The J.C.P. Miller Recurrence for Exponentiating a Polynomial, and its ¢-Analog
Doron ZEILBERGER '

In my research on constant term conjectures, I often need to expand powers of polynomials P™,
where m is very large, and P is (usually) a polynomial of several variables. I was frustrated by
the slowness of all the commercial computer algebra packages. For example, in Maple?™ | it takes
several days to do expand (( 1+ 3*x+ 2%x*x2 )**3000). When I asked Herb Wilf if there was
any faster way of doing it, he referred me to section 4.3 if [1] and chapter 21 of [2], but added, “It is
pretty fast, but not as fast as FFT (Fast Fourier Transform)”. When I looked it up, I realized that,
for a fized polynomial P(x) of degree L, the time-complexity and space-complexity are both superior
to FFT! The time-complexity of doing P(z)™ using FFT is O(mLlog,(mL)) = O(mlog(m)), and
its space-complexity is O(mL) = O(m). On the other hand, the time- and space- complexity of
m

expanding P(x)™, using the recurrence of J.C.P. Miller given below, are O(L?>m) = O(m) and
O(L) = O(1) respectively.

Although Herb Wilf claims that [1] and [2] sold lots of copies, and nothing in them can be called
obscure, my own inquiries among the experts of computer algebra revealed that few people are
aware of the method. The main purpose of this note is to bring this beautiful and simple method
to the attention of the users of computer algebra. Its second purpose is to point out a g—analog,
that should be useful to people, like myself, who investigate g—constant term identities.

We all know that the coefficients of (1 4+ z)™ are given by the binomial coefficients. One way to
compute them is via Pascal’s triangle. Alas, this will give us lots of useless information, namely,
the coefficients of (14 )™ for all m' < m. A much better way is to use the closed form formula
(%) = m!/(k!(m — k)!) for the coefficient, let’s call it a(m, k), of #* in (1 + z)™. An even better
method is, to use the equivalent statement that a(m, k) = m_TkHa(m,k — 1), starting with the
obvious initial condition a(m,0) = 1.

In the J.C.P. Miller method, one can replace (1 + z) by any polynomial P(z), and get a recurrence
for the coefficients a(m, k) of P(z)™, whose order equals the degree of P(x), and for which m stays
fixed, so we never have to compute values of a(m’, k') for m' < m.

Recall that (7)/2™, the coefficient of z* in (1 4+ 1z)™ is the probability of scoring k& Heads upon
tossing m (fair) coins. Likewise, the probability of scoring a total of k£ points, upon rolling a (fair)
die m times, is the coefficients of z* in (z+1z2+z%+z*+2%+2°)™ /6™. More generally, for rolling m
times an L — faced die, with faces marked a1, ...,ar, with probabilities p1,...,pr, the probability
of scoring a total of k points is the coefficients of z* in P(z)™, where P(z) = p1z® +...+ pLz®r.

m . mL

From now, fix a polynomial P(z) := . p;z?, and let P(z)™ := S.7"" a(m, k)z*. The analog of
the Pascal triangle recurrence is the following.
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Partial Recurrence: a(m, k) = Zfzo pia(m — 1,k —1).

Proof: Compare the coefficient of z* in P(z)™ = P(z)™~'P(z). 0

The analog of (T;) = m_,f"'l ( k’fl) is the following L-order recurrence, that enables one to recursively
compute the coefficients a(m, k) of P(z)™, starting with the obvious initial values a(m,0) = p{’,

and a(m, k) = 0, for k < 0. Tt requires 2L?m additions and 3L%m multiplications.

The J.C.P. Miller Pure Recurrence([1][2]): Assume that py # 0, then

L

a(m, k) = kipo S pillm + 1)i = K a(m, s — )

Proof: The original proof in [2] was similar to the one above: compare the coefficient of z* in
(P(z)™) = mP'(z)P(z)™~!. Another proof, that is easier to g-analogize, is as follows. a(m, k) is
the coefficient of z° in the Laurent polynomial P(z)™/z*. For any Laurent polynomial f(z), we
have that the coefficient of 2° in z-L f(z) equals 0. Hence

d P(z)™+!  P@)™ -1, P@)™
0= Cyo [90% T] = Cpo{—k[po+p1z+...+pLz"] oy +(m+1)[p1+2psz+. .. Lprz ]F} =

(z)™ Ple)™ Pz)™

P P(z)™
Crpo{—klpo—F—+P1— g+ - +PL =%

J+(m+1)[p1 oy

P(x)™ P(xz)™
+2p2 $(IC_)2 +LpL (ES‘?_)L ]}

bl

from which the pure recurrence follows. &

Given a polynomial of several variables P(x1,...,z)), we can similarly compute the coefficient of
20 ...z} in 2152 (P™F1/(z™ ... z")), to get a partial recurrence in ny,...,ny, but with fized m.
The details are left to the readers.

Finally, here is a g-analog. The g-analog of raising a polynomial to a power, P(z)™, is

P(x)P(qz)P(¢°z)... P(¢" 'z)

The g-analog of the J.C.P. Miller Pure Recurrence: Let P(z) = Ef:o p;z* be a polynomial,

with pg # 0, and let

P(z)P(qz)... P(z™ 'z) = Z a(m, k)z*

The coefficients a(m, k) can be successively computed from the following recurrence.
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Proof: Use the Stembridge-Stanton trick[3] that for any Laurent polynomial F'(x), the coefficient
of 2 in [F(z) — F(qz)] equals 0, with

P(g7'z)P(z)... P(¢™ 'x)
xk

F(z) =

and proceed as before. O

Appendix: The following are Maple procedures, Pxm and qPxm, implementing the two recurrences.
Pxm is much faster than both expand (P**m) and taylor (P**m,x=0,L*m+1). The function call for
Pxm is is Pxm(POLY,x,m), where POLY is the polynomial P(xz), x is the variable, z, and m is the
power. It outputs P(x)™. Similarly for gPxm. The programs are also available via anonymous ftp?
to math.temple.edu in directory pub/zeilberger/programs, by geting file Pxm.maple. This
directory contains many other of the author’s Maple programs.

Pxm:=proc(POLY,x,m) local n,g,i,L,p,P: P:=expand(POLY/x**1ldegree(POLY,x)):L:=degree(P,x): for i from
0 to L do p[i]:=coeff(P,x,i): od: g:=p[0]**m: for n from 1 to L*m do g:=g+ sum(((m+1)*’i’-n)*p[’i’]
* coeff(g,x,n-’i’),’i’=1..L) /n/p[0]*x**n: od: g:= expand( g*x*#*(ldegree(POLY,x)*m)):g: end:

qPxm:=proc(POLY,x,m) local n,g,i,L,p,P: P:=expand(POLY/x**1ldegree(POLY,x)) :L:=degree(P,x): for i from

0 to L do p[il:=coeff(P,x,i): od: g:=p[0]J**m: for n from 1 to L*m do g:=g- normal(sum( (q**(-’i’)-
g¥*(m*’i’-n))/(1-g**(-n) ) *p[’1’] * coeff(g,x,n-’i’),’i’=1..L)) /plO]*x**n: od: g:= expand( g*x** ( lde-
gree (POLY,x)*m)): taylor(g, x=0, degree(g,x)+1): end:
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For the sake of novices, in case they still exist, let me recall the steps. 1) ftp math.temple.edu 2)You logon as
anonymous, with password [your e-mail address]. 3) You type: cd pub/zeilberger/programs. 4) You type: get
Pxm.maple. (If you want all the programs, type mget *.*) 5) You type quit.
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