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A TECHNICAL REMARK

"Formula (m,n)" means "Formula (m,n) in the present 
chapter". If referfence will be made to formulas from 
another chapter, then it will be preceded by the relevant 
chapter's number; e.g., 1 (3.2) means: formula (3.2)
in chapter I .
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CHAPTER I.

INTRODUCTION

This thesis is concerned with discrete analytic functions 
2A function f: Z £ from the two dimensional lattice to

the complex numbers is said to be discrete analytic if for
oevery (m,n) € Z

f(m+l,n+l) - f(m,n) f(m,n+l) - f(m+l,n) , x1+1 - i_i

If we embed Z in C by identifying it with the set
of Gaussian integers {m + in} we observe that (1) is an 
'analyticity' condition: the difference quotients along the
two diagonals of each unit square arc the same. Equivalently, 
discrete analytic functions can be characterized as the solutions 
of the homogeneous partial difference equation

f(m,n) + if(m+l,n) - f(m+l,n+l) - if(m,n+l) = 0 (2)

The theory of discrete analytic functions was initiated by 
Jacquelline Ferrand-Lelcng [13] and further developed by 
Duffin [6], Duffin and Duris [7], [8], Hayabara [16], Deeter 
and Lord [4], Duffin and Peterson [9] and others. Duffin [6] 
gave discrete analogues of: The function z~^ , the Cauchy 
integral formula, Douiville's theorem, Hornjack*s. inequality,
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polynomial expansion and the Hilbert transform. However,
the proofs of most of the classical theorems of Complex Aanalysis
do not carry ^over directly to the discrete case because they

\

rely heavily upon the fact that the class of analytic functions 
is closed under pointwise multiplication. This is not the 
case for the class of discrete analytic functions and consequently 
new techniques had to be developed. That is the subject of 
this research.

Two basic tools are used. Let us describe them briefly:

Ci) Formal Power Series. With any discrete analytic 
function f: Z+ x Z -»• £ on the upper-right quarter lattice
we can associate a formal power series

00

f(X,Y) = I f(m,n)XmYn 
m,n=0

in terms of which

(l+iX)4>f(X) + (l-iY)i|;f(Y)-f(0 ,0)
f(X,Y) =

1+iX - XY - iY

(in the algebra of formal powers series) where » *Pf are
the ’boundary' series

CO 00

<MX) = I f(m ,0)Xm ; -CY) = I f(0,n)Yn .
r m=0 n=0

In terms of (<Pf,ipp) , Duffin's operations of ’integral1,
'derivative',’convolution', etc., take a simple form which can 
be used to advantage to give simpler and quicker proofs to earlier
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*results. It is also helpful in proving a discrete Phragmen- 

Lindelof principle and in the study of Taylor expansion for 
discrete analytic functions.

(ii) Duality Methods. Any discrete function f: £
induces a linear functional on the algebra generated by
the indeterminates {z,z""'1',w,w~'*'} which‘is determined by
T^(zmwn) = f(m,n) and extended by linearity. f is discrete
analytic iff T̂ . annihilates the ideal (l+'iz-zw-iw) vft . If
f satisfies an appropriate growth condition then can be
extended to a continuous linear functional on an appropriate 
topological vector space or Banach space. For example, if
f is of polynomial growth: |f(m,n)| i C(|m| + |n|)k , then

can be extended to be a continuous linear functional (alias
• • • oo Oa distribution) on C (T ) . If f is of exponential growth:

|f(m,n)| < C R ^ S ^  then T̂ . can be extended to be a
continuous linear functional on the Banach space of bounded
analytic functions on the polyannuliis < |z| < r } x { ^ <  |w| < s}s
(r > R, s > S) . These ideas are used to prove discrete
analogues of Liouville's theorem and of -the.: Paley-Wiener theorems.
As already pointed out, the classical proofs do not carry over.
However, our duality methods also yield new ’fancy* proofs to
classical continuous theorems. This is illustrated in detail
in the 2n<̂  section of Chapter III (for Liouville’s theorem).

Duality methods apply in both the discrete and continuous
9 9  2 2cases because the dual groups T~ of Z“ and R of R

2can be embedded in (5
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This thesis deals with discrete analytic functions, 
that is solutions of partial difference equations (2).
However, our duality methods can be used just as well to the 
study of solutions of general partial difference equations 
with constant coefficients and even to systems of such equations. 
A future plan is to give a general theory of partial difference 
equations with constant coefficients in the -spirit of Ehrenpreis'
[12] theory of partial differential equations with constant 
coefficients. A first step towards the general theory, demon­
strating the power of duality methods, is given in the appendix.

Finally, let us present a summary of the contents of this
thesis. In Chapter II we introduce formal power series and show 
how the notions of 'integral', 'derivative', 'polynomials'
and 'convolution products' (defined by Duffin [6] and Duffin
and Duris [7]) translate to the language of formal power series.
The power of this mechanism is demonstrated by giving new short
proofs to results of Duffin [6], Duffin and Duris [7] and
Deeter and Lord [4].

2In Chapter III we use distributions on T (the two 
dimensional torus) to give a short proof of the discrete 
Liouville theorem, first proved by Duffin [6]. Then using 
ideas of the previous chapter, we derive a discrete Fhragmen- 
Lindelof principle and finally we use Fourier methods to give 
discrete analogues of the one-sided Paley-Wiener theorem and 
of a Paley-Winer-Schwartz theorem.
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Chapter IV deals with the McClaurih expansion for
discrete analytic functions. The McClaurin expansion given
by Duffin and Peterson [9] is unsatisfactory because in terms

00

of their basis {z^n }̂ , the sum J a z^n  ̂ defines a discrete
0 n
1/n

entire function only if Tim |n! . | < 2 . This is a much

more stringent requirement than the condition lim |an | ^ n = 0

for the power series J anzn an entire function.
In fact a complete analogue is impossible, i.e., there exists
no. basis (pn (z)} for the discrete analytic polynomials such

00 .

£ anpn (z) converges for every z whenever lim |an | n = 0 . 
n=0
However, we define a new basis {Trn (z)} for which £ anun^z^

converges on the upper right quarter lattice whenever lim lan l ^ n =

The chapter ends with a discussion of the limiting behavior of 
the expansion as the mesh size tends to zero.

-The final Chapter V gives some discrete analogues to 
theorems on entire functions of exponential type (Boas [2] 
is the standard reference for the latter-). We give a discrete 
analogue to the 'Borel transform' and the 'conjugate indicator 
diagram' and establish a discrete analogue to the celebrated 
two-sided Paley-Wiener theoiem.

The two appendices apply ideas developed in the body of 
the thesis to problems outside the realmv of discrete analytic 
functions.
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The first gives uniqueness theorems for harmonic 
functions of exponential growth.' It uses duality methods to 
generalize to Rn a theorem proved by boas [3] for R2 . The 
second appendix deals with the generation of new solutions to 
a partial difference equation from known ones: Given a partial
difference operator with constant coefficients P we are 
.interested in binary operations (f,g) f*g such that if Pf=0 
and Pg=0 then P(f*g) = 0 . Duffin and Rohrer [10] gave 
one such binary operation. We give a whole class of such 
binary operations which both simplify and extend the work of 
Duffin and Rohrer [6], and at the same time generalize the 
results of Duffin and Duris [7].
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CHAPTER II.

A FORMAL POWER SERIES APPROACH TO THE THEORY OF DISCRETE 
ANALYTIC FUNCTIONS.

1. INTRODUCTION.

In this chapter a formal power series approach to the 
theory of discrete analytic functions is given which besides 
giving new insight to the theory, makes many proofs much simpler 
and shorter. To illustrate the method, new proofs are given 
to most of the results in Duffin and Duris [7] and Deeter 
and Lord [4].

If a function is discrete analytic in a simple region 
(a finite union of unit squares which is simply connected) 
it can be discrete analytically continued to the whole plane. 
Until Section 9 we shall assume that cur functions are 
defined.and discrete in each unit square of the quarter plane

4* 4*Z x Z  ={(m,n) ;m,n integers, m,n £ 0}

Since functions defined and discrete analytic in the other 
quarter planes can receive a similar treatment, our assumption 
involves no loss of generality.
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The key idea of this chapter is to associate with each function
*t* "}* *f : Z xZ +2 the formal power series 

00

• f(X,Y)= Z f(m,n)XmYn . ' (1.2)
m=0 ' ■
n=0 t

2. ‘ ‘ THE RING OF FORMAL POWER SERIES IN TWO VARIABLES *

The class of formal power series . .
Rvv={ Z a XmYn ; a € 0 }X Y  n mn mn ■ .m=0

n=0
endowed with the usual rules for addition and multiplication:

(X a XmYn) + (Xb X^Y11) =X (a +b ) XmYn mn mn mn mn
£yP m ri

( I h X mYn)(Xbrr̂ XmYn )= I ( Z 1 -.a, b v X1̂ ™mn mn r k=0 k,r m-k,n-r*m,n-u r_0
is a ring with an additive identity zero 0 (a =0 for each m andmn
n) and a multiplicative identity l(agg=l , amn=0 otherwise).'

* . »
Since the product of any two non-zero formal power series is non­

zero, this, ring is an integral 'domain. An element F(.X,Y) of R^y 
'has a multiplicative inverse iff agg=F(0,0)^0 and then

[a -F(X,Y)] , m a -F(X,Y) n
F(X,Y)-1=(.a0,Cl-—  3)-1=a“J I  )n ;

00 a00 00 n=0 00
the infinite sum on the right defines a formal power series since the
coefficient of each term is a finite sum and there are no problems of

• i
convergence. Of course, the inverse> when it exists is unique, since
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^XY kas no zero divisors.

Later we shall also consider the ring of formal power series
of one variable

{ £ a Xn} . 
n=0 .

This is a subring of R ^  and also an integral-domain.
\ • *v : The following lemma will be needed-later:

‘Lemma 2.1: Let <J>(X)= X a Xm . The equation ij;(X)̂ =(j)(X) has a solu-
T  m=0 miion ty(X)£Rv iff there exists an integer n̂ »0 such that the first

ii non-zero coefficient of <f> CX > is a , . In this case >J>(X) is givennk#

»>>(X ) = Xn (a . )1/k{1+ (5g— X+-a— -t2_X2 + ...)}1/k (2.1)
nK nk nk

•where the right hand side is developed according to Newton’s binomial 
expansion

(l+X)1/k= ?n-0 n 
• •

Proof: Verify formally that ty(X)k=<}>(X) "to prove sufficiency. The
necessity is trivial.

3. REPRESENTATION OF DISCRETE ANALYTIC) '.FUNCTIONS AS FORMAL POWER SERIES

•j* "j*Let f : Z xz be any function and associate with it the formal
power series

.. f(X,Y)= f f(m,n)XmYn .
m=0 . .
n= 0 . . .

' • • * 
Then * .
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(l+iX-XY-iY)f(X,Y)= (l+iX)<!)f (X) + (l-iY)i]/f (Y)-f(0,0)- Z LfCm,n)Xm+1Y
m=0

' ■ ■ , , > n=0 (3.1)
where Lf(m,n) = f(fn,Ti) + iffm+l,n) - f(m+l,n+l) - if(m,n+l) ,

$-(X)= Z f(m,0)Xm 
m=0

i|̂ (Y) = Z f (0,n )Yn •
n=0 . •

Now the last term vanishes for discrete analytic functions and so.for
such f

Cl+iX-XY-iY)f (X,Y)=(l+iXHf+(l-iY)i|>f-f(C,/0)
Multiplying both sides by (l+iX-XY-iY)*"^* :

4>-(X)(l+iX)+i|>~(Y)(l-iY)-f(0r0) - 
f(X,Y)- 1+iX-XY-iY ’ * (3.2)

^This confirms the self evident fact that a discrete analytic function 
is uniquely determined by its values on the axes. In fact, (3.2) is a 
condensed form of formula (7) in Duffin [6].

. V

Now let ' 1
<J>, (X)= Z f(m,k)Xm 

_ K m=0
for k=0,l,2,... so that <J>n (X) = <j>jr(X)

u
and

f(X,Y) = Z <J>, (X)Yk ' *
> “ • k=0 *

Introduce this notation into (3.2) and comparing coefficients of
Y yields

j. f\/\ X+ij.f(0,l)-if(0,0) /o >3\
l + T x— I+ Ix  ^  (3 , 3 )

/

and by applying this formula to the function
fk (m,n)=f(m,n+k) '
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le
we obtain

x rv\ X+iAf (0,k+l)-if (0,k) • N
W  -----^T+Ix-- *—  •

Formula (3.4) gives a convenient way to evaluate inductively the values
4* 4*of f inside Z *Z from its values on the axes.

4* 4*Since a discrete analytic function in Z xZ is uniquely deter­
mined by the pair. and evidently each discrete analytic func­
tion determines such a pair, there is a (1-1) correspondence between 
discrete analytic functions and the elements of the set 

■{(4>(X),1|»(Y)) ; <J>(X)£RX , \{>(Y)eRY ., <}>(0)=Ti>(0)} .
4.  4 ^' In the following, a discrete analytic function in Z *Z , f , will 

be identified with the pair referred to as the "function"
(<f>f »^f) • -v

Example 3.1: The discrete analytic function f(m,n)=C(C constant)
corresponds to the pair ((J)̂ ,̂ )̂ where

<}>F=C E Xn=C(l-X)"X 
r n=0

¥f=C E Yn=C(l-Y)”/' ^
n=o

and

5 K 'I):Cj o x V : n i i w T
n= 0

Example 3.2: The function f(m,n)=C(-l)m+n corresponds to the pair
(C Z.(-l)nXn ,C Z (-l)nYn )=(T r̂r, ySv) 
n=U n=0 1 1

and
f(X,Y) = C g (-l)n+nXmYn=u + x ^ (1TYy 

m= 0 
n=0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17'

Duffin [2] termed a function f which assumes the value on
the odd lattice points and the value e2 on.the even lattice points, 
a biconstant. This function can be written as 

(l/2);(e2+e1)+(-l)m+na/2Xe2-e1) .
Thus, the general form of a biconstant is

(1/2) (e2+el)(irx5T^Y)^1/2''(e2"el )(l+X,I+Y)=((l-X) (1+X).5'(l-Y)(l+Y)'  ̂'

4. INTFGRAL AND DERIVATIVE
\ * \

Duffin C5] defined a "line integral" by the rule
b m
J f(z)3z= I (f +f , n)/2 - (4.1)J t n n—l n n—la n=l

where a=Zg,z^,... . zm=b a chain of lattice points (that is

|zk-zk + i l=:L and ^ ^ k ”  •

He showed that if f is discrete analytic in a region then the
sum is independent of the particular chain connecting a to b and 
hence (4.1) is well defined. He defined the indefinite integral F 
of .f ,

•z ’
F(z)=J f(z)3z . (4.2)

a - v

Since the starting point of’the integral is arbitrary, F(z) ist
only defined up to an additive constant. Duffin also showed that if

$

. f(z) is discrete analytic in a simple region then so is F(z) .

Now, suppose f= ( $ £ , and F= (<{>p,ij»p) . We would then like to
find terms of and $p in terms of 'j'f *

‘ By (4.1)'with a= 0 we have,
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18 . .

2F(m,0)=f(0,0)+2f(1,0)+ ... +2fCm-1,0)+f(m,0)
=2[f(0,0)+ ... +f(m,0)D-(f(0,0)+f(m,0)) . '

Thus
2ZF (m, 0 )Xm = 2 j i ^ f (X)-cj>f (X)

\
and we get •

* _1 1+Xx f(0,0)
F~2 l - X f -2(l-X) . (4.3a)

Similarly,

V l  g f V f i & T 1 ' CH. 3b)
ThusJ the operation of integration is, \

(4.(X),^(Y))^|(^(X)-^g^,i^^(Y)r-if̂ ° ))-HC(I^ , I^:) (4.4)

Where C is an arbitrary constant. If the starting point of integra-
z• tion in (4.2) a=0 then F(z) = J f(z)3z and in (4.4) C=0 .
0

Duffin also defined ̂ fche^dual £■' of discrete functions by the
rule

Thus
f“ (m,n)=(-l)m+nf*(m,n) .

f“ (X,Y)=f” (-X,-Y)
and

( ( X) , (Y) )”= (<J>* (-X) ,\|j* (-Y) ) .
^We are nbw in a position to give another proof of the following result 
which was first proved in Duffin [6], p. 341.

Lemma 4.1; '

Let F(z) be a given discrete analytic function. Let a and b 
+ +be points of Z xZ and let k be an arbitrary constant.
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Then

z
f(z)=(4/F“3z+k)“b

+ +is analytic in Z *Z and 
z

F(z)=/ f(z)3z+F(a) 
a

Proof: If F= (4>
F"=($*(-X),Y*(-Y)) .

(4.5)

(4.6)

So,

By (4.4.),
4/ F"3z+k=2(0*(-X)ii|- £Il^,iu/*(_Y)il| - +kl(^,_i_)

(k^ some other constant).

Finally,
zrr/-NT-_-r . »(0) xl+X /w /.V n1-Y y(0)xi(l+Y)-.Jf (~)3z-[ (<KX)pp^ 1+X.l-X ,”;l(v ^ )i+Y ~ 1+Y' (1-Y)

*/ 1 1+X 1 i 1+Y 1 \
~  T=y)K ^I+X'l-X 1-X’l+Y r=Y

 _____ :----~7~Ss'
' 0

Thus,
F(z)=/ f(z)3z+F('C,0) .

0 •
Duffin C6 3 used formula (4.5) to defined f as the derivative of 

F . Formula (4.7) says that the action of taking derivative is
( $ ( X ) , 4 . ( Y ) K 2 ( 4 . ( X ) ^ | -  - - 4 X T 7 > > + k < j j x ’l T Y ) •£lt- 7 >

(k arbitrary constant) •.
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So the derivative is unique up to addition by a constant multiple 
of (-l)m+n (example 3.2).

5. p o l y n o m i a l s”
In Duffin [6] (Section 5), polynomials which are discrete 

analytic everywhere were considered and it was shown that if f 
is a discrete analytic polynomial than the integral F is a 
discrete analytic polynomial. A sequence of discrete analytic 
polynomials was defined by the relations

• z(n+1) = (n+1) / z(n)9z ; z(0) 2 1 .
0

_(0) _ , 1 1 \So, z - (1-x , 1-Y)

„(1) _• , ,1+X . 1 1 i(l+Y) 1 i X iY
z ” x/z ^1-X 1-X 1-X5 (1-Y) ' 1-Y ” 1-Y (i-X)2 ’ (l-v)2

(k)Since z (0) = 0 , k=l,2,3,... one gets

„(n) _ , n! Xd+X)11"1 (i)nn! Y(l+Y)n_:i\ „ ,r „z - i , — ——=—  -------- n-l , 2 , 0 . . .  lb.2
2n (1-X)n 1 2 (1-Y)n

The discrete analytic exponential function

2+tNx /2+it-i(z,t) = (£1)* (|i||)y

was introduced by Ferrand [3T and it is seen that

e(z,t) = ( 12+t 5 2+it y )
1 2-t 1 2^It

and

* By f(z) we mean f(x,y) , where z = x+iy , ( x , y ) € Z x Z
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• ,1+iX , 1-iY
, 2+tv 2+it \  ' "

e (z ^  _ .^Tt _ • 1^  1+a.X-XY-o.Y - -a .21tx ) a _ | l g Y) .

By using (5.2) one can reprove (Duffin [6], formula (139)),
„ _(n).n / '

e(z,t)= Z /  (J11 <2) . . •
n=0 n * .

6. A CONVOLUTION PRODUCT FOR DISCRETE FUNCTION THEORY _

In Duffin and Duris C 7j three types of convolution products were
defined for discrete analytic functions. . •

The convolution of f,g is defined as 
z

f*g=/ f(z-t):g(t)3r (6.1)
0

where
b • m ,
J f(z):g(z)3z= Z ^Cf(z )+f(z 1)]*Cg(zn ) + g ( z ] *(V ^ n - l ^a n=l

where a=Zg,z^,...,zn=b is a chain connecting -.a and b . .
I

It was shown in C73 that if f,g are discrete analytic then so 
is f*g .

Fo? <}>(X)eRx define 

- (1+X)4-(X)-cf>(0)9(X; -  ---— .

Then, in terms of f= ( )  , g=^ g ’̂ g^ ’ f*g= (<f>£*g>^f*g) given

- w H ’ g • • (6-2)

Also, (0) = 0 so’ f "g
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<Ff* =̂ - (1+X)<{> _<j) and if h is discrete analytic
• ' . . .

X— “ X (1-+ X ) “ ~• ~
/̂< f *g) *h= f *g^h= IS ^f^g^h=<̂ f * (g*h) *

>
Similarly, ' 1

^(f*g)*h~^f*(g*h)
I i

and we obtained a simple proof of Duffin and Duris [7]’s results that
the convolution product is associative: (f*g)*h=f*(g*h) .

\

Invoking (5.2),

, - 1 1 __• 1___  X(l+X)n~1 (l+X)X(l+X)m"1 (l+x') f ^
z(n)'Vz (m) 4 2n”X 2m_1 (l-X)n+1(l-X)m+1X 
n! m! .

_ 1 X(l+X)n+m . •
r-<P'„n+m ,, V vn+m+2"v (n+m+1) 2 (1-X) z _
• (n+m+1)!

Similarly; « (n) . (m)= 4> (n+m*l)
Z *Z Z______ __n! m! (n+m+1)J

Thus, (ref. l 7J,p .2G5)

(n) „(m) (n+m+1)z z   z_____
n! * m! ”(n+m+1)!

- ■ The prime convolution product

The Prime convolution product of f(z) and g(z) was defined 
in ref. C~TJ to be

f*fg=J f(z-t):g'(t)8t+f(z)g(O) ' (6.3)
0
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where • • •

b ' •%
/f:g'8z =2* X (f<zn ^+ f C 2(zn )“g(zn- 1 ^a n=i

and it was shown there that if f,g are discrete analytic, so is 
f*'g . '

The coefficient of Xn"^ iR is

|Cf(n)+f(n-l)][g(l)-g(0)]+i-Cf(n-l)+f(n-2)]*Cg(2)-g(l)]+ ...'|[f(n)+f(n-l)][g(l)-g(0)]+|

+[f(l)+f(0)]Cg(n)-g(n-l)]+f(n-l)g(O)
Thus, , Cl+X)4»̂ -4»̂ CO> *.(1-X)«*»_.-4»_C0> •

♦f*>g4 ---- 1" 1— ---- "x — vx+j.g(0H f

-ivX tX  oa ^4-a f - i k v X  X4XM V 2 V +V 0 Hf=̂xM g"x Vf+V 0} ̂f
_ _ x?f+<»f(a) -i    _ 4>(0) • 4 <o>*

‘§Xtftg-Xtgtf*tg (0)-4fcl = ^ f ^ g - X*f^g--iTx-:i+-ST T X

iy-r v xJ- X^g <'f(0)'t'g(°)_X(l-X)r j- '<lf(° ^ g (0)
"2X<!,f^g" ^ f " W .  1+X ”2 (1+X) f g 1+X

Y(l-Y)  ^f(0)if> (0)
•̂Pi’c I r r ~ 0  (  1 +V '»̂ -F̂ cr+ 1 +Y

Similarly,

f * * g~2 Cl+Y )^f^gn 1+Y"
Thus,

and ? g (6-‘,)

Wow, <|)(X) ,^(X)6R.. , <J> (X )=ifKX )-><}> (X)-^(X) = constant. Since f*'g(0)=A
,f(0)g(0)=g*!f(0) and

' ' ♦f*'g-(V ^ )?,f W lf
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it is seen that the prime convolution product is commutative.

Also, from (6.4),
____________ 1-X 2—____________ ;_________  \
^(f* ,g)*lh“ ̂ 2  ̂ ^f^g^h'^f* 1(g*’h)

> # ...

and [(•f*,g)*,h](0)=f(0)g(0)h(0) = [f* 1(g**h)](0) it follows that 
(f* • g)* »h=f*« (g* «h) .

and the associativity of the prime convolution product is proved.
‘ ' ^ f '' . Let us prove that /  ■

(n) _(m) (n+m)
g-i— * * (n ,m>l) . . (6.5n! ml (n+m)!

'j. ■ 1 (1+X)n , . , ̂
u - x >n+1

n!
So,

*z(n>4t2 ( m r 2n-1 Cl-X)n+1 2m_1 (X-X)m+1 2 _2n+m-1 (l-X)n+m+1
•__1__ (1+X)n . 1__ (1+X)m .(-1-Xj_ 1 .(1+X)n+m

n ! m! 
Similarly,

_ (n) (m)^ (n+m)z_* t z  z______n! m! (n+m)!
Of course, .
• •

(n) (m) . (n+m)
>

obtaining (6.5)
\

The double prime convolution product 

The double prime product was defined in [ 7 ]  by
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9 £where ^  is the discrete analytic derivative of f, defined 
in Section 4. Invoking formula (4.7) and (6.2.) we get

(1 -X)4>p- M 0 )  (1-X)4> -<f> (0)<f> , = (______ ■__±___ y (_____ _i?__s___) . y9f*"g  ̂ 4X ; 1 X ; X

Let. for <P £ Rj,

J = (l-X)4>-$(0)
X

Then.

*fi‘g ; i «f*g * f » 8  = a  ^ * 8  (6-6)

from which the commutativity of the double prime product is seen. 
Also,

a X 2 2 (1-X) V  _ X(l-X) 2 X 2  -
“ 4 M g  4 4 “ "16 f g h ~ f*"(g*"h)

Similary for the ^ ’s ; thereofre
/

(f*»g)*t.h = f*.t(g*i.h ) .

7. New Proofs to some results in Deeter and Lord [4j .
In this section it will be shown that Theorem' 1, Lemma 2 and 

Theorem 7 in Deeter and Lord [4] (here propositions 7.1, 7.2, 7.3 
respectively) are immediate consequences of formula (6.4).

Deeter and Lord [4] defined the mean of the function on the 
positive x-axis and y-axis respectively by,

F(m,0) = ^ [f(m,0) + f(m-l,0)] m=l,2,...

F(0,m) = ~ [f(0,m) + f(0,m-l)] m=l,2,...
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26So, in our notation, v
. * * * ' '* \

f f(m,0)Xm=X$~ f f(0,m)Ym=Y^. . (7.1)
m=l 1 . m=l 1

If f has mean zero on the x(y) axis then )s0 .

Proposition 7.1 (Theorem 1 in [4 3)
! \If two discrete analytic functions are such that the mean of either

function is zero on an axis then the mean of their (prime convolution)
product is zero on that axis.

Proof: Immediate from formula’ (6.4) .

Proposition 7.2 '(Lemma /  in [4])

Let f,g 'be discrete analytic and satisfy,

f(],0)= ... =F(n-l,0)=0, F(n,0)*0 

g(l,0)= ... =g(m-l,0)=0, g(m,0)7*0

then f“rg(l,0)= ... =f * i g(m+n-2')^0 > • /
and f*1 g(m+n-l ,0 ) = f (n, 0)g(m,0 )t*0

n-1Proof: From (7.1), the. leading term of is f(n,0)X , the
leading term’oi: is g(m,‘01)XÎ"k̂  and thus the leading term of

» « * *
i’s f(n,0)g(m,0)Xn+in"’̂  and the conclusion follows from (7.1).

\

Proposition 7.3i (Theorem 7 in [43).

Let f be ^iscrete analjr^iyc, a necessary and sufficient condition 
for the existence of a solution of the equation

 .... -*'■■■■ ... ---■— ----------   r.7,***n )>*i»— . ■'
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is that there exist nonnegative ..'integers - m and n such that

f(l,u)= .. . *=f (km,0 ) = 0 , jf(km+l,0)^0

f (0,1) = ... =f(0,kn)=0 , f (0.kn+1'^0

Proof: Since ,

■ l-Xvk-l/T- xk<{>g*ik= (“2“ ) C*g >

.l-Yxk-l,-r xk

\ •

V * = (¥ >  < V

the conclusion follows from Lemma 2.1.

8. DISCRETE VOLTERRA INTEGRAL EQUATIONS X

Let f(z) and k(z) be discrete analytic functions in a rectangu-
. lar region R which (without loss of generality) will be assumed to be 

+ + %Z *Z . Duffin and Duris [7] considered the problem of finding a dis­
crete analytic solution u(z) to the equation

/ ‘ ,z
u(z)=f(z)+X/k(z-t):u(t)3t . C8 * 1>

0
Where X is an arbitrary constant. Translated to our language (8.1)

. • •
•* •reads, .

♦u=tf4 x¥ u  t8-2£)

•’ (8.2b)✓ *
Thus _

X^v
V <,f+T SC'i'u(1+X) ^ u C0)3 ' .(8.3a)
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■ . . 2 8  

W t W 1+Y)^ u (0):1 • (8.3b)

Now, if a solution u(z) to (8.1) exists, 4>u ( 0 )=tf*u ( 0 ) = f (0 ) by (8.1).
So, _ '

\ * 
*uci" r >k (1+x)3=<i,f " ‘irf(0) (8*4a)

■ i ^ v
^uCl~ ^ k (1+Y);i::̂ f"“ frf(0) • *■ (8.4b)\' Theorem 8.1 (Theorem 5.2 in ref. -[7])

* • + 4*Let f(z) and k(z) be discrete analytic functions in Z *Z ’•
Tlien there exists a unique function u(z). discrete analytic in
Z+xZ+ such that *

z
u(z)=f(z)+X/k(z-t):u(t)8t (8.1)

0
for all values except possibly X=l/h[k(0)+k(h)] where h equals 
+1, + i.. (This is not exactly the original wording but it is equiva­
lent to it).

Proof: A solution of (8.1) exists iff there is' a solution of (8.4a),
(8.4b) simultaneously. A solution of (8.4) exists (and then is unique) 
if the coefficient terms of both

l - ^ U + X )  and l-i^(l+Y)

are not zero; i.e., if

. l^(k(0)+k(l))
’ * N

l/~-(k (0)+k (i))
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and in this case the unique solution u=(<J>u ,^u ) is given by:
. \ ' -I 1

V (V ^ f(0))CH ^ k <1+x):r .

iXfo . . .
• ■ V cV “ i r i f ( 0 ) ) C l - i ^ k a + Y ) : i  •

If the condition on X is not satisfied, i.e.,
X=4/[h-(k(0)+k(h))] . ’

for either h=l or h=i . Then a solution may or may not exist accord­
ing to the leading Term of the rih.s. of (8.4).' The solution is not 
unique iff

l - ^ k (l+X)H0 or 1 - jp- lj7k -(1+Y) = ̂ 0
CL * 6 * j

a _4 X ^ k (0) 
^k'X 1+X0  K A (1+X)

or
 ̂-4 Y „ A (0)Vk T X  (1+y)2 l+Y

It is also possible to prove, by the method of this chapter, most 
of the results in Duffin and Duris [8].

9. A REPRESENTATION FORMULA FOR THE HALF PLANE X.

Consider the abelian group’ T of all formal power series

X a XmYn (9.1)mn v Jm,n=-°°
(note that we allow here also negative powers).
Define, again,

• la nXmYn+XL XmYn=Z(a +b )XmYn . mn mn. • mn mn

: - 
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Let,
A=Ia XmYn ; B=Eb XmYn ' .mn • • ran .

■̂ -"C=AB is said to exist if -

C = f? b , a ,
m n , ]c=-~ r,k m_r>n“kOO

converges absolutely for each m,n integers.

- xi The following lemma is trivial

Lemma 9.1: If A,B,C€T^y and B has only p. finite number of non-
*
z^ro terms and if both (AB)C and ACBC) exist, then (AB)C=A(BC) .V 9 '

Now we can reprove the following representation' formula from 
,Duffin [.6] (p. 347).

Theorem 9.2: Let q(z) be a discrete function such that
Lq ("Z) = 0 , zi*0 Lq(0) = l (9.2)

and let f(z) be a function which is analytic in every unit square of
the. upper half plane; suppose that for each fixed Zq

f (z)q(z-zQ)=o| zl”^ ImzS»0 \  0.3)

Then if '
0 (z)=q(-z)+iq(l-z) (9.4)

we have
f(zc)= f f(m)6(z0~m) , ImZg^O (9.5)

m=-°°
\

and the r.h.s. is zero for ImZg<0 .

Proof: Let £= E q(m,n)XmYn , from (9.2)
m,n=-°°
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(l+iX~1-X~1Y~1-iY''1)q=l .

Let q(z)=q(~z) then

c ^ X ”1 ^ ”1 ) . .

Thus, • -
(l+iX-XY-iY)§=l . •

Now ‘
0(z)=q(-z)+iq(l-z)=q(z)+iq(-l+z)

£•= (l+iX)c[ .
So, • • . .

(l+iX-XY-iX>0=l+iX • (9.6),
Let, •
• • f(X,Y)= Z Z fUn+nOX^Y11

n=o m=-°°

4> Q(X) = Z f (n)Xn .
■ n=-»

Since f is discrete analytic in the upper half plane, similar 
considerations as in section 3 show that

■ f(X,Y)(l+iX-XY-iY) = 4/0 (X)(l+iX) (9.7)’

Multiply both sides by 0_(X,Y) (The product exists by virtue of 
condition (9.3))

[f(X,Y)(l+iX-XY-iX)]O_(X,Y) = C({.o(X)(l+iX)]0,(X,Y) .
By Lemma 9^1
\ f(X,'Y)[(l+iX-XY-iY)6(X,Y)] =' ^o(X)t(i+iX)0(X,Y)]
since all products involved exist. By (9.6)

f(X,Y) (l+iX)=<{)o(X) C(l+iX)0(X,Y): = (|)o(X)[£(X,Y)(l+iX)]=[4)o(X)-e(X,Y)](l+iX)
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Let F(X,Y) = f (X,Y)-<J>g (X)9_(X,Y) . . (9 .8)

We want to show F(X,Y)s»0 and then it would follow that

f (X,Y) = <{>q (X)9_(X,Y) (£.9 ).

which is the same as (9.5) .

From (9.8),
• \

F(X,Y)(l+iX)sO • ' (9.10)
\ •

But
F (X ,Y )(1+iX-XY-iY) = f(X> Y )(1+iX-XY-iY)- [ <J>Q (X).0(X , Y ) 3 (1+iX-XY-iY) =

= <J>g(X)(l+iX)“<}>Q (X) [_9(X, Y) (1+iX-XY-iY) ] = 4>0 (X) (l+iX)-<{)0 (X) (l+iX) = 0
‘ \

So -
• F(X,Y)(l+iX-XY-iY)=0 . \  -(9.11)

Multiply equation (9.10) by (1+iY) and subtract from (9.11) to get
* % • •1 .

F(X,Y)2iYaO •' • .
;. /  , ^  • 

and consequently F(X,Y)"0
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CHAPTER III.

SOME NEW PROPERTIES OF DISCRETE ANALYTIC FUNCTIONS.

1. Introduction.

In this chapter we prove discrete analogues of the 
classical theorems of'Liouville, Phragmen-Lindelof and 
Paley-Wiener.

2. Discrete analytic functions of polynomial growth.
Duffin [6] defined a bipolynomial to be a discrete analytic

A
function which assumes the values of one polynomial on the even” 
lattice points and the values of another (possibly the same) 
polynomial on the odd lattice points.

Theorem 1. Every discrete analytic function F of polynomial 
growth is a bipolynomial.

Proof: Assume h = 1 , (the proof for general h is similar)
and let F(m,n) be a discrete analytic function of polynomial 
growth: |F(m,n)| < C(|m| + |n()^ for some constants C and h
Then (Edwards. [11], Chapter 12)

The lattice point (mh,nh) is said to be even [odd] if 
m+n is even [odd].
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F is the Fourier transform of a distribution 
D on the 2 dimensional torus T^( = Z^) ,

F(m,n) = D(eimt+lns)

Substituting this into 1(2) one gets

0 = F(m,n)+iF(m+l,n)-F(m+l,n+l)-iF(m,n+l)

= D(eimt+ins)+iD(eitm+1)t+ins)-D(eiCm+^ +i(n+1)s)-iD(eimt+;ifrl+1)s 
= D(eimt+ins+iei(m+1)'t+ins _ e-i(m+l)t+i(n+l)s _ ieimt+i(n+l)sj

_ n'hi,' it it+is . isv imt+insv n -= Dv>(l+ie -e -le )e ) = 0
2for every point (m,n) 6 Z . Thus 

(l+ie1* - elt+ls - iels) D = 0

The only roots of 1+ie"^ - e'^+'*'s -ie^? = 0 are the points
(0,0) and (it,7t) , which implies that D is supported in these
points. So if 6 denotes the Dirac measure and 6, s denotes(tt ,ir;
the Dirac measure translated by (tt,tt) , D can be written 
(Donoghue [5] p. 203) as a finite sum of derivatives of 6 and
5 (tt ,tt)

K.L gk+£ K,L gk+£
k=0 ^  6 k=0 k£ 3k 9£ (7rj7r)
£=0 £=0

So

F(m,n) = D(e ) = £ a. , (-l)k £(im)k (in)1
k=0 101
£=0

K Li r /  , xk+£, • \k/ • \£ iimt*> mir+ L b,«(-l) (im) (in) e 
k=0 k 
£=0

, /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



35

P(m,n)+Q(m,n),m+n even 

,P(m,n) - Q(m,n) , m+n odd

where P Q are the polynomials

pr™ „ V - K ^L ( *Mk+A * APtm,n) = 2, C-i) a, 0 m n
k =0 KJt
A=0

Q(m,n) = | (-i)k+5bj. mk n 8,
k=0 
1=0 ■

oo 2In the algebra C (T ) the discrete analytic functions of 
•polynomial growth are exactly the Fourier transforms of 
distributions which annihilate the ideal
(1+ie^ - ê "tr '̂s - ie^s) C°°(T^) . If the mesh size of the lattice
is h instead of 1 , then the discrete analytic functions of
polynomial growth are the Fourier transforms of distributions on 
T Tx — which annihilate the ideal

oo T  T
a h(t’s)c { h * E° *

-I.* iht iht+ihs * ihs
where a.v<t,8) = ' e 'le

-(1+i)h 

Now

-Cl+i)hah Ct,o) = 1+ieiht-e:Lht+ihs - ieihs = l+i(l+iht+0(h2)) 

-(1+iht+ihs+OCh2)) - i(l+ihs+0(h2)) = -(l+:i)h[ (t+is)+0(h) ] .
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So a^(t,s) = Ct+is) + 0(h) 36

Now let f(z) = f(x+iy) be a (continuous) entire function
A

of polynomial growth. Then f(x,y) = D for some
A

temperate distribution D , and by the Cauchy-Riemann equation

(— + i •£— ) D = 0 or, via the Fourier transform ' dx dy 3

(t+is) D = 0

So (continuous) entire functions of polynomial growth are
exactly .the Fourier'transforms of temperate distributions which
annihilate the ideal (t+is) C? (R * R) = a (t,s) C°° (R x R) . Buty o 3 4-
(t+is) D = 0 implies that D is supported at the point (0,0)
and therefore is. a finite sum of derivatives of the Dirac
measure 6 , and the familiar Liouville theorem drops out:
an entire function of polynomial growth is a polynomial. Since

oa^(t,s) = t+is vanishes just at one point (namely (0,0) £ R )
TT T Twhile a^(t,s) vanishes at two points ((0,0) and (̂ - , ̂-) e h x h^

it is clear why, in the discrete theory, we encounter 
bipolynomials and not just polynomials.

3. A Phragmen - Lindelof principle for discrete analytic 
functions

In the classical theory of analytic functions there are a number 
of theorems, associated with the names of Phragmen and Lindelof, 
which compare the growth of an analytic function inside a
sector, or e strip»with the growth of the function cn the boundary.

A temperate distribution is a continuous linear functional on the
oo 2 • •Frechet space (R )} the space of rapidly decreasing functions,

cf. Dpnoghue [5], p. 134.
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The only sectors that can be treated conveniently in the 
discrete theory are, evidently, the ones bounded by the axes.
For the sake of definiteness we choose to consider 
Z+ x Z+ = {(m,n) ; m and n integers, m > 0 , n ^ 0} .

Theorem 2. Let F(m,n) be a discrete’analytic function in the
+ +quarter lattice Z x z , arid assume that there are constants

T > 1 , S > 1 'and , C2 such that

| F(m,0) | * C^T111 , m ̂  0 (3.1a)
0

|F(0,n)| £ C2Sn , n > 0 . (3.1b)

T + lThen for every T^ > T , > max {S , } there exists a
^  constant C such that |F(m,n)| 4 CT™ V(m,n) £ Z+ x Z+

Proof. Consider the formal power series

F( z ,w) = £ F(m,n)zm wn
m=0 
n=0

Then

(l+iz-zw-iw)F(z,w) = (l+iz)<})p( z) + (l-iw) ̂ p(w)-F(0 ,0 )

- f [F(m,n)+iF(m+l,n)- .F(m+l,n+l)-iF(m,n+l)]zm+^wn+^ (3.3)
W  m=0

n=0
where , ijip are the formal power series

<J>p(z) = £ F(m,0) mz
m=0

4, (w) = I F(0 ,n)wn . 
n=0
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Now, since F(m,n) is discrete analytic in Z x Z ,
the last terra on the r.h.s. of (3.3) is zero and consequently

(l+iz-zw-iW)F(z ,w) = (l+iz)<j> (z) + (i+iw)t(>F(w)-F(0 ,0) . (3.4)

Unti) now, , 'J'p ■ and F were considered as formal power
series, but by (3.1a), <J>p(z) is convergent in {| Z | < }
and represents an analytic function there. Similarly, by C3.1b)
typ(w) represent an analytic function in {|w| < -̂} so the
•r.h.s. of (3.4) is an analytic function of two complex

1 * 1variables in the polydisc {|z| < =■} * {|w’| < g- } . Thus

(l+iz)<(>p(z) + (l-iW)^P(w.)-F(0 ,0) 
F(z,w) = —  * t "

1+iz-fcw-iw

which was only defined a priori as formal power series, is a 
convergent power series in the polydisc {J z j < x {|ta| < r̂,}

where S' = max {S, •

Finally, since F(m,n) is the coefficient of zm wn in
the Taylor expansion of F ( Z j W ’) it follows by Cauchy’s inequality

T + Xthat for every T^ > T , > max {S, there exists
a constant C such that

|F(m,n)| * Cl™ S* \

for every point (m,n) G Z+ x z+
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4. Discrete Fourier analysis and discrete analytic functions.

The chareacters'of the group R can be identified as the class
• A

of functions eisx : s £ R = R . Clearly each character can be
extended analytically to the whole complex plane as
eis(x+iv) .. eisxe~sy  ̂ 2ook groUp z , with characters
eimt(t G T = Z) . One may ask: What is the natural discrete 
analytic extension of eim^(m G Z) to the whole discrete lattice Z^ ? 
With the continuous exajnple in mind, let us try for an extension of 
the form '

• cjj.j.Cn) -with tJĵ CO) = 1 .

Substituting this into (1.2) we obtain e'^'C^(n)+ie^"t<i>.t(n) - 

- e^̂ <j)̂ .(n+l)- i^^-Cn+l) 3 = 0 . Therefore

(l+ielt)4>t (n) = (i+e1*) <J>t (n+l) .

TTIf t i ± tt one gets

*t<n) = n 6 z •

So the natural analogue to the exponential function els  ̂
eisz = eisx e"sy (s € R) is

'eCit*,m+in) = eimt ^ (t £ T , t i ±|) (4.1)

which we shall call the discrete exponential function. This 
coincides with the discrete exponential function introduced 
by Ferrand-Lelong [13 3:
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(m+in;s) = "

if = e1 "̂ . As the above considerations showed, our
exponential function seems to be a more natural analogue of the 
•continuous exponential function, at least for the purpose of 
doing Fourier analysis. In fact, the main theme of this chapter

nis that continuous analytic function theory (on R = 0) is
Awhat it is because of the dual group of R : R =*R , and

odiscrete analytic function theory on is what it is because
A ipof the dual group of Z, : Z, = r- Notice that if

TT TTt = 2 C= - 2*3 s then (4.1) still defines a meaningful exponential 
function for n ^ 0 [n 0]. The analogue on the lattice

Zh * Zh is

A/e. (it ;mh +inh) = eimth (■

Notice that for any fixed t £ R

itxe ^ d t  ;x+iy) = e' l+ieith \ K
elth+i ■r eit(x+iy)

as h + 0 , since

l+ieith
7 ^

1
h -t

Let us return to che case h = 1. Immitating the notation 
in the continuous case we let Z denote the upper half
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lattice {(m,n);n £ 0} and define the class H2+(Z) as 
follows:

Definition. A discrete analytic function F on Z2 + is said
to belong to H2+(Z) if

/ “ , 9 U / 2
sup ( I IF(m+in) | ) < °° . (4.2)
n^O \m=-°° /

We are now in a position to give a discrete analdgue to the 
famed one sided Paley-Wiener theorem.

2 +Theorem 3: If F is -discrete analytic on Z and if
00

1 1 F(m) | 2 < 00 then F £ H2 + (Z) iff 
— 0°

0°

F^(t) = £ F(m) e = 0 .a.e. in ( —rr,0) and in
— 00

that case F has the representation
, TT

F(m+in) = I ^(it ;m+in)F^(t)dt . (4.3)

Proof. Suppose = 0 a.e. in (-it ,0) . then (4.3) defines
a discrete analytic extension of the starting sequence F(m)

2 +to the upper half lattice Z ; and

f u  \ n 
■ F Cm) = FCm+in) = _i fFv(t)l eimt dt

n 2" o \i+el1: J
implies, by Plancherels that for n 5 0

I | F(m+in) J 2 = ||Fn ||22 = h  I ^  I lEo (t)l"dt
4 4- 2 n1+ie I I -riv /. \ I 2

m=— - 1 0 i+e*

* I? J  Fo (t> 2dt •
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Since l+ie1* £ 1 for t £ [0 ,u]

This proves F £ H2+(Z)

Conversely, if F 6 H (Z) then Fn 6. % - L (Z) forI2 + (Z) then F £ °2 - t 2 • n
n  ̂ 0 and F^(t)= \ FCm+in)e“lmt £ L2(T) .

m=-oo

Now, using'1(2)- it is readily seen that

'(l+ielt)F^ (t) = (i+elt)F^+;5 (t) Cn * 0) .

Since the Fourier coefficients of the two sides match:-

~  / (l+iel1:)F^ (t)eimtdt = F (m)+i F (m+1)27T n n . n

= F(m+in) + iF(m+l+i n) = i F(m+i(n+l)) + F(m+l+i(n+l)) 
= iFn+1(m) * Fn+1(m+l) = fj- /(i+e1*) F^+1(t)eimtdt .

Therefore

= f-ilisii 'j F^Ct) (n s 0) . (it.4)n V i+® /
Now, suppose that F^ does not vanish a.e. in (-ir,0] . Then

B v 2there exists an interval Ca,p] c(-7r,0) such that Jp |Fn | f 0 , 
and so

o 1 a

11 FCm+in) | 2 = /"|F^(t)|2 dt = ^  j"
m -IT -TT

_• -it' n

(SKI
2

dt

> k2n 5F  /S |Fo Ct)|2 dta
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k ’= min { l+ie^
i+e'Lt

a < t < 3) > 1

contradicting condition (4.2).
00

Hence FV(t) = \ F(m)e”'i'nvt = 0 a.e. in C —tt ,03 . o „m= -00
?V(t) = v -_imt

By (4.4), for n  ̂ 0

F(m+in) = F (m) = —  / e'7'mt ( ) F^(t)dt
n 277 0 \ i+e

/77 £(it;m+in)F^(t)dt ,

establishing (4.3).

By <4.3) a function F(m+in)- of class H2+(Z) is uniquely
determined oy its restriction to the discrete real line n = 0

0 +so H (Z) can be viewed, in an obvious fashion, as a
2 2subset of & = L (Z) and Theorem 3 tells us that

L2(Z) = L 2 (-tt,tt)A id L2(0 ,tt ) ̂  - H2 + IZ)

which is in perfect analogy with the line (cf. Hoffman [17], p.

L2(R) = L2(R)- Z3 L2(0,»r = H2 + (R) 

and the circle (cf. Hoffman [17],, p. 39)

L2(T) = L2(Z) X5 L2(Z+) = H2+(T) .

5

131)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



44
Unfortunately, Beurling's elegant theory of invariant 
subspaces does not seem to have an analogue in the discrete

Atheory, due to the fact that the dual- group of Z , Z = T
is not ordered (c‘f. Rudin [1>1], chapter 8, p. 210).

2 —Define H (z) to be the class of discrete analytic function on
2 —the.lower half plane Z = {(m,n);n £ 0} satisfying

00

sup I | F(m+in) | 2 < 00 
n^O m=-°°

It is now readily checked that

2 —  2 ^H ( Z ) = L ( - tt,0)' , so one has the orthogonal
decomposition

H2 = L2(Z) = H2+(Z) ffi H2"(Z)

Let X|*q be the characteristic function of [0,tt] and let

SCm.n) = iy £ ^ [ 0 ^ ]  n>+in)dt = i;- / ) “-imtdt

•> TI , * ._ 1 r j, ^  ̂ imt j.
-  27 [ t a n  2 i f  6  d t

which turns out to be Duffin’s ([2], p. 349) discrete Cauchy 
kernel. Now,,if F(m,n) £ H2+ then F^(t)x = F^(t)

so by (4.4)
/vn i

Fn <») =

O “ [X[0,TT (1+ielt 
3 \i+elt

(m) =

= F * 0 o n

2 +obtaining the following representation formula for H functions:
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00
F(m+in) = I F(k) 9(m-k+in) (4.5)

m=-°°

(Compare Duffin [6]., p. 347 formula 5 3). 
Another consequence of (4.4) is

• +. 2n+.200 - TT i i • IT-
1 | F(m+i(n+l]j)| ' = / 1 ie

m=-oo o i+e11'
IF^(t)|2 dt

* /0

77 ~ -i— 2 n1+ie_• _it
• j.i+e |F^(t) |2dt = I |F(m+in) |2 .

m=-°°
00

Thus | |Fn | |2 = I |F(m+in) |2 + and
m = - 00

W
sup ( I |F(m+in)|2)1/2 = ( \ |F(m)|2)1/2
n^O m=-00 m=-»

and we have proved
r% .j.

Corollary. Hz (Z) is a Hilbert space with norm

I IF| | = sup ( I |F(m+in)|2)1/2 = ( J |F(m)|2)1/2 
n5t 0 m=-oo m— -°°

and reproducing kernel 0(m+in-k) .

Finally, let us remark that if we chose to consider 
^h x ^h instead of Z x Z we would have obtained, instead of 
(4.3), the representation formula

7r/h
F(x+iy) / eh (it,x+iy)F^(t)dt

which, on letting h + Q "tends1* to the classical Paley-Wiener 
representation formula:

F(x+iy) = /” ei « x +iy> Fv(t)dt .
0 °
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5. Discrete Paley-Wiener-Schwartz theorems.

Let us recall that a. distribution D 'on the real line R , 
with compact support, has a Fourier transform- D(£) = D(e^x^)

A •

which can be extended to an entire function £>(5) = D(^x )̂ = 
D(e^x^e”xr|) , C = 5+in ; and one has the following results 
(Donoghue [5], p. 210-213):

a) Let D be a distribution supported in [-a,a] then the
A %

Fourier transform DC?) satisfies an inequality of the form

|D(?)I < C(1+|?|)N ea 'n ' 

where ? = 5+in and N is the order of D .
A

b) The Fourier transform $(?) of a testfunction ^$ supported 
in C-a,a] is an entire function. For each integer k there 
exists a constant Ck such that

|<K?) I < Ck (l+|?|)~k ea '^

c) (converse to b)) Let F(?) be an entire function with the
property that for every integer k ^ 0 there exists a constant

such that

|F(?) I < Ck (l+ |?i)"k e ̂ a 

where ? = 5+iO ; then, .there exists a testf unction 4> supported in
A

C-a,a] such that <j>(?) = F(C) .

d) (converse to a)) Let F(?) be an entire function which
satisfies an inequality of the form1

|F(5)| S C(l+|cl)N ea ln l ; then F(?)
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is the Fourier transform of a distribution supported in [-a,a].

We were able to prove discrete analogues for a) and c) by
translating their proofs to-the language of the discrete case.
However, the proofs of b) and d)do not carry over due to the fact
that the discrete exponential function is not as nice as the 

one
continuousA(in the case of b)) and to the fact that the multiplication 
of two discrete analytic functions is not, in general, discrete 
analytic (in the case of d)).

ix cLet us consider the exponential e as an entire function
of £ and let x vary along the extended real line R ; we see 

ix Cthat e defines an entire function for each x £ R 00,-00} (=R)
ix cand for each fixed r; , e s behaves nicely as long as one stays 

away from 00 and -« . Now, the . discrete exponential function 
e(it,m+in) , t £ T is singular only at t = J n < 0) or
t = —j (if n > 0) so, the pair of points {j , - j} plays 
the role of the pair {00,_°o} in the continuous case. Therefore, 
compact subsets of R = R N\{-00 , 00} will be replaced by compact 
subsets of T n\{-j , ^ }. Indeed, if D is a distribution on T

V 7T TT A
~2 * 2^ 't̂ ien D(m) =

• ^D(e ) = D(^(it;m+i0)) can be discrete analytically continued 
to the whole lattice by

D(m+ih) = DCe(it,m+in) ) . (5.1)

This follows from the fact that D is linear and e(it;m+in) is 
discrete analytic for each t in the support of D .
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Let us now turn to the statement and proof of the disctete 
analogue of a).

Theorem 4. Let D be distribution on T whose support is a

\ TT TT{-■2 s 2"̂ an<̂  ^  contained in 
{|t| £ a}U{|t-7T| £ a} , (0 < a < ^) ; then D(m+in) given
by (5.1), satisfies an inequality of the form

|D(m+in)| £ K(l+ | n | + |m| )k C^11 ̂ (5.2)

where k is the order of D,.K is a constant depending only 
upon D and

, , . -ia
Ca = e( -ia; 0 + i) = ----iai+e

Proof. The proof is similar to the proof of a) as given in Donoghue [5] 
p.211, only that instead of the nice formula

d it(m+in) _ * it(m+in) _ . it(m+in) it(m+in)e = (im-n)e = lm e -n e

you have a somewhat more involved equality

e(it ;m+in) =ime(it ;m+in)-2-[e(it ;m+i(n+l))f-e(it ;m+i(n-i)) ] 
,k

from which — - e(it;m+in) can be computed inductively. Beside 
dt

this minor technical complication the proof is the same.

2Let F and G be functions on Z and let
T: a ~ z ,z ,...,z = b denote a discrete contour o 1 m
(| zi+i - z_̂ | = 1 , 0 *  i * m-1) . Duffin [6] defined the contour 
integral

m z —z
/ F : G 3z= I (F(Zn)+F(zn_1))(G(Zn)+G(z.n_1))(  ̂ ) (5.3)
r n=l
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and showed that if F and G are.discrete analytic in a region 
containing r , and T is a closed contour then

/ F : G 3z= 0 . (5.4)r
Let us turn to the proof of the disctete analogue of c).

Theorem 5. Let F(m+in) be a discrete entire function with the 
property that for every integer k > 0 there is a constant 
such that

|F(m+in) | £ K^( 1+|n | + |m |) ^  ̂ (5.5)

where Ca = ^(-ie^O+i) = ,
i+e

00then there exists a C function supported in
Aa = ( 111 * a} U {| ir-t | < a} such that

F(m+in) = J(m+in) = / <f>(t) eimt ( ) dt . (5.6)
Aa y  i+e

Proof. For each n , F (m) = F(m+in) decreases faster  n
than any power of and thus

FUt) = I e " l m t

n m=-» n
00is a C function on T for every n € Z , and it is easily 

checked just as in the proof of Theorem 3 that

it 'n
F^(t) F^(t) V n £  Zn \ ..it y OL+e

and thus
7T i m t f l + i e ^ V

1 w w
F(m+in) = / F^(t) eimT ( j dt .
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It remains to show that FV(t) vanishes outsideo
A = { 111 C a} U { I tt—11 < a} i.e. inside a 1 1 1 1
{h-fl < J ~ ot}U{ 11. + _£| < \ - a} . Take 3 £ { |t~| < j - a} 
and consider the discrete contour integral

/ e(i3 ;m+in):F(m+in) (5.7)
CR

where the discrete contour is taken to be the boundary of the • 
rectangle 0 < n < R . Since both e(iB;m+in)
and F(m+in) are discrete entire and 'is a closed contour it
follows that the contour integral (5.7) vanishes. But by the 
Definition (5.3)

0 = / e(i^m+in) :F(m+in) =
CR
R

i I (eiem + eie(m+1))(F(m)+F(m+l)+ / e(i3;m+in):F(m+in) 
4 m=-R ' C'

R
Iwhere is the part of which lies in the "open" half

lattice n > 0 .
By (5.5)

|e(iS;m+in) | • |F(m+in)| <; Kk(l+|n|+|m|)“k ^p^

Since I 3—^ I ^  - a » Cg = e(-i3;0+i) > Ca and 
/ e(i3 ;m+in) : F(m+in) tends to zero as R **■ 00 .
4
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Consequently,
R

lim I (el3m + e1P(m+1 ))(F(m)+F(m+l) = 0 C5.8)
r-*-°o m=-K

But 4>(-3) = F^C-P) = I F(m)el3m .
—  00

and (5.8) implies that

(l+e13)2 I F(m)eJ-3m = 0 . Since 8 i - j it 
m = - ° °  ^

follows that 4>(-8) = 0 for every 8 in |f - j -a i.e.
<j) vanishes in |t + -̂| * “ a • 3-f is chosen in the lower
half lattice you get that <j> vanishes in 11 - j| < j - a and
thus F^(t) = <£(t) is supported in Aa = ({ 111 ̂  a} U { 11—tt | £ a }
and (5.6) follows.• -
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CHAPTER IV

A TAYLOR EXPANSION FOR DISCRETE ANALYTIC FUNCTIONS

1. Introduction

Duffin [6] introduced the following basis for 
discrete analytic polynomials

t=0

(z = x+iy) , which he called pseudo-powers.

Each Pj^z) is a discrete entire functions and a 
polynomial of degree k in (x,y) . Duffin [6] showed 
that every discrete analytic polynomial can be expressed as 
a linear combination of these pseudo-powers.

Duffin and Peterson [9] introduced an analogue of the 
McClaurim series in terms of these pseudo-powers. However,
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their analogue has the disadvantage that the convergence of00 oo
£ a £' on t does not ensure the convergence of 7 a p (z) 
0 ' „ 0 n n
on Z x Z . In fact they showed that £ a p (z) converges

0 n n
on the whole lattice Z x Z only if

  1/n
Tim (|an j n !) < 2

In Section 2 other "reasonable" bases for discrete analytic
polynomials will be considered. These will be called systems
of pseudo-powers, and it will be shown that the above drawback
of Duffin’s basis {pn (z)> as regards the convergence of
7 a p (z) cannot be removed by using other systems of n n
pseudo-powers.

On the other hand, we shall construct a system of pseudo-
00 0O

powers {tt^zHq such that \ ak7rk^z  ̂ converges absolutely on the
4* +quarter lattice Z x z = {(x+iy) ; x and y integers,

CO

x a , 0  , y  ̂ 0} whenever \ a^S converges on the entire
0 bo 2n

plane. (The divergence of [ -y p (1,0) shows that this0 n. n
property is not enjoyed by the Duffin-P.eterson series.)

In Section 3 we shall consider the existence and uniqueness
00

of the expansion 7 a.TT, (z) . The discrete analogue of
0

’multiplication by z ’ corresponding to trhe above basis will
also be dealt with.

In Section 4, we discuss the lattice
+ +Z. x Z, where n n
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 ̂ "f* VZ, = hZ , h > 0 and show that if {ir (z)} is the
. 0

corresponding basis then

when h + 0 along a sequence for which z € Z^ x z^ ,
£ kprovided I a,? is an entire function of exponential type.
0 K

The analogous problem of representing monodiffric functions 
(that in functions satisfying (i-1 ) f(x,y) - if(x+l,y) + 
f(x,y+l) = 0 ) by a series of polynomials was considered by 
Atadzanov [1].
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Definition: A basis {p (z)}*” for the discrete analyticn Q
polynomials is called a system of pseudo-powers if the following 
properties are satisfied:

^Al) Pn (°) = 0 f°r every n > 0

(A2) {pn (z)> satisfies the Binomial identity

n n
= J 0 (k> pk (2l)pn-k(z2>

(A3) Pq = 1 and for n 5s 0 Pn ^z  ̂ = zn + p^-^Cxjy) 

where Pn ^ is a polynomial of degree  ̂n-1 .

It is readily checked that Du.ffin's basis {pn (z)} constitutes 
a system of pseudo-powers. On the other hand, Duffin's basis 
fails to satisfy the following:

00

(*) £ a p (z) converges absolutely for every z e Z x Z00 q n n
if I a £n converges in the whole £-plane.

0 n

One may ask: Does there exist a system of pseudo-powers 
satisfying- (*)? That no such system exists follows from the 
next lemma.

Lemma 2.1: Let be any system of pseudo-powers. Then
there exists a point z^ in the half lattice {x+iy', y ^ 0} 
and a complex number such that

k
£ ~  p^(z0) fails to converge absolutely.
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Proof: Suppose that the statement is false, i.e., there exists
a system of pseudo-powers such that

oo k
e(?;z) = I p,(z) converges

k =0 .

absolutely for every point in the half lattice and for every 
complex number- 5 .. Then, for every such z , e(£,z) is 
an entire function in z; and by (A2)

co k 00 n
e(C;z1)e(C;z2) = (£ ^ r P k (zi)(I ?T Pr (z2)

' I C I (k)Pk(zl)Pn-k(z2>:i = I nT Pn(zl+z2) = e(tizl+z2)
Thus

e(c;x+iy) = f(c)x g(£)y

where f(z;) = e(?;l) , g(z;) = e(?;i) .

Since e(£;z) is discrete analytic in the upper half lattice 
1 (2) must be satisfied there:

f(c)xg(5)^l+if (5) - f‘(C)g(?)-ig(?)} = 0 .

Thus

, y _ l+ifCO 
" ~(c)+i

and
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:<5=*+iy> = .

Since e(?;z) is entire in £ for each fixed z in the 
half lattice and in particular for z ;= 1 ,-1 ,i we see that

f(C) , l/f(?) and "f ■ are entire. But this implies
that f(?) is’ entire and excludes the values 0 and -i . By 
the "little" Picard theorem (Rudin[19], p.324) this is too much 
to ask from a non-constant entire function. Evidently f(^) 
cannot be constant and so we arrive at a contradiction and 
the lemma is proved.

We saw that .there is no system of pseudo-powers satisfying 
(*). The next theorem will demonstrate a system of pseudo­
powers satisfying the following weaker property.

(A4) £ anpn (z) converges absolutely for every
00

z £ Z+ x Z+ = {x+iy ; x ^ 0 , y  ̂ 0} if £ a En
0 n

converges in the whole 5-plane.

2nThe divergence of I shows that Duffin's basis
does not satisfy CA4).

Theorem 2.2: The sequence of functions

k JL. '

Trk Cx,y) = {[ (l+i)e1+1 - i]X [(l-i)e1+1 + i]y> (2.1)
r. = QdC

k=0,l,2,... . Constitutes a system of pseudo-powers satisfying
(A4).
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Proof: The discrete analyticity of frk (x,y) is readily 
checked. (Al) is trivial, while (A2) follows from Leibnitz' 
formula.' Also, by a straightforward computation

’n'k+lCx,y) = { (x-y)7rk (x,y) + ixTrk (x-i,y)+iyTrk (x,y-l) } (2 .2)

Since irQ(x,y) = 1 it follows by induction that each TTk (x,y) is a 
polynomial of degree k and that (A3) holds. -Since Duffin 
Ce] shewed that the dimension of the space of discrete analytic 
polynomials of degree < k is k+1 , it follows that {it

r 0
is a basis for the discrete analytic polynomials of degree £ k

00

and consequently that {tcv } is a basis for the discrete analytic
0

polynomials. Thus {t̂ } is a system of pseudo-powers.

Now, let us note that for a fixed z = x+iy £ Z * Z

k -J-
e(C;x+iy) = £ tt. (x,y) §-*- = C(l+i)e1+1-i]x C(l-i)e1+1 +i]y .

0

Since x and y are non-negative integers, the right hand
side is an entire function of exponential type and the Taylor

7Tk (x,y)
coefficients being ---- --  you have (Boas [ 2J , p.11) that
there exist constants C and T (depending on (x,y)) such 
that

|TTk (x,y)| * CT .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



59

“ ■ ' 1/kThus I ak7rk Cx,y) converges absolutely whenever ITm |ak | = 0 ,
 ̂20
^ k  # Isince I a.T does. This holds for every (x,y) e 7. x Z 
0 K

and it follows that {u^} is a system of pseudo-powers satysring 
(A4).

“ kBy Theorem (2.2) it follows that whenever £ av? -*-s an
_ 1/k 0entire function, i.e., whenver lxm 1^1 = 0 , then

00

I a^TT^z) converges to a discrete analytic function in Z+ x z+
C
(substitute in (1 .1.) and rearrange terms, using the fact that 
each is discrete analytic).

Let be the algebra of entire functions and let =£> be the 
set of discrete .analytic functions on Z+ x Z+ . Define a 
mapping

T : t4' + 0

by

T(I a 5n ) = I a ir (z) .
0 0

Let ^  c be the range of T . ~j~ can be made into an
algebra by requiring T to be a homomorphism:

(I Victz)) (J b, tt, (z)) = 1 ( 1  akbn-k)7rn (z) *0 k K 0 n=0 k=0 n K n

Thus in our class * , multiplication is defined for every 
pair f,g £ ^  . This is an improvement on the multiplication 
in the Duffin-Peterson class,
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00 *

^  DP = anpn Cz) ; ^  ( l an l n ! ) 1 / n  < 2}

(T c[which is only defined on a subset of  ̂pp x ^"pp • -̂n particular
exp f is well defined in our class:

00 CO

exp C£ a^ir^Cz)) = T(exp (£ a^£ )) •
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3. Existence and uniqueness of Taylor expansion.

Formula (2.2) motivates the following analogue for the 
continuous "multiplication by z"

^f(x,y) = jTT (Cx-y)f(x,y) + ixf(x-l,y) +iyf(x,y-l)} . (3.1)

It is readily checked that if f is discrete analytic, then so 
is ^ f  and, by (2 .2)

de(?;x+iy) =.^  e(% ;x+iy)

Let us restrict attention to £ > ,  the class of discrete analytic 
functions on Z+ * Z+ . It was shown in Chapter II! that each 
f € £ >  is uniquely determined by the pair of formal power 
series where

00

<MX) = I f (x , 0 ) Xx 
r x=0

ip (Y) = I f(0,y)Yy 
r y=0

and we write f = .

Since ^f(x,0) = {xf(x,0) + ixf(x-l,0)}
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00 00 . •

I ?JF(x,0)Xx = ^  I x(f (x,0) + if (x-1, 0))Xx
x=0 0  X=0

= [ (l+iX)<J>f (X) ] .

Similarly

yfo y 1 0 ’̂ 7 = •

So "the operation of in terms of formal power series is

(<|>f>i|»f) ITT ^  Hx C(iY-l)^f(Y)]) . (3.2)

Thus If E 0 iff
a

*f " I+IX ; ^f(Y) = 1-iY

(The constants agree since <}>f(0) = f(0,0) = ^f(0)) . So, 
unfortunately, ^  has a non-trivial kernel.

Clearly, ^f(O) = 0 for every function f discrete analytic 
Z+ x Z+ . Let g£oZ)> g(0) = 0 then f £ JSO given by

V” ■ liS ir..gii • a
m

solves ^ f  = g
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We have thus obtained 
Theorem 3.1: The operator

63

has range {f f(0 ,0 ) = 0} and kernel

{CfQ}

where fn £ is given by

***f0 = I+Ix ’ ^f0 = T^Iy

Let us consider the class <?" c: /© defined at the end of 
Section 2. It is not yet known whether the inclusion ^  c £) 
is proper or not; i.e., whether every discrete analytic function 
on Z+ x Z+ possesses a discrete Taylor expansion

f(z) = \ a, it, (z) (3.3)
k=0

Theorem (3.1) implies that even if such a representation 
exists it need not be unique. However if attention is restricted 
to the class

00
= -tl V k * 25 ’ (k! |ak | )1/k < °°>

then the representation (3.3) is unique, as follows from the 
following , ^
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CD

Theorem 3.2: If £ a,.TT̂ (z) = 0  in Z+ * Z+ and
0

lim (k! |ak |)"^k < 00 then a^ = 0 for every k .

Proof: By definition (2.1)

Z zlr
,T> _ k! f [(l+i)eTTT-i]X[(l-i)e1+1+i]y*k(x’y) " 2¥I I ----------- k+i--------------- r dCr Z

where T is any contour surrounding 0 . So ,

m k ! a,  ̂ ^
f(z) = I akTrk (x,y) = ^  f (I-kT^)[(l+i)e1+1-i]X[(l-i)e1+:L +i]y dz; 

for any contour F for which

s k!ak
• v?> = I tj+tB k=0 c

is defined. "the Borel transform of

fcCO = I a ?k
k=0 K

and ffi( O  converges for |?|  ̂ type fc (see Boas [2]. p.73).
Thus

Zlr
f(z) = s-i- r fta( ?) [ (l+i)e1+:L-i]x[ (l-i)e1+1+i]yd?T̂Tl D

and for some constant M
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|f(x,0) | s?CMX
CO

and = )! f(x,0 )tx converges in the disc |t| < i .
1 0 

We have then

fB(?)d?

l-[(l+i)e +1 - i]t

'he right hand side defines an analytic function in any region 
in the t-plane for which the denominator of the integrand does 
not vanish in a neighborhood of f  in the C-plane. In particular, 
this includes a neighborhood of the point i in the 
t-plane. Thus for any discrete analytic function of class

«Mt) = I f(x,0 )tx r x=0

whose radius of convergence is in general smaller than 1 , 
can be analytically continued through the boundary of the circle 
of convergence to a neighborhood of t = i .

00
Now ][ a^TT^Cz) = 0 implies ag = 0 and

00

0 .
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Let g-^z) = J aknk_i(z) . Then e / e and hence 4>g (t)
can be analytically continued to a neighborhood of t = i . But
^g-^ = 0 implies, by Theorem 3.1, that <J>g (t) = •[+it for 
tant C . This forces C 
a pole at t = i . Thus,

^ -e'-- some cons­
tant C . This forces C = 0 for, otherwise <{> would haveSi

g-̂ Cz) = £ = C and a1 = 0 .

Continuing inductively we get that a^ = 0 for every k and 
the theorem is proved.
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Let h > 0 . F6r the lattice of mesh size h

Z x 2 = {(hm. hn);-m, n € Z}n h - » j

discrete analyticity is defined by

F(x,y) + iF(x+h,y) - F(x+h,y+h) - i?(x,y+h) = 0 . (4.1)

The above discussion carries over to discrete analytic 
functions for such lattices (all it amounts to is a change of 
scale). Now we have the basis

k 2£ -£h y_
(x,y) = -4- {[ (l+i)e1+1 - i]h[(l-i)e 1+1 + i]h }K

(4.2)
C = 0

And for discrete analytic functions on the lattice 
the exponential function is

v * ~sh Z
n, . Ctv(x>y> ik=0e^(x,y) = \ 7rk^x,y^'jb’ = C(l-i)e1+:L + i]h

Now as h 4 0
Ch 1

[(l+i)e1+1 - i]h + e?

-Ch 1
r /. • \ 11 X , • nh ■/ 1 C *L(l-x)e + i ] 3- e *
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So e^Cx,y) -*• ancj consequently

tt̂ ( z ) ->• zk as h + 0 .

.n• n *Suppose la | £ C — r for some constants C and n 1 nI
dominated convergence

fh (z) = I a tt£ (z) -*■ X a,zk 
0 0

as h * 0 . We obtained

1/k
Lemma 4.1: If lim (|a^|k!) < 00 then

00

fh (z) *■ fc (z) = £ a. zk
0 k

along a sequence h + 0 for which z 6 Z* x Z*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



69

CHAPTER V

DISCRETE ANALYTIC FUNCTIONS OF EXPONENTIAL GROWTH

1. Introduction.

In this chapter we shall prove theorems on discrete analytic 
functions of exponential growth which are analogous to certain 
classical theorems about entire functions of exponential type 
(Boas [2] is the standard reference for the latter). Perhaps 
the main result of this chapter is a proof of the discrete 
.analogue of the (two-sided) Paley-Wiener theorem (Theorem 3.4). 
Our methods, which are completely different from the ones used 
in the classical theory, use duality arguments on certain Banach 
spaces of analytic functions of two complex variables. In essence 
the trick is to translate into discrete language a ’continuous' 
idea due to Ehrenpreis [12] (see the preface of the latter). 
Ehrenpreis deals with the solutions of partial differential
equations, whereas present interest focuses on solutions of the
simple partial difference equation Lf = 0 , based upon the 
Duffin operator L introduced in 1(2). Since the discrete case
is, by its nature, simpler than the continuous one, no explicit
reference need be made to Ehrenpreis [12].
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The key idea of this chapter is to associate with each discrete 
function f:Z x Z 0 a linear functional defined on the
algebra

r M Nvft = ( I I a z- v/1 ; a £ 0 , M,N integers}
m=-M n=-N ^  11111

of polynomials in' ZjZ-1 , WjW-'1' which is given by

M N M N
Tf( I I = I I ajnnr -M -N -M -N jnn

and using the fact that (1 .1 ) holds iff

Tjr( (l+iz-zw-iw)zmwm) = 0 V (mjn) £ Z x Z

we get that f(m,n) is discrete entire iff annihilates the
ideal (1+iz-zw-iw)^ .

We shall first consider, in Section 2, discrete analytic
functions of exponential growth defined only on the upper right

+ +quarter lattice Z x Z = {(m,n) ; m ;» 0 . n > 0} .

2. Discrete analytic functions of exponential growth on the upper 
right quarter lattice.

Let i b e  the algebra of polynomials 

{ L  L  am,nz V ' ! anm e e >M ’N R e g e r s  } -m=u n=U
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4* 4*Any discrete function f:Z x Z £ • induces a linear functional

on A + given by

M N M N
Tf(mL  J 0 anrnz,"wn) = mL  J Q amn f<m’n>m=0 n=u m-u n-u

and for any linear functional T on ^  + , T = T whereo
g(m,n) = T(zmwn) ..

Let r,s be any positive numbers and consider the polydisc
i 2{|z| < r} x {|wj < s} in 0 . Let H(r,s) be the class of function

holomorphic on-this polydisc and continuous on itg. closure. This

is a Banach space with norm

IM L = syp |u(z,w) |z I <r 
w| <s

(see Rudin [20], p.3).

Evidently A+ c H'(r,s) and in fact (P+ is dense in H(r,s) . 
We.now make the following

Definition: A discrete function f : Z+ x Z+ •+■ 0 is said to be of
exponential growth (R,3) if there exists a constant C such that

|f(m,n)| < CRmSn for every (m,n) 6 Z+ x Z+ .

Later we shall need the following

s
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*i* *Lemma 2.1: Let f:Z x Z -*■ & be of exponential growth (R,S) 
and let v > R , s > S ; then , defined on ^  + by (2.1)
can be extended continuously to the Banach space H(r,s) .

Proof:
00 CO -(m+1).-Cn+1 )F(z,w) = I f(m,n)z ' " _ w

m=0 n=0

is defined and holomopphic in {jz| > R} * {|w| > S) . Let 
u(z,w) € + , then

T^(u) = — -— 7) / F(z,w)u(z,w)dzdw
(27Tir r

for some poly-contour T in the poly-annulus {R < |z| < r} x 
{S < |w| < s} . Thus

• |Tf(u)| £ C(F)||u||w

for some constant C(F) depending only on F (and hence on f) . 
Since is dense in H(r,s) , the lemma is proved.

The "typical" discrete function of exponential growth (R,S) 
is f(m,n) = zjjwg for some complex constants zg swg ^or wllich 
|Zg| = R , |Wq | = S and the induced linear functional T^ is 
the "point evaluator" at (Zp,wQ) , J^z w ) j T^(u) = v(zg,Wg) = 
J(z jWg)^u^“ we squire that z^Wg be discrete analytic then

w0 = — - and so the "typical" discrete analytic function of
exponential growth is
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e(z;m+in) = zm (— ■;'?■)nz-i-i

which is of exponential growth C | z | , | ) •

The next theorem tells us that every discrete analytic 
function of exponential growth is in some sense a "linear combination" 
of (discrete) exponentials e(z;m+in) .

Theorem 2.2: Let f be discrete analytic in the quarter lattice
+ 4*Z x Z and let it be of exponential growth (R,S) there. Then

there exists a plane measure dy(z) supported in the .region

aRjS={z e e s M  < r , I f i f l  < s)

for which

f(m,n) = / e(z;m+in)dy(z) (2 .2 )
Proof: We proceed by steps.
.'Step "1: Tf annihilates the principal ideal (1+iz-zw-iw) .

. ■fPfoof; Since f(m,n) is discrete analytic in Z x Z

T^((1+iz-zw-iw)zmwn ) = f(m,n) + if(m+l,n) - f(m+l,n+l) - if(m,n+l)
3 Lf(m,n) = 0

+ *ffor every (m,n) € Z x Z

Step 2: T^ extended to H(r,s) as in Lemma 2.1, annihilates
the ideal (1+iz-zw-iw) H(r,s) .

Proof: This follows immediately from Step 1 and the fact that

+ is dense in H(r,s).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



74

Step 3; Let

Vr s = {(fcsw) ; |z| < r , |w| < s , 1+iz-zw-iw - 0}

then
Cl+iz-zw-iw) H(r,s) = {u £ H(r,s) ; u| = 0 } .

IVr,s

Proof: This is the famous Hilbert semi local nullstellenstaz
for a very special case* Suppose uly = 0  then

( 'i r,sv(z,w) = T1-V 2 ?w —  is holomorphic in {I z I < r} x {jwl < s}*^V ’ 1+xz-zw-xw * 1 1  1 1 r,s
and locally bounded in {|z| < r} x {|w| < s} , (Gunning and
Rossi fun,p.19). By the Riemann Removable Singularity Theorem 
V(z,w) can be extended to be holomorphic in {|z| < r} x {|w| < s} 
and is evidently continuous on its closufe, i.e< , v(z,w)£H(r,s). Thus 
u(z,w) = (1+iz-zw-iw) v(z,w) £ (l+iz-zw-iw)H(r,s) . The opposite 
inclusion is trivial.

2Step 4: There exists a measure dy(z,w) on t. supported in V̂ , ^'   * 3 5 .
such that

T^(u) = / u(z,w)dy(z ,w) , u £ H(r,s) .
r Vr,s

Proof: Let (z,w) £ {J z| < r} x {|w| < s} and denote by J^z
the point evaluator at (z,w) :

J/,. \ (u) = u(z,w)U  jW;

By Step 9 and Step 2
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J (ZsV7)(u) = 0 V(z,w) e Vr ŝ => Tf(u) = 0 .

Thus the annihilator of span {J, % ; (z,w) G V } ist z ,w; r j s
contained in the annihilator of T̂ . . Since H(r,s) is a 
Banach space, it follows (cf. Taylor [21], p. 225-226) 
that T^ is contained in the closed linear span of 
(J(z G Vr s  ̂ * Consequently there exists a sequence of
atomic measures tdyn) , supported in g such that for every
tr. G H(r,s)

/ u(z,w)dyn (z,w) T̂ .(u) .

By Helly's selection principle there is a measure dy(z,w) , 
supported in V such that

V  5 S

/ u(z,w)dyn -*■ f u(z,w)dy Vu G H(r,s)

and we have

TfCu) = / u(z,w)dy(z,w)
Vr,s

Step 5: is to complete the proof of the theorem. Let dy(z)
be the "projection" of dy(z,w) on £

/ v(z)dy(z) = / v(z)dy(z,w) 
t
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A°r,s = {* « e i Ul < r . I fill < s}

for every r > R , s > S and hence in 

^g = { z £ 0 ;  |z| £ R , | Z+ Ĵ £ S} 

and finally

f(m,n) = TF(zmwn ) = / zmwndy(z,w) = / zm (^-J£)n dy(z)
V A 2 1r,s aR,S

= / e(z;m+in)dy(z)
AR,S

00

Obviously, the knowledge of {f(m,0)} and {f(0,n)} _n
m=0 n

uniquely determines the discrete analytic function f(m,n) on the
whole of Z+ x Z+ . The next theorem shows that if f satisfies
an appropriate growth condition then the knowledge of f just on
the m-axis, i.e., the sequence {f(m,0)}” _0 ’ determines f on
all Z+ x Z+ .

Theorem 2.3: If f is discrete analytic on Z+ x Z+ and of
R+lexponential growtn (R,S) where R > 1 , S < then the values

{f(m,0)}“ _0 uniquely determine f .
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r + nProof: By drawing a diagram it is easily seen that if S < Ir— *̂!
then

ARjS = {z 6 e ; |z| £ R , ||^|| £ S}

is simply connected. Let r > R , s > S be such that

A°r s = {z £ <2 5 |z| < r , ||=i| < s}

is still simply connected. Then by Runge's theorem (Rudin T19],

uniformly on compact sets, by polynomials. For every m > 0

on the polynomials. Since g is a compact subset of A°r g ,
dp ‘ is uniquely determined by its restriction to the polynomials 
and hence f is uniquely determined by {f(m,0 )}“ , the theorem 
is proved.

3. Discrete entire functions of exponential growth.

In this section we deal with discrete entire functions, that 
is functions f: Z x Z 0 such that Lf e 0 on Z x Z .

Let be the algebra generated by z,z \ w , w  ^

p. 2 58) each holomorphic function in A0 can be approximatedr , s

f(m,0 ) is known and hence dp is determined

M N
{ I I a z wn ; M,N integers, a. -M -N mn

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



78

then as already mentioned in Section 1, each discrete function 
f:Z x Z -*■ (2 induces a linear functional T̂ . on

T-(£ a zmwn ) - I a •f(m,n) ‘ (3.1)i u mn u mn

Moreover, if T is a linear functional on and f(m,n) = T(zmwn ) 
then T = .

It follows much as in Section 2 that f(m,n) is discrete 
entire iff annihilates the ideal (1+iz-zw-iw) .

We define

Definition: A discrete function f:Z x Z -> 0 is of exponential
growth (R,S) if there exists a constant C such that

| f (m,n) | £ C S I n ̂ (3.2)

for every (m,n) £ Z x z .

Let R > 1, S > 1 and URg = {| <|z| < R} x {| <|w| < S} .
The class of functions continuous on URg an<̂  holomorphic in URg
is a Banach space with sup norm which we shall denote by
H(R,S) , and instead of Lemma (2.1) we have

Lemma 3.1: If f(m,n) is of exponential growth (R,S) and r > R ,
s > S , then T̂ . defined on by (3.1) can be extended to be 
a continuous linear functional on the Banach space H(r,s) .
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■There is an analogue to Theorem *1.2 also, which can be proved 
in much the same way.

Theorem 3.2.: Let f(m,n) be discrete entire and of exponential
growth (R,S), (R > 1, S > 1) . Then there exists a plane measure 
dy(z) supported in

A ^ g  - {z £ 0 ; I z | £ tR , 12 +i I ^ S)

such that

f(m,n) = „/ e(z;m+in)dy(z)
AR,S

for every (m,n) £ Z x Z
The measure dy(z) in the above theorem is a continuous

linear functional on the algebra of bounded holomorphic functions on
• • "f"the region A° . At this point the following theorem due toJ? ? S

Havin [15] is useful.

Theorem: (Havin) Let G be an open set in t and let '0(G) 
be the space of analytic functions on G . Put F = C ~ G and 
assume 00 £ F . Then for every continuous linear functional c}> on 
£^(G) there exists a unique locally analytic function g^ such that 
if g^ is analytic on some G^ => F such that g^| = g then

1 The impatient reader may skip immediately to the Paley-Wiener 
theorem (Th. 3.4) the proof of which is independent of the present 
circle of ideas.
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£ (f) = --- / f(z)g, (z)dz
?tri r

where Y is a contour in G n G^ •

Applying this theorem to our functional dy(z) on the space 
of bounded holomorphic functions on the region A° we haveJ? , s
the following

Theorem 3.3: Let f(m,n) be discrete entire and of exponential
growth (R,S) ; let r > R , s > S . Put Brs = (S^'A^ then

there exists a unique locally analytic function g such that if
g^ is analytic on some G^ => such that gjJg = S then

* ' rs

f(m,n) = 2 -̂j— / e(z;m+in)gk (z)dz (3.3)

where T c A0 n G. .r ,s k
The above theorem can be viewed as the discrete analogue of 

the representation theorem for entire functions of exponential 
type (cf. Boas [2], p.74): "If f(z) is an entire function of 
exponential type, D is its conjugate indicator diagram and C 
'is a contour containing D in its interior, then

f(z) = 7̂ 77- / F(a))ezwdu) 
2 1 C

where F(w) is the so called Borel transform of f(z)."
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Imitating continuous usage we may call the support of dy 
the "conjugate indicator diagram" and the function g of Theorem 
3.3 the "Borxl transform" Notice that the support of dy (the 
"conjugate indicator diagram") is not, in general, simply connected, 

We shall finish this chapter with a discrete analogue to the 
celebrated two-sided Paley-Wiener theorem (Boas [2], p. 103):

Theorem (Paley-Wiener) : The entire function f(z) is of
2exponential type x and belongs to L on the real axis iff

T  « , •

f(z) = / elz <j>(t)dt 
-T

2where <f>(t) € L (-x,x) .

In the following T will denote the unit circle {|z| = 1} .

Theorem 3.4: #Let f(m,n) be discrete entire and of exponential
R + l 9growth (R,S) where S< | anĉ  suppose it belongs to L

on the discrete real line

£ | f (m,0) | ̂  < oo
m=-oo

2then there exisxs a function <f> € L (T) whose support is a compact 
subset of T ~ {i,-i} = {z € (2 ; |z| = 1 , z i ± i} such that
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f(m,n) = —— /<j>(z)e(z;m+in)dz = 
T

1 r r * a / it ̂ it imt/l+ie^^nj [i<}>(e )e je (-pr --- )“ dt
— 7T e *i

Proof; By Theorem 4.2

f(m,n) = / eCzjm+inJdyCz)'

for some measure dy supported in

^r,s = *z e 0 ; r * lz l * R » s * If+rl ^

R + n —Since S < |^rj-| the complement of g is connected
**»(A^ g consists of two simply connected components, one containing 

z = 1 and the other z = - 1 ) .

Let r > R , s > S be sufficiently close to R,S (respectively) 
to make the complement of

~Ai , s ={z 6 E ; ?  < lz l ■= r > ?  < Ifrfl < 3 }

connected. Then by Runge’s theorem (Rudin 0.9], p. 25 8) every bounded
holomorphic function on A° can be approximated uniformly onr , s
compact sets by polynomials. It follows that the values
/ zmdy(z) , m =  0, ±1 , ±2,... determine dy . Also for every

M
polynomial u(z) = £ a zm

-M m
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M
/ u(z)dy(z) = £ a f(m,0)

-M m

00 2Since £ |f(m,0)| < °°, dy can be extended to be a linear
— 00

2functional on L (T fl AR g) and by Riesz’ representation theorem
O ~there exxsts a function <{>(z) £ L (TRg) (where TRS = T fl AR g) , 

such that for every bounded holomorphic function u(z) on A°
o(which automatically then belongs to L

„ / u(z)dy(z) = / <}>(z)u(z)d:A Ta R,S RS

In particular

f(m,n) = / e (z ;m+in)<}> (z )dz^ TT rp
ars

TR 2 = T n Ar g is a compact subset of T ~ {i, -i} and 
evidently

• . co ,• "̂ "t,/ Xt\ r* ^ ~ \ ** imtxe (e ) = I f(m,0)e
—  CO

vanishes, a.e., outside TRg

r,s

' .V#
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APPENDIX Al.

UNIQUENESS THEOREMS FOR HARMONIC FUNCTIONS OF EXPONENTIAL GROWTH

1. Introduction and statement of results.
The purpose of this appendix is to prove the following 

two theorems.

Theorem A. Let u be a real valued harmonic function in Rn
Al xl nastisfying |u(x)| <Ce 1 1 wh.ere A < it , |x| = £ | x-1 and

i=l 1
C is a constant. If u vanishes on the integer lattice points of 
the hyperplanes xn = 0 and xn = a (|a| < 'then it vanishes
identically.

Theorem B. Let u be as above and suppose both u and au
vanish on the integer lattice points of xn = 0 , then u

3*n

vanishes identically.

Theorem A is a generalization of a theorem of Boas [1]
who proved if for n = 2 Boas used the fact that
in the two-dimensional case every real valued entire harmonic
function is the real part of an entire (analytic) function.
Evidently, this method does not generalize to higher dimensions.
Our strategy will be, instead, to view u as a "distribution"
(i.e., a continuous linear functional) on the test space of

n
bounded analytic functions on the polystrip X (llmt.l < A"} c Cn

i=l 1
for A" > A . '

2. Proof of the results.
We shall proceed by a sequence of lemmas.
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2.

Lemma 1. If u is harmonic in Rn and |u(x)| < C e ^ x l 
then any partial derivative of u enjoys the same properties.

Proof: For any x^ £ Rn look at the Poisson representation 
formula for the ball |'y-Xg|| < 1 , differentiate under the 
integral sign and estimate.

Let be the class of analytic functions of n complex 
variables of the form

v(t) = (2tt)n/̂ 2 / v(x)e^xt , (xt = 7 x-t.)■> ’  ̂ i i •

where v £ Cg(Rn ) . All these functions are bounded in 
n

K.„ = X {|Imt.| < A"} for every A" . Define a linear
i=1 ofunctional on *n by

Tu ( C2tt)n/2 f v(x)elxt ) = / u(x)v(x) (2.1)
Rn Rn

The next lemma will show that Tu can be extended continuously 
to 5 "the Banach space of bounded holomorphic functions on
K^„ , provided A" > A .

Lemma 2. Let u be harmonic in Rn and satisfy |u(x)| < C e ^ x L
Let A" > A then Tu defined on A  by (2.1) can be extended
to be a continuous linear functional on the Banach snace ,A M
which consists of bounded analytic functions on K^„ where the 
norm is given by
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I I f  I I Air = S U p  | f ( t )  |t€KA „

Proof: Let A < A* < A" and let R+ = [O,00) •, R_ = (-°°,0]
Then

U±± ••• ± (t) = <2'r>'n/2 R xR * i . « R " (x)e"1Xtdx+ + +
belongs to ( X {Imt- = + A ’}  ̂ and for v £ fa >

' i=l 1 ‘ J

A>Tu ^v  ̂= I / u(x)v(x) = I I U+...+ (t)v(t)dt^...dtn (2.2)
R±x...xR± " £ {Imt  ̂ _ - A ,}

i=l ’ 1

The sums in (2.2) each contain 2n terms, corresponding
to all possible choices of sign. Let us consider the term in
the sum on the right hand sidel-of (2.2) involving U (t)

“  • • • “

and let us write, for the moment, n = R_ x R_ x . .. x R_ .
Then, by Green’s formula

(2-rr )n/2 U (t) = / u(x)e"ixtdx = / u(x) A (■ ~e ■ )
n n M:f+. . .+t Jn

-ixt a r ~\
= - / Au(x)  2 + / u(x)3^ ”i 2 I dat;+...+t^ an dn L tf+...+t* JI n  I n

„ -ixt
- / 5 da (2.3)

an 3n 'J+.. ,+t*1 n

The first term on the right hand side of (2-3) vanishes 
since u is harmonic. Now an consists of n pieces:
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n
3fl = u {x. = 0} n n 

i=i 1

Let us consider1 the contribution from the face x^ = 0 .

Here Sn = and

-ixt it e_ixt
/ u(x)*l ( . ~e---^-\dx9...dx = / u(0 ,x„ ,... ,x ) —-

{x^ojnn 8n 2 n £x1=o}nn 2 n t2+...+t2

and
“ xx*t

^ lnCx)72^ 72 . = I 1 x7  C0SX2,..,. ,xn ) *
{x1=o}ns xi ••• n {x1=o}nn • 1

. -ix2t2--“ -ixntni.t̂ e
“ r\ O dXrt • • • dx (2.5)

t2+...+t2 2 n1 n

Now look at (2.2), the contribution from (2.4) is

/ v(t)dt1 ...dtn / u (0,x 2 j ...x ) *
{Imt1= A ,}xX {Inrti= A ’} { x ^Ojnn

- ix0t 0- ...-ix t •, 2 2. n nit^e
x a o dXo...dx «

t 2+ +t2 nT1 **• rn

But there is a similar contribution, with an opposite sign,
n

from integration on (imt^= -A'} * X {Imt£=A1,}. Let F^, be the 
rectangular contour in the t^-plane with ,sides ±iA' ± R then, 
as R -*• 00 , the sum of these contributions is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5 .

n
/ <f(t2>...,tn)dt2...atn / , ,

A' ti ' '-+tn
dt. (2.6)

where

<p(t2,. .. ,tn ) / u(0,x9,..
{xx=o>nn •>xn)e

-ix2t2- .-IX t
n n dx0...dx Z n

For fixed t„,...,t z n

j v(t1?...»tn )it1
rA ’ t2+...+t2 11 n

7T i { v ( t 2 , •
if 

0 if

,tn )+v("T l ,t2 ,‘ ‘ * stn ^  
Imx-J < A ’
Imx., | > A'

.2 . . 2 .2 _where xn = xn (t9 ,. .. ,t ) is given by Ti+'t2+* * *+tn = 0 1*e *»

Nowx, = i(t2+...+t2)1/2 1 2 n

Ma , = {(t2S...,tn) £ 0n-1 , Imt2= A ' ,. . . ,Imtn= A» , | Imx;L |

n
is seen to be a compact subset of X {Imt- = i A ’} and we

i=2 1
get that the contribution from the pair of boundary terms, 
(obtained in (2.3)) considered is

7T1 j <J)(t2»...jtn)[v(x1 ,t2 ,...j't’n ) V("Tl»t2, • • « , t^) 3dt 2 . . . ̂ t^ •
V
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and its absolute value is £ constant I |v| |^„

Similarly, if

» 3t ) - “ / jr— (0 , X« , . . . , X )
{x1=0}f1K_x . . .xR._ 1

-ix0t0- ...-ix„t ~ 2 2 n n , ,x e • dx„...dx2 n

The net contribution from the two terms in (2.2) involving 
<j>1 (t2 ,. . .»tn) is

A

/ ) / Tlti ..... V  dt (2 7)
{Imt2=A>}x...x{Imtn=A'} FA ‘ t2+...+t2 11 * un

which is equal to 

it J" $'(t2 ,..., t^) • — [v(t 2 jt2 ,. .. , t^) - v (—t ,t2 j • • •  ̂3dt 2 • • • dt ̂
ma , i

( 2 . 7 ' )
which, in absolute value is £ constant I Iv I I A”

In a similar way we can consider all other terms of (2.2)
_  -t

and write it as a sum of n2 “ terms of the form (2.6') and '
n2n-'L terms of the form (2.7') . The resulting formula defines
T (f) for every f £ ){,An and T is a bounded linear u .ft. u
functional on •
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Lemma 3. For every x £ Rn ,' T (e‘*'x't) = (27T)“n/̂  u(x) .

00Proof: Let K£ be a C compact support approximate identity,
then /K (y-x)e^'^tdt ->■ e^x^ in the topology of- {̂.Am and

Tu(elxt) = lim T 
e->0 u (/ Ke (y-x)eiyTdy) =

= lim (2tt )“n/^ j k (y-x)u(y) = (2ir)”n^^ u(x) . 
e->-U

n—nLemma U. There exist measures dy^ , dy.̂  on {tn = 0} = 0 ^ ,

supported in the compact set

L̂ tr - { (t^ » • • •  ̂ » I I111"^ I  ̂ »•••>! ̂ m‘tn_i I  ̂A 11 »

|Re(t2 + ... + 1/21 < A"}

such that for every f £

Tu (f) = /f(t13. .. . t ^  , i(t2+...+t*_1)1/2)dy1

+ / fCt-j,... j —i(t-^+...  ̂ ^  2 *

(2 .8)

In particular
9  0 -1 / 9ix, i, +.. . +ix. -j t i -(tn+...+t , ) x

f x r 1 1  n-1 n-1 1 n-1 nu(x) = J e e dy1
(2.9)

ix,t,+...+ix .t , (t,+...+t ,) X., r 1 1  n-1 n-l „ 1 n-1+ e e nJ e e dy 2
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Proof: Let VA „ = {(tis...,tn ) £ KA „ ; t2 + t2 +...+ t2 = 0> . 
Then by the proof of Lemma 2, by adding all the terms like (2.6') 
and (2.7') we get that there exists a measure dv , supported in 
VA „ such that for every f £

Tu (f) = / f dv

Let dv- = dv^+dv^ where dv^ is supported in
{ (t^jtj j • • • 5i(t^ +. .. )) and dv.̂  is supported in

{ (tn ,t0 ,. . . ,t , ,-i(t?+. ..+t2 ,)1//2)} . Let dy,,dy0 be the 1 2  n-l ± • n-i 1' 2
projections1'-of dv^jdvg respectively on t = 0 . Then the 
lemma follows since dy^,dy2 are supported in the projection 
of VA „ on tR = 0 which is LA „'.

Now we are in a position to prove the theorems.

Proof of Theorem A. Since A < ir we can choose A < A" < ir .
It is easily seen that LA „ is contained in 
n-1

spanX {Imt-1 < A"} x { | Ret • | < A*'} and since A" < ir the 
1=2. < 1 1
of {elxt ; x £ Zn_^} where Zn“^ are the integer lattice points

of Rn”^ , is dense in the space of bounded holomorphic functions
on L.„ . By (2.9)

and

dp1 + dn2 = 0

-a(t?+. . . +t2 n)1/2 a(t? +. . . +t2 -,)1/21 n-1 . , „ 1 n-1 - _ ne dy, + e dy, = 0

Since a £
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2 2it follows that dy13dy2 are supported in =
and by (2.9) u(x) is" identically zero. D

£Proof of Theorem B. Applying to (2.9) we get9xn

|H- (Xl,...lXn.1 ,0) = - / .

+/ e1Xltl+" ' +:LXn-ltn-1(t^...+t2_1)1/2 dw2 .

As in the proof of the Theorem A we get that

dy1 + dy2 = 0

(t^+.. . +t^_1)1/f2 (dp1~dy2) = 0

* 2 2 Thus dy^ = - dy2 is supported at the set ^ i 4-* * *+’tn-l “
and by using (2.9 ) it once again follows that u vanishes 
identically.
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APPENDIX A2 1.

BINARY OPERATIONS IN THE SET OF SOLUTIONS OF A PARTIAL 
DIFFERENCE EQUATION.
1. Introduction.

Let Zn be the n-dimensional lattice and consider a 
partial difference operator on Zn

tf’fCm) = T C. f(m+k) ,
IkjsN K

N
where m,k e Zn , |k| = £ |k.| , k= (k, ,. . . ,k)

i=l 1 1
and N is an integer. In this appendix we shall characterize
all products * of the form

(f*g)Cm) = I d£r f(r)g(k) (1.1)
r£Zn 
k£Zn

(only a finite number of terms on the right hand side 
being non-zero) with the property that if (Pf = 0 and 
'Pg = 0 then ^(f*g) = 0 . The product of Duffin and Rohrer
Cl] falls in this category. The basic idea is to associate
with every discrete function f:Zn -»■ 0 a linear functional 
T^ on the algebra </2-n generated by the indeterminates

{zi,z^1 ,...,zn ,z"11} , given by 

k, k
Tf(Zj ,..•jzn ) = f(k1#...,kn ) (1.2)

for every (k^,...,kn ) £ Zn and extended by linearity. 
Conversely, (1.2) associates a discrete function f:Zn 0 
to every such linear functional.
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2. BINARY OPERATIONS ON THE SET .OF SOLUTIONS OF TPu = 0

Definition 2.1. Any operation (fsg) f*g which maps pairs
of functions on Zn to another function.on Zn and is of the
form (1.1) will be termed a Duffin product.

Lemma 2.2. Any Duffin product induces a linear mapping

■ £  :A n  * & 2 n

such that if z = (z^,...,zn ) , t = (t-^,.. . ,tn )

Tf*g(uCz)) = TfTg( ̂ u (z»t)) (2.1)

where "t̂ ie linear functional on ££ 2n defined by

TfT (zktr‘) = Tf(zk )Tg(tr ) (2.2)

and extended by linearity.

Proof: By (1.1)

Tf*gCzm > = Cfi'Jg) Cm) = I d™r Tf (Zk )Tg(tr > •

,m _k, r ■= TfTg(X d j / t r )

Define cPtzP1) - £ d™rzktr and extend by linearity. Obviously 
(2.1) defines a Duffin product for each such mapping.
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Lemma 2.3: Let be a partial difference operator with
constant coefficients

tf’f(m) = I C^fCm+k) ,

and let P(z) £ \f\ be its symbol

P(z) Ck

Then V* f = 0 iff annihilates the principal ideal
P(z)vA n = {P(z)u(z) ; u(z) £ ^ 1  .

Proof: The statement is self-evident from the identity

?f(P(z)zm ) = Tf(£ Ckzm+k) = Ickf(m+k) .

Now we are in a position to prove our central result.

Theorem. A Duffin product induced by the mapping ^  : R n + $
given in Lemma 2.2, maps pairs of solutions of = 0 into
another solution if ^(P(z),A ) is contained in the idealn
generated by (P(z),P(t)}, i.e., if for every u(z) £ ft
we can find a(z,t) , b(z,t) £ 2n such that .

^(P(z)u(z)) = a(z,t)P(z) + b(z,t)P(t) I

Proof: f ( f*g) = 0 if T^a_CP(z)vA„) = 0 .-------  v r .. g n

Now

2m ’

!
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■Tfftg(P(z)u(z.) = TfTgC£p(z)u(z)) = TfT (a(z,t)P(z) + b(z,t)P(t)) = 0 .

3. APPLICATIONS.

The theorem makes very easy the verification that a 
given Duffin product preserves the property of being a solution 
of a given partiall difference equation with constant coefficients. 
This will be illustrated by the following two examples.

a) Duffin and Duris [2] introduced three kinds of ’convolution
products1 for solutions of the discrete Cauahy-Riemann 
equation.

f(m,n)+if(m+1,n) - f(m+l,n+l)-i f(m,n+l) = 0 (3.1)

They denoted them by f*g , f*’g and f*”g . An easy 
calculation, which is not reproduced here in order to save 
space, shows that the corresponding mappings IP, IP”', c3r" '•

R  2 &  ̂ are (make the notational transformation
z = (zisz2) = (z,w) , t = (tlst2) = (t,s))

“J  : u(z,w> CL+tMl+z) u(2'w >;“ (t>w) + iCL+sHl+w)

u (2.,h ) * (1+z) Cl-t) + i(1.s-)(1+w)

J " :  u(z,w) + (l-zHl-t)
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From these formulas we deduce easily that the corresponding 
convolution products indeed preserve discrete - analyticity 
(i.e., the property of being a solution of (3.1)). They can 
also be used to advantage in giving short proofs of the 
commutativity and associativity of these products.

b) For a general partial difference equation with constant 
coefficients tPu =0 , in Z“,Duffin and Rohrer Cl] introduced 
a 'product' which can be.shown, by a straightforward but a little 
lengthy calculation, to be induced by

^(u(z,w).) = ts [H z Jj22=H t 2w)0 _s-w z-t

u(z,w)-u(t ,w) |tP(t ,S )-P(t ,w) -j 
z-t s-w

Cu(t,s)[P(z,w)-P(t,w)] - u(t,w) [P(z,w)-P(t,S)]
(s-w)(z-t)

t

- u(z,w)[P(t,s)-P(t,w)]] ,

where P(z,w) is the symbol of t? . ^  is seen to satisfy
the hypothesis of the theorem, thus furnishing a short proof 
to the fact that if ?? f = 0 and Up g = 0 then **P(f*g) = 0 , 
(see Duffin and Rohrer [1] ,pp. 691-S9 3, for the original proof)
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