̃)�T v.
Therefore x̃1z,az ∈ E(G) implies lcaT (a,z) = lcaT (x̃1,z) �T v and thus, a �T v.
Hence, LP

t ∩L[r]⊆ L(T (v)), which finally implies LP
t ⊆ L(T (v)).

(ii) By symmetry, it again suffices to consider the case c = t. Let a ∈ LP
t ∩L(T (v′))

for some v′ ∈ child(v). Note that, by (i), such a leaf a and inner vertex v′ must exist.
We need to distinguish the two Cases (1) σ(a) = s and (2) σ(a) = r.

Consider first Case (1), thus in particular s ∈ σ(L(T (v′))). Then, as
σ(L(T (v2))) = {r, t}, we have v′ 6= v2 and thus, lcaT (a, z̃) = v. Hence, as [a][z̃] ∈
E(G/S) by Property (B3.b) and therefore, az̃ ∈ E(G), we can conclude t /∈
σ(L(T (v′))) by analogous arguments as just used for showing σ(L(T (v1))) = {r,s}.
This implies (ii.b). Now assume, for contradiction, that there exists a leaf x ∈
L(T (v′))∩LP

s . Since t /∈ σ(L(T (v′))) and, by definition, s /∈ σ(LP
s ), this leaf x must

be of color r. Clearly, either there exists a leaf y ∈ L[s] such that xy ∈ E(G) or
Ns(x) = /0. In the first case, we have [x][y] ∈ E(G/S) and thus, by (B2.c), [y] ∈ LP

∗
which implies y ∈ LP

∗ . In particular, as s ∈ σ(L(T (v′))) and xy ∈ E(G) implies
lcaT (x,y) �T lcaT (x,y′) for any y′ ∈ L[s], we can conclude y �T v′. Moreover, since
[x̃2] ∈ LP

s , Property (B3.a) implies [x̃2][y] ∈ E(G/S) and thus, x̃2y ∈ E(G). How-
ever, since v′ 6= v2, we have lcaT (x,y) �T v′ ≺T v = lcaT (x̃2,y); a contradiction to
x̃2y ∈ E(G). We thus conclude Ns(x) = /0. Hence, as G is connected, there must
exist a leaf z′ of color t such that xz′ ∈ E(G), which implies [x][z′] ∈ E(G/S). By
Property (B2.c), we have [z′] ∈ LP

s and therefore, (B4.b) implies Nr([z′]) = {[x]}.
Since t /∈ σ(L(T (v′))), there is a v′′ ∈ child(v) \ {v′} such that z′ �T v′′ ≺T v. From
xz′ ∈ E(G) and lcaT (x,z′) = v, we conclude that r /∈ σ(L(T (v′′))). Moreover, Lemma
10 of Geiß et al. (2019) implies that there exist leaves x′,y′ ∈ L(T (v′)) with σ(x′) = r
and σ(y′) = s such that x′y′ ∈ E(G). Thus, as by assumption Ns(x) = /0, we in particu-
lar have [x] 6= [x′]. Since r /∈ σ(L(T (v′′))) and t /∈ σ(L(T (v′))), it follows x′z′ ∈ E(G)
and therefore, [x′] ∈ Nr([z′]); a contradiction to Nr([z′]) = {[x]}. This implies (ii.a).

Now consider Case (2), i.e., σ(a) = r. We first show that σ(L(T (v′))) ( {r,s, t}
holds. Assume, for contradiction, that L(T (v′)) contains leaves y ∈ L[s] and z ∈ L[t].
If v′ 6= v2, this implies lcaT (y,z) ≺T v = lca(y, z̃) and thus, yz̃ /∈ E(G) and in par-
ticular [y][z̃] /∈ E(G/S); a contradiction to (B4.b). One analogously obtains a con-
tradiction for the case v′ 6= v1; therefore σ(L(T (v′))) ( {r,s, t} and we either have
σ(L(T (v′))) ⊆ {r,s} or σ(L(T (v′))) ⊆ {r, t}. If σ(L(T (v′))) = {r}, then it clearly
holds N(x) = N(a) and thus x ∈ LP

t for any x ∈ L(T (v′)), hence (ii.a) and (ii.b) are
trivially satisfied. If σ(L(T (v′))) = {r,s}, then (ii.b) is trivially satisfied. Moreover,
by Lemma 10 of Geiß et al. (2019), L(T (v′)) contains leaves x′ ∈ L[r] and y′ ∈ L[s]
such that x′y′ ∈ E(G). Hence, we have [x′][y′] ∈ E(G/S) and Property (B4.b) implies
[y′][z̃] ∈ E(G/S) and thus, y′z̃ ∈ E(G). As σ(L(T (v2))) = {r, t} and σ(L(T (v′))) =
{r,s}, we clearly have v′ 6= v2 and thus, lcaT (x′,y′)�T v′ ≺T v = lcaT (x̃2,y′). Hence,
x̃2y′ /∈ E(G), which implies N([y′]) 6= LP

s ∪ (L
P
∗ \ {[y′]}) since x̃2 ∈ LP

s . Therefore,
by Property (B3.a), we have [y′] /∈ LP

∗ , implying y′ /∈ LP
∗ . We thus conclude y′ ∈ LP

t .
Hence, we can apply the argumentation of Case (1) (by substituting a = y′) in order
to infer (ii.a).
Finally, for contradiction, assume σ(L(T (v′))) = {r, t}. In particular, this implies
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v1 6= v′. Clearly, either there exists a leaf y ∈ L[s] such that ay ∈ E(G) (and thus
[a][y]∈ E(G/S)) or Ns(a) = /0. In the latter case, since G is connected, there must be a
leaf z ∈ L[t] such that az ∈ E(G) and [a][z] ∈ E(G/S). In particular, as σ(L(T (v′))) =
{r, t}, this implies z�T v′. By (B2.b), we have [z] ∈ LP

∗ and thus, by (B4.a), it follows
[x̃1][z] ∈ E(G/S) implying x̃1z ∈ E(G); a contradiction since lcaT (z,a)�T v′ ≺T v =
lcaT (z, x̃1). Hence, there must exist a leaf y ∈ L[s] such that ay ∈ E(G). By (B2.b),
we have Ns([a]) = {[y]} and [y] ∈ LP

t . Then (B3.b) implies Nr([y]) ⊂ LP
t . It is easy

to see that this implies Nr(y) ⊂ LP
t . Since s /∈ σ(L(T (v′))), there must exist a ver-

tex v′′ ∈ child(v) \ {v′} such that y �T v′′ ≺T v = lcaT (a,y). One easily checks that
ay∈ E(G) implies r /∈ σ(L(T (v′′))). Together with σ(L(T (v2))) = {r, t}, this implies
lcaT (x̃2,y) = v�T lcaT (x′′,y) and lcaT (x̃2,y) = v�T lcaT (x̃2,y′) for any x′′ ∈ L[r] and
y′ ∈ L[s]. Thus, x̃2y ∈ E(G), which, as x̃2 ∈ LP

s , contradicts Nr(y)⊂ LP
t . We therefore

conclude that σ(L(T (v′))) = {r, t} is not possible, which finally completes the proof.
(iii) Since, by definition, V (G) is partitioned into LP

s , LP
t , and LP

∗ , the leaf b must
be either contained in LP

t or LP
s . Suppose first b ∈ LP

t . Since [a][b] ∈ E(G/S) fol-
lows from ab ∈ E(G), Properties (B2.a), (B3.a), and (B4.a) immediately imply
σ(a) = t. Moreover, by (i), there exists some v′ ∈ child(v) such that b �T v′ ≺T v,
and, by (ii.b), σ(L(T (v′))) ⊆ σ(LP

t ) = {r,s}. Hence, as σ(a) = t, we can conclude
lcaT (a,b) �T v. Similarly, σ(L(T (v′))) ⊆ {r,s} implies lcaT (b, z̃) = v, thus it must
hold lcaT (a,b) �T lcaT (b, z̃) = v because of ab ∈ E(G). In summary, this implies
lcaT (a,b) = v. Analogous arguments can be applied to the case b ∈ LP

s .

Lemma 3 can now be used to identify a potentially very large set of edges that cannot
be present in the orthology graph Θ .

Theorem 1 Let T and S be planted trees, σ : L(T )→ L(S) a surjective map, and µ a
reconciliation map from (T,σ) to S determining an event labeling tT on T . Moreover,
let the leaf sets LP

t , LP
s , and LP

∗ be defined w.r.t. P, which is the S-thin version of
some good quartet of the form (r,s, t,r) in (~G,σ) with color set S = {r,s, t}. Then
tT (lcaT (a,b)) = � for any edge ab ∈ E(G) such that a ∈ LP

? and b /∈ LP
? , where ? ∈

{s, t,∗}.
Proof Let P = 〈[x1][y][z][x2]〉, i.e., in particular σ(x1) = σ(x2) = r, σ(y) = s, and
σ(z) = t, and let v := lcaT (x1,x2,y,z). Then, by Lemma 36 of Geiß et al. (2019),
there exist distinct v1,v2 ∈ child(v) such that x1,y�T v1 and x2,z�T v2. As [x1], [y] ∈
LP

t and [x2], [z] ∈ LP
s by Lemma 25 of Geiß et al. (2019) and thus, by definition,

x1,y ∈ LP
t and x2,z ∈ LP

s , Lemma 3(ii.b) in particular implies σ(L(T (v1))) = {r,s}
and σ(L(T (v2))) = {r, t}.
Now, if a ∈ LP

t , b ∈ LP
s , it follows from Lemma 3(ii.a) that lcaT (a,b) = v. On the

other hand, if a ∈ LP
∗ and either b ∈ LP

s or b ∈ LP
t , then we also have lcaT (a,b) = v

by Lemma 3(iii). Since σ(L(T (v1)))∩σ(L(T (v2))) = {r} 6= /0, we conclude from
Lemma 2 that µ(v) /∈V 0(S), which implies tT (v) 6= . Therefore we have tT (v) =�.

3.2 Type (C) 3-RBMGs

Let (G,σ) be a connected S-thin 3-RBMG of Type (C). Lemma 27 of (Geiß et al.,
2019) then implies that (G,σ) contains an induced hexagon H := 〈x̂1ŷ1ẑ1x̂2ŷ2ẑ2〉with
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three distinct colors σ(x̂1) = σ(x̂2) =: r, σ(ŷ1) = σ(ŷ2) =: s, and σ(ẑ1) = σ(ẑ2) =: t,
and |Nt(x̂1)|> 1 such that the vertex sets

LH
t := {x | 〈xẑ2ŷ2〉 ∈ P3}∪{y | 〈yẑ1x̂2〉 ∈ P3},

LH
s := {x | 〈xŷ2ẑ2〉 ∈ P3}∪{z | 〈zŷ1x̂1 ∈〉P3},

LH
r := {y | 〈yx̂2ẑ1〉 ∈ P3}∪{z | 〈zx̂1ŷ1〉 ∈ P3}, and

LH
∗ :=V (G)\ (LH

r ∪LH
s ∪LH

t )

satisfy the following conditions:

(C2.a) If x ∈ LH
∗ [r], then N(x) = LH

r ∪ (LH
∗ \{x}),

(C2.b) If x ∈ LH
t [r], then Ns(x)⊂ LH

t and |Ns(x)| ≤ 1, and Nt(x) = LH
∗ [t]∪LH

r [t],
(C2.c) If x ∈ LH

s [r], then Nt(x)⊂ LH
s and |Nt(x)| ≤ 1, and Ns(x) = LH

∗ [s]∪LH
r [s]

(C3.a) If y ∈ LH
∗ [s], then N(y) = LH

s ∪ (LH
∗ \{y}),

(C3.b) If y ∈ LH
t [s], then Nr(y)⊂ LH

t and |Nr(y)| ≤ 1, and Nt(y) = LH
∗ [t]∪LH

s [t],
(C3.c) If y ∈ LH

r [s], then Nt(y)⊂ LH
r and |Nt(y)| ≤ 1, and Nr(y) = LH

∗ [r]∪LH
s [r],

(C4.a) If z ∈ LH
∗ [t], then N(z) = LH

t ∪ (LH
∗ \{z}),

(C4.b) If z ∈ LH
s [t], then Nr(z)⊂ LH

s and |Nr(z)| ≤ 1, and Ns(z) = LH
∗ [s]∪LH

t [s],
(C4.c) If z ∈ LH

r [t], then Ns(z)⊂ LH
r and |Ns(z)| ≤ 1, and Nr(z) = LH

∗ [r]∪LH
t [r].

By construction, σ(LH
t ) = {r,s}, σ(LH

s ) = {r, t}, and σ(LH
r ) = {s, t} and, as a conse-

quence of Lemma 27 of Geiß et al. (2019), the sets LH
r , LH

s , LH
t , and LH

∗ form a par-
tition of V (G). Similarly to the Type (B) case, we extend the leaf sets LH

∗ ,L
H
r ,L

H
s ,L

H
t

that have been introduced in Geiß et al. (2019) for S-thin 3-RBMGs of Type (C), to
general Type (C) 3-RBMGs:

Definition 3 Let (G,σ) be a 3-RBMG of Type (C) with vertex set L and colors S =
{r,s, t}, and (G/S,σ/S) with vertex set L be its S-thin version. We set

LH
r := {x | x ∈ L, [x] ∈ LH

r }

LH
s := {x | x ∈ L, [x] ∈ LH

s }

LH
t := {x | x ∈ L, [x] ∈ LH

t }

LH
∗ := {x | x ∈ L, [x] ∈ LH

∗ }

if (G,σ) is of Type (C) and (G/S,σ/S) C-like w.r.t. to the hexagon H.

Again, we can identify edges in (G,σ) that are necessarily are false positives in
the orthology graph Θ . A similar procedure as in the Type (B) case will be applied to
Type (C) 3-RBMGs, again starting with an analogous technical result:

Lemma 4 Let (G,σ) be a connected 3-RBMG of Type (C) with vertex set L,
(G/S,σ/S) its S-thin version with vertex set L, and (T,σ) a leaf-labeled tree that ex-
plains (G,σ). Moreover, let H := 〈[x̃1][ỹ1][z̃1][x̃2][ỹ2][z̃2]〉 for some induced hexagon
〈x̃1ỹ1z̃1x̃2ỹ2z̃2〉 in ~G(T,σ) with |Nt([x̃1])| > 1 and σ(x̃1) = σ(x̃2) = r, σ(ỹ1) =
σ(ỹ2) = s, and σ(z̃1) = σ(z̃2) = t, and set v := lcaT (x̃1, x̃2, ỹ1, ỹ2, z̃1, z̃2). Then the
leaf sets LH

r , LH
s , LH

t , and LH
∗ satisfy:

(i) LH
r ,L

H
s ,L

H
t ⊆ L(T (v)),
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(ii) If LH
c ∩L(T (v′)) 6= /0 for some v′ ∈ child(v) and c ∈ {r,s, t}, then

(a) LH
c ∩L(T (v′)) = /0, where c ∈ {r,s, t},c 6= c,

(b) σ(L(T (v′)))⊆ σ(LH
c ),

(iii) lcaT (a,b) = v for any a ∈ LH
∗ , b /∈ LH

∗ with ab ∈ E(G).

Proof The proof of Lemma 4 closely follows the arguments leading to Lemma 3. In
particular, we again use the fact that xy ∈ E(G) if and only if [x][y] ∈ E(G/S) for any
x,y ∈ L (cf. Lemma 5 of Geiß et al. (2019)).

By Lemma 27 of Geiß et al. (2019), we have [x̃1], [ỹ1] ∈ LH
t , [x̃2], [z̃1] ∈ LH

s , and
[ỹ2], [z̃2] ∈ LH

r , hence x̃1, ỹ1 ∈ LH
t , x̃2, z̃1 ∈ LH

s , and ỹ2, z̃2 ∈ LH
r . Moreover, by Lemma

39(iii) of Geiß et al. (2019), there exist distinct children v1,v2,v3 ∈ child(v) such
that x̃1, ỹ1 �T v1, x̃2, z̃2 �T v2, and ỹ2, z̃2 �T v3. In particular, since ỹ1z̃1 ∈ E(G), it
must hold σ(L(T (v1))) = {r,s} as otherwise there exists a leaf z′ ∈ L(T (v1))∩L[t]
which implies lcaT (ỹ1,z′) ≺T v = lcaT (ỹ1, z̃1); a contradiction to ỹ1z̃1 ∈ E(G). One
analogously checks σ(L(T (v2))) = {r, t} and σ(L(T (v3))) = {s, t}.

(i) By symmetry, it suffices to consider LH
t in more detail, analogous arguments can

then be applied to LH
s and LH

r . Let a ∈ LH
t , or equivalently [a] ∈ LH

t , and suppose first
σ(a) = r. Then Property (C2.b) implies [a][z̃2] ∈ E(G/S) and thus, az̃2 ∈ E(G). As
x̃1z̃2 ∈ E(G), we thus have lcaT (a, z̃2) = lcaT (x̃1, z̃2) = v, hence a�T v. We therefore
conclude LH

t ∩ L[r] ⊆ L(T (v)). Analogously, we obtain a �T v for σ(a) = s as a
consequence of Property (C3.b). In summary, we obtain LH

t ⊆ L(T (v)).

(ii) Again invoking symmetry, it suffices to consider the case c = t. Let a ∈ LH
t ∩

L(T (v′)) for some v′ ∈ child(v). First, let σ(a)= r. Then, as r /∈σ(L(T (v3))), we have
v′ 6= v3 and thus, lcaT (a, z̃2) = v. Hence, as [a][z̃2] ∈ E(G/S) by Property (C2.b) and
thus az̃2 ∈ E(G), we can conclude t /∈ σ(L(T (v′))) using the same line of reasoning
used above for showing σ(L(T (v1))) = {r,s}. This implies (ii.b). Now assume, for
contradiction, that there exists either (1) a leaf x ∈ L(T (v′))∩ LH

s or (2) a leaf y ∈
L(T (v′))∩LH

r .
In Case (1), since t /∈ σ(L(T (v′))) and, by definition, s /∈ σ(LH

s ), this leaf x must
be of color r. In particular, since LH

s and LH
t are disjoint, we have x 6= a. Hence, it

must hold s ∈ σ(L(T (v′))) as otherwise N(x) = N(a); contradicting a ∈ LH
t , x ∈ LH

s ,
and LH

s ∩ LH
t = /0. This immediately implies v′ 6= v2 because s /∈ σ(L(T (v2))). By

Property (C2.c), as [ỹ2] ∈ LH
r [s], we have [x][ỹ2] ∈ E(G/S) and thus, xỹ2 ∈ E(G).

However, since s ∈ σ(L(T (v′))), there exists a leaf y′ �T v′ with σ(y′) = s, which
implies lcaT (x,y′)�T v′ ≺T v = lcaT (x, ỹ2) because of ỹ2 �T v3 6= v′; a contradiction
to xỹ2 ∈ E(G).
Hence, assume Case (2), i.e., there exists y ∈ L(T (v′))∩LH

r . Since t /∈ σ(L(T (v′)))
and, by definition, r /∈σ(LH

r ), the leaf y must be of color s, which in particular implies
v′ 6= v2. As t /∈ σ(L(T (v′))) and s /∈ σ(L(T (v2))), one easily checks that yz̃1 ∈ E(G).
However, as y ∈ LH

r and thus [y] ∈ LH
r , Property (C3.c) implies [z̃1] ∈ LH

r , hence z̃1 ∈
LH

r ; a contradiction since z̃1 ∈ LH
s .

In summary, we conclude that LH
c ∩ L(T (v′)) = /0, where c ∈ {r,s}, hence (ii.a) is

satisfied for c = t. Analogous arguments can be used to demonstrate that properties
(ii.a) and (ii.b) are also satisfied for σ(a) = s.
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(iii) Since, by definition, V (G) is partitioned into LH
r , LH

s , LH
t , and LH

∗ , the leaf b
must be either contained in LH

r , LH
s , or LH

t . Suppose first b ∈ LH
t . Then, since [a][b] ∈

E(G/S) follows from ab ∈ E(G), Properties (C2.a), (C3.a), and (C4.a) immediately
imply σ(a) = t. Moreover, by (i), there exists some v′ ∈ child(v) such that b�T v′ ≺T
v and, by (ii.b), σ(L(T (v′)))⊆ σ(LH

t ) = {r,s}. Hence, as σ(a) = t, we can conclude
lcaT (a,b) �T v. Similarly, σ(L(T (v′))) ⊆ {r,s} implies lcaT (b, z̃1) = v, thus it must
hold lcaT (a,b) �T lcaT (b, z̃1) = v because of ab ∈ E(G). In summary, this implies
lcaT (a,b) = v. Analogous arguments can be applied to the cases b ∈ LH

s and b ∈ LH
r .

Similar to Type (B) 3-RBMGs, we use Lemma 4 to finally identify false positive
edges.

Theorem 2 Let T and S be planted trees, σ : L(T )→ L(S) a surjective map, and µ a
reconciliation map from (T,σ) to S determining an event labeling tT on T . Moreover,
let the leaf sets LH

r , LH
s , LH

t , and LH
∗ be defined w.r.t. H, which is the S-thin version

of some hexagon H ′ = 〈x1y1z1x2y2z2〉 of the form (r,s, t,r,s, t) and |Nt(x1) > 1| in
(~G,σ) with color set S = {r,s, t}. Then tT (lcaT (a,b)) = � for any edge ab ∈ E(G)
such that a ∈ LH

? and b /∈ LH
? , where ? ∈ {r,s, t,∗}.

Proof Let v := lcaT (x1,x2,y1,y2,z1,z2). Again, we have [x1], [y1]∈ LH
t , [x2], [z1]∈ LH

s ,
and [y2], [z2] ∈ LH

r by Lemma 27 of Geiß et al. (2019) and thus, x1,y1 ∈ LH
t , x2,z1 ∈

LH
s , y2,z2 ∈ LH

r . Moreover, by Lemma 39(iii) of Geiß et al. (2019), there exist distinct
v1,v2,v3 ∈ child(v) such that x1,y1 �T v1, x2,z1 �T v2, and y2,z2 �T v3. As x1,y1 ∈
LH

t , x2,z1 ∈ LH
s , y2,z2 ∈ LH

r , Lemma 4(ii.b) in particular implies σ(L(T (v1))) = {r,s},
σ(L(T (v2))) = {r, t}, and σ(L(T (v3))) = {s, t}.
Now, if a ∈ LH

c , b ∈ LH
c , where c = {r,s, t} and c ∈ {r,s, t},c 6= c, it follows from

Lemma 4(ii.a) that lcaT (a,b) = v. On the other hand, if a ∈ LH
∗ and b ∈ LH

c , then
we also have lcaT (a,b) = v by Lemma 4(iii). Since σ(L(T (vi)))∩σ(L(T (v j))) 6= /0
for 1 ≤ i < j ≤ 3, we conclude from Lemma 2 that µ(v) /∈ V 0(S), which implies
tT (v) 6= . Therefore we have tT (v) =�.
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