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A TECHNICAL REMARK

"Formula (m,n)" means "Formula~(m,p) in the present
chapter". If referfence will be made to formulas from
another chapter, then it will be preceded by the“relenént
chapter's number; e.g., 1 (3.2) means: formula (3.2)

in chapter I.
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CHAPTER I.

- INTRODUCTION

This thesis is concerned with discrete analytic functions.

2

A funetion f: Z° -+ ¢ from tlhe two dimensional lattice to

the complex numbers is said to be discrete analytic if for

every (m,n) € 7.2

f(m+l,n+l) - f(m,n) _ f(m,n+l) - £f(m+l,n) (1)
i+l i-1

If we embed 22 in ¢ by identifying it with the set
of Gaussian integers {m + in} we observe that (1) is an
‘ 'analyticity' condition: +the difference quotients along the
two diagonals of each unit square are the same. Equivalently,
discrefe analytic functions can be characterized as the solutions

of the homogeneous partial difference equation
f(m,n) + if(m+l,n) - £(m+l,n+l) - if(m,n+1) = 0  (2)

The theory of discrete analytic functions was initiated by
. Jacquelline Ferrand-Lelcng [13] and further developed by
Duffin [6], Duffin and Duris [7], [8], Hayabara [16], Deeter
and Lord [4], Duffin and Peterson [9] and others. Duffin [6]
- gave discrete analogues of: The function z-} , the Cauchy

integral formula, Ubuiville's theorem, qumack's‘ingquality,

\ . -
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7

polynomial expansion and the Hilbert.trénsform. However,

the proofs of most of the classipal theoréms of Complex Aanalysis
do not carry -over di?ectly to the discrete case because they

rely heavily upon the fact that the class of analytic functions

is closed under pointwise multiplication. This is not the

case for the class of discrets analytic functions and consequently
new techniques had to be developed. That is the subiect of

this research.

Two basic tools are used. Let us describe them briefly:

(i) Formal Power Series. With ény discrete analytic

+ ¥ ] _ ]
function f: 2 X Z =+ € on the upper-right quarter lattice

we can associate a formal power series

2]
F(X,Y) = ¥ f(m,n)x"y"
m,n=0

in terms of which

(1+iK)9 - (X)+(1-1¥)P (V) =£(0,0)

£f(X,Y) =
1+iX - XY - 1Y

‘ (in thé algebra of formal powers series) where ¢>f ) lJ)f are

the 'boundary' series

$.(X) = ¥ F(m,0)X™ 3 vo(Y) = ] f£(0,m)Y"
£ m=0 £ n=0

In terms of (¢f,wp) , Duffin's operations of 'integral!,
tderivative'!,'convolution', etc., take a simple form which can

be used to advantage to give simpler and quicker proofs to earlier
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8
results. It is also helpful in proving a discrete Phragmén-
Lindelof principle and in the study of Taylor expansion for

discrcte analytic functions.

2

(ii) Duality Methods. Any discrete function f: Z¢ + ¢

induces a linear functional on the algebra Jl, generated by

1

the indeterminates {z,z" ,w,w-l} which 'is determined by

Tf(zmwn) = f(m,n) and extended by linearity. f is discrete
analytic iff Te annihilates the ideal (l+iz-zw-iw)\9_. If

f satisfies an appropriate growth condition then Tf can be
extended to a continuous linear functional on an appropriate
topological vector space or Banach space. For example, if

f is of polynomial growth: [f(m,n)| ¢ ¢(|m] + |n])X , then

.. Tf. can be extended to be a continuous linear functional (alias
a distribution) on C™(T2) . If f is of exponential growth:
| £(m,n)| < ClelSInl then Tg can be extended to be a
continuous linear functional on the Banach space of bounded
analytic functions on the polyannulus {% < |z] < r}><{% < |w] < s}
(r >R, s > 8S) . These ideas are used to prove discrete
analogues of Liouville's theorem and of ‘the: Paley-Wiener theorems.
As already pointed out, the classical proofs do not carry over.

‘ ) quever.*, our duality methods also yield new 'farcy' proofs to
classical continuous thecrems. This is illustrated in detail
in the 2" section of Chapter III (for Liouville's theorem).

) Duality methods apply in both the discrete and continuous

2 2 2
‘cases because the dual groups T~ of 2~ and R2 of R

can pe embedded in ¢2 .
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This thesis deals with disérete analytic functions,

that is solutions of.partial difference equations (2).
However, our duality methods can be used just as well to the

N study of solutions of gzneral partial difference equations
with constant coefficients and even.to systems of such equations.
A future plan is to give a general theory of partial difference
equaiions with constant coefficients in the 'spirit of Ehrenpreis'
[12] theory of partial differential equations with constant
coefficients. A first step towards the .general theory, demon-

strating the power of duality methods, is given in the appendix.

Finally, let us present a summary of the contents of this

‘ thesis. In Chapter II we introduce formal power series and show
how the notions of 'integral', 'derivative', 'polynomials'

and 'éonvolution products' (defined by Duffin [6] and Duffin
and Duris [7]) translate to the language of formal power series.
The power of this mechanism is demonstrated by giving new short
proofs to results of Duffin [6], Duffin and Duris [7] and

‘Deeter and Lord [u4].

In Chapter III we use distributions on 72 (the two
dimensional torus) to give a short proof of the discrete
Liouville theorem, first proved by Duffin [61]. Then.using
ideas of the previous chapter, we derive a discrete Ehragmén—
Lindeldf principle and finally we use Fourier methods to give
discrete analogues of the one-sided Paley-Wiener theorem and

of a Paley-Winer-Schwartz theorem.
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Chapter IV deals with the MeClaurin expansion for
discrete analytic functions. The McClaurin expansion given

by Duffin and Peterson [9] is unsatisfactory because in terms

©

of their basis {z(n)} , the sum anz(n) defines a discrete
0 .
' entire function only if Iim |n!.n|l/n < 2 . This is a much

. more stringent requirement than the condition 1lim

1/n _
lanl =9

for the power series | anzn to define an entire function.
In fact a complete analogue is impossible, i.e., there exists

no basis {pn(z)} for the discrete analytic poiynomials such

©

) a_p (z) converges for every 2z whenever lim Ianll/rl =0 .
n=0
' However, we define a new basis {w_(z)} for which )) a T (z)
converges on the upper right quarter lattice whenever 1lim Ianll/n =0 .

The chapter ends with a discussion of the limiting behavior of

the expansion as the mesh size tends to zero.

‘The final Chapter V gives some discrete analogues to
theorems on entire functions of exponential type (Boas [2]
is the standard reference for the latter). We give a discrete
‘ analogue to the 'Borel transform' and the 'conjugate indicator
diagram' and establish a discrete analogue to the celebrated

two-sided Paley-Wiener theoiem.

The two appendices apply ideas developed in the body of
the thesis to problems outside the realm of discrete analytic

functions.
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The first gives uniqueﬁess,theorems for harmonic
functions of exponential growth. It uscs dﬁality methods to
generalize 1o R™ a theorem proved by boas [3] for R%? . The
second appendix deals with the genecation of new solutions to
a parfial difference equation from known ones: Given a partial
difference operator with constant coeffiéients P we are
.interested in binavy cperations (f,g) = fzg such that if Pf=0
and Pg=0 then P(fzg) = ¢ . Duffin and Rohrer [10] gave
one such binary operation. We give a whole class of such
binary operations which both simplify and extend the work of

Duffin and Rohrer [6], and at the same time generalize the

results of Duffin and Duris [7].
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CHAPTER II.

A FORMAL POWER SERIES APFROACH TO THE THEORY OF DISCRETE
ANALYTIC FUNCTIONS.

1. INTRODUCTION.

In this chapter a formal power series approach to tho
theory of discrete analytic functions is given which besides
giving new insight to the theory, makes many proofs much simpler
and shorter. To illustrate the method, new proofs are given

. to most of the results in Duffin and Duris [7] and Deeter

and Lord [ul].

If a function is discrete analytic in a simple region
(a finite union of unit squares which is simply connected)
it can be discrete analytically continued *to the whole plane.
Until Section 9 we shall assume that cur functions are

defined and discrete in each unit square of the quarter plane

+ + _. .
Z x Z .={(myn) ; myn integers, m,n > 0} .

Since functions defined and discrete analytic in the other

. - . \ .
quarter planes can receive a similar treatment, our assumption

involves no loss of generality.
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1

" The key idex of this chapter is to associate with each function

+ [ d :
£ Z+XZ +¢ - the formal power series

. © ‘ :
CE(X,Y)= z £ (m,n)X"Y" - | : (1.2)
m: ’ . ! ! -

n=0 '

2. %" THE RING OF FORMAL POWER SERIES IN TWO VARIABLES .

The class of formal power series . -

it . men ., . -
RXY-{mz a XY 3 amn€¢}
n

nn

0.
0
'

endowed with the usual rules for addition and multiplication:

. m,n myny myn
kZamﬂX Y )+(menX Y )-Z(amn+bmn)x Y

S I m,,n ® 0 o : .m.,m
(Fa XY (Ib  X"Y)= I (I I ;ak’rbm_k,n_IQ XMy
m,n=0 =0 . .
is a ring with an additive identity zero 0 (a__=0 for each m and

mn
n) and a multiplicative identity ;(a00=l > a =0 otherwise).’

Since the product of any two non-zero formal power séries is non-

. zero, this ring is an integral domain. An element F(X,Y) of Ryy o .

_ ,‘/ﬁés a multiplicative inverse iff a59=F(0,0)#0 and then

F(X,Y) " etay [ - 17t=a
0

X
00 _:

;
0 200

.

the infinite sum on the right defines a formal power series since the

coefficient of each term is a finite sum and there are no problems of

convergcnece. 0Ff course, the inverse, when it exists is:unique, since

| o SR | 2 o
LI

\

———— - ————

~

b iy ta A S Tt Sty e 06 vt o

L]
.. . .
. . v - -
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1y

RXY has no zero divisors.

Later we shall also consider the ring Ky of formal power series

of one variable

R ™ ..
n=0 *n

; This is a subring of Ryy and also an integral-domain.

H

i \
: :
\

~ ! The following lemma will be needed -later:

, Lemma 2.1: Let ¢(X)= £ ame . The equation w(X)k=¢(X) has a solu-
i : m=0 ‘ :
i ‘ tion \[)(X)E-ZRx 1ff there exists an integer n30 such that the first

[T PSS PO

non-zero coefficient of ¢(X) 1is a g o In this gése Y(X) is given

. by

' ' a a o '
PRI=X" (a0 R (Dt Ly, 2,2, )y Bk (2.1)
nk nk . A

where the right hand side is developed according to Newton's binomial
i expansion

(l+x)l/k= b

1/k.\.n
( )X
n= n

0

! Proof: Verify formally that w(X)k=¢(X) to prove sufficiency. The

‘-

necessity is triviel.

3. REPRESENTATION OF DISCRETE ANALYTIC FUNCTIONS AS FORMAL POWER SERIES

Let f : Z'xz¥+¢ be any function and associate with it the formal

power series

e Sk st 3w s

L EX, Y= £ F@m,n)x™T .
m=0 . , ’ <
n=0 .

. .
e e W ekdad! we

Then . o ' - : L~
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(l+1X-XY-1Y)f(X Y)= (l+1X)¢f(X)+(1-1Y)¢f(y) f(o 0)~ ¥ Lf(m, nyytiyntl
. m=0
=0

\
: )

(3.1)

e r -

' o s L
where Lf(m,n) = f(fn;n) + if(/mfl,n) - flm*1l,n+l) - if(m,n+l) ,

¢f(X)- b5 f(m,O)X
m=0

wf(YD- 5 £(o, P
n=0 ,

ﬁow the last term vanishes for discrete analytic functioﬁs and so. for
' such £ | . : o
(1+1X—XY-1Y‘f(X Y/-(1+1X)¢f+(l-1Y)wf-f(Oﬁ0)
Multiplying -both sides by (l+1X—XY-1Y) :

$ £ (XD (L+iX)+D - (¥) (1-1Y)-£(0,0) -

This confirms the self evident fact that a discrete analytic function
is uniquély determined by its values on the axes. In fact, (3.2) is a

condensed form of formula (7) in Duffin [6].

Now let I : S

- m=0

for k=0,1,2,... so that ¢0(X)=¢f(X)
and

, £(X, Y)= 2 ¢k(X)Y .
| k=0
Introduce this notation into (3.2) and comparing coefficients of
Y yields

X+i £(0,1)-if(0,0) -
4y (X)= <:>0(x.l+:LX e . (3.3)

and by applying this formula to the funcflon
£ (m,n)=f(m,n+k)

. . [ — Do e e e e 4 o e e e oo el L0 A SISt pimas ¢ s i ne S e : = e e oy
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' we obtaln

-

X+i £(0,k+1)-if(0,k) .o
sy (RO, GO T T+LX ‘ (3.4)

Formula (3.4) gives a convenient way to evaluate inductively the values

. . + _+ . )
of f i1inside 2Z xZ from its values on the axes.

Since a discrete analytic function in z¥xz*  is uniguely deter-
mined by ‘the pair, (¢f,wf) and evidently each\discrete.analytic func-
tion determines such a pair, there is a.(l-l) correspondence between
discrete analytic functions and +ihe elements of the set

{GPX) LX) 3 $CXIERy , Y(YIERy , ¢(0)=p(0I} .
" In the following, a discrete analytic fungtion in z¥xz* » £, will

be identified with the pair (¢f,¢f) referred to as the "function"

(besbe) - ; | . ‘I\

Example 3.1: The discrete analytic function £{(m,n)=C(C constant)

.corresponds to the pair (¢f,¢f) where

¢.2C B xM=c(1-x)"?
f

n=0
ye=C £ Y“:p(l;Y)‘fy - =T
\ ~ n=o ’ '
and ’ .
A ® L M,n_ C ’ : .

CX,¥)=C = XX =y (I=T)

m=0

n=0 '

'Example 3.2: The function f(m, n)’C'(-l)m+n corresponds to the pair

C
(c § 1M c 3 -1NYM)s (To%s Top)
‘n=i) n=0
and
, m+n Cc
=0 . . . A\

~-

PO . Sy
_—. e -~ » ol

a e e e Gt A § e ———— g ey ¢ Y= f S e o o o e, e e Sa b
g " > N s
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Duffin [2] termed a function f which assumes the value e; on
the odd lattice points and the value e, on.the even lattice points,
'a biconstant. ‘This function can be written as
PN m+
(720 (eyre )+ (=)L / 2Xepmey )
Thus, the general form of a biconstant is
. e tesX te. Y

<l/2)(e tey) (gog i) ¥/ e, ~ep) (rig T:'L—)”(i-x%(ﬁx)’(:2L~Y%(1+Y) ).

u,' INTFGRAL AND DERIVATIVE
Duffin [6] defined a "line integral” by the rule

b " m " . . .
i‘f(z)azznfl(fn+fn_l)(zn—zn;l)/Z - (1)

where as=z;,2z;see. - zm=b is a chain of lattice points (that is

. lzk k+l| 1 '. and fk=f(zk)) .

He showed that if £ is discrete analytic in a region then the
'sum 1s independent of the pérticular chain connecting a to b and

" hence (4.1) is well defined. He defined the indefinite integral T

of _f , ‘ _
‘Z S
F(z)=[ f(z)3z . o (4.2)
: a ’ . ‘W
' ‘ Since the starting point of the integral is arbitrary, F(z) is

| only defined up to an additive constant. Duffin alsc showed that if

. £(z} is discrete analytic in a simple region then so is F(z) .

Now, suppose f=(¢f,wf) and F=(¢F,wF) . We would then like to

find s ' in terms of ¢, and Yp in terms of Ve

" By (u.l)'witﬁ a=0 we have,
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2F(m,0)=£(0,0)+2£(1,0)+ ... +2f(m-1,0)+£(m,0)

S20£(0,00+ ... +£(m,0)3-(£(0,0)+£(m,0)) .
Thus |

2F (m, 0)X"= 2020 - (X)- ¢f<x> -£10.0)

’

and we get':
1l 1+X £(0,0)

Op°7 IR ETI(R) (#.3a)
Similarly, ;
i 1+Y,  i£(0,0) v o
Vpr 7 IV ) . {4.3Db)
Thus, the operation of integration is, \
' 1+X £¢0,0) 1tY i£(0,0) 1 1 N
<¢(X),w(Y))+—<l 29 (X) =233, i5= YqKY) ———————)bcc I T=7) (u.u)

Where C is an arbitrary constant. If the startlng point of 1ntegra—
".'tion in (4.2) a=0 then F(z)=z f(z)3z and in (4. 4) c=0 .
'Duffin also ?gfined/xhe/dual._é:’ of aiscrete functions by the
rule = . | '
£ (myn)= (-1)™P (myn) L
Thus
T ET R, Y=L (=X, =1)
and : ’ .
(X)W Y728 (=X) ¥ (=¥)) .
.We are nbw in a ppsi‘tipn to give another proof of the following result

which was first proved in Duffin [6], p. 3u41.
Lemma 4.1:

Let F(z) be a‘givén discrete analytic function. Let a and b

be £oints of z¥x27  and 1et x pe an arpitrary constant.

\

g S e e m e e et e . ememe e e e e -
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Then . \ y _
| f(z)=(uzF"3z+k)- e s
is analytic in Z+¥Z+ and. _
F(z)=f £(z)3z+F(a) | I (4.6)
2 i . _

Proof: if F=(¢,¥)
Fo=(0" (=X),¥ (-Y)) .

By (uou-)’ , N ot
z __ % 14X 0 (0) 1+y 1Y (0) 101
=07 VAN - i — —— L ——

u,lj; Fraz+k=2{¢ (-X){=% = —g=x¢ i (- V1% = oy Ot TRy
(kl some other constant).
So, .

N ~x 9(0) L1YC0)

f(z)= <u[ F az+k)™ 2(<:(x):L+X Y ~i W(Y)1+Y 1+y\)+]1(1+x"Y) (4.7)
Finally, _ S ST

z oo

. - 1-X _$(0),1+X Y(0)(i¢1+Y), _
gf(u)az-[(¢(X)l+x l+x)l_x "‘l(ch)'iTY - l+Y) (.L—Y)]
LIS S Lo g 1 i 1+y _ 1)
I+X°'I-X 1-X°TI+Y 1% 1-JY
- . 0 "
r(o 0) CF(0,0)
. - (X)) 7 40,0
ThUS, : M .
o ...
F(z)=J] £(z)3z+F(GC,0) .

0
Duffin [6] used formula (4.5) to defined f as the derivative of

F . Formula (4.7) says that the action of taking derivative is

(6¢x),pC¥)»20 0ORE - H0) s iy -_w§2;>u+k<l+x 5 (4.7

(k arbitrary constant) -

- . .
R T e R R it n P ST R  e

N e R R Rt i o
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So the derivative is unique up to addition by a constant multiple
N .
of (-1)™1 (example 3.2).

5. POLYNOMIALS

In Duffin [6] (Section 5), polynomials which are discrete
anal&tic everywhere were considered and it was chown that if f
is a discrete analytic polynomial than the integral F is a
discrete analytic polynomial. A sequence of discrete analytic

polynomials was defined by the relations

Z
20D L gy Mgy, (0 2
0
(o) _ .1 1
SO, 2 = (m ) l—_Y')
® R G O B PR C.L0 S | 1 iQu+y) 1 i,y X iy

I-X 0 IXTISX TS I T ISY TN 02 (1-ny 2

Since z(k>(0) =0, k=1,2,3,... one gets

(n) . (ot X0 )"nr yasn ™l

21’1"1 (l—X)n+l b4 2n-l (1_Y)n-l n:1323300n (5.2)

Z

The discrete analytic exponential function

. e(z,t) = (g:i)x (gti‘z)y

was introduced by Ferrand [1] and it is seen that

1 1
e(z,t) = (————————— , . )
77T TFiT
1-5=X 1l-73% ¢ '

and

* By f(z) we mean f(x,y) , where z = x+iy , (x,y) € Z x Z
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1+iX 1-iY L : . _
L L Lt P
i l-2 tX 1 R ) 1 ) .
ez, t)semmims __223T ] -
- TTeY-t 2-1t"

By using (5.2) one can reprove (Duffin [6], formula (139)),

’ r'd

; (n),.n - -
elz,t)= £ 25/ (t]<) .

n=0

6. A CONVOLUTION PRODUCT FOR DISCRETE FUNCTION THEORY

" In Duffin aind Duris [7] three types of convolution products were

defined for discrete analytic functions.

-

The convolution of f,g is defined as
z

‘ frg=[ f(z-t):g(t)a% : ' (6.1)
3 , i

where

) -

E]-

b -
J £(z):g(z)dz=

! . Li(z )+£(z _,)1-[glz d+glz 431 (z -z

™M

1 n-1

§

where a=zo,zl,...,zn=b is a chain connecting ..a and b .

It was shown in [7] that if f,g are discrete analytic then so

-~

is fxg .

‘ : For cb(X)GRX define

SRy = (LRe-¢(0)

' Then, in terms Of f=(¢f’wf) 9 g'—'-((bgawg) ; f7':g=_(¢f:':g’wf=':g) iS given by

(6.2)

Lo - Co2dieT =
¢f*g-ﬁx¢f¢g b wf;':g-quwfwg L

Alse, ¢f*g(0)=0 s?
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5 g.%-(1+x)¢ -6 and if h is discrete analytic

X(1+X)—
b(£rg)in 4¢f“g¢h ~T6 0£0gnT0su(pin)

Similarly, o : ' '
Yigrg)yin™Vex (gin)

and we obtained a simple proof of Duffin and Duris [7]'s results that

the convolution product is associative: (£f¥g)®h=£I*(g*h) .

A\

Invoking (5.2),

101 .1 xasxrasoxasx)™ i aex)

¢ Ty oy - (n,m»1)
| z(n)‘ (m) & on= -1 o 1 (l-X)n+l(lJX)m+lX
n! m! ' '
J
@ S1 xuex)™tm
'2n+m (l_x)n+m+2 z(n+m+1) *
- (n+m+1)!
Similarly; U] (n) . (m)= v (n+m+1)
z w2 Z
‘n! m! (ntm+l)!
- Thus, (ref. [ 7],p.2G5)
S z.(n)*z(m)._z(n~l~m+l) . s

n! m! ~(ntmtl)!

- The prime convoliution product

The Prime convolution product of f(z) cnd g(z) was defined
in ref. [ 7] to be

Z . .
ferg={ f(z-t): 8! (t)at+f(z)g(0) v, (6.3)
0 .
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where . ‘
b
1l e
(J_;.f:g' 32:7 nii(f(zn)-i-f(znnl) ).(g(zn)f-g(zn_l)')

and it was shown there that if f,g are discrete analytic, so is

7

fhtg o
The coefficient of x"~% in burg is
Lr£(n)+£(n-1)10g(1)-g(0) 45 £(n=1)+£(n=2) 1+ [g(2)~g (1) I+ ...

+[£(1)+£(0)][g(n)-g(n-1) J+£(n-1)g(2) .

Thus, (1406 =6 00) - (1-X)6_~6_(0)
+ - (1~ -
_1 £OF g ‘g .
bpr g7 3 . 5 .x+¢g(0)¢f
=3X ¢f<¢ ~26,)+0,(0)0=5XF T X0 F+o (0)og
Xo+6.(0) ¢ (0) - ¢ _(0)p-C0)
1 — - . £9F _1 g f
X¢_ ¢ (0)¢ (0) ¢ (0)¢ (0)
Lo —  o— £ _X(1-X)— £ g
=5X8 8~ X8 g+ R gt e
Similarly, RO S ;
- Y(1-Y)— wf(o)wg(O)
Vear g™ o (IF ) VeV IR Y .
Thus, | ‘ ‘ ‘ \\.
q)f” —q)fq) and Lpf*,'g: %_Y;’u'jf 'l'pﬂg - _ - (6.4)

wa, cb(X),w(X)éRX , 6 (X)=p(X)=»d(X)~P(X)=constant. Since £¥*'g(0)=

,I(0)g(0)=g*'£(0) and

g Yghif
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_ 2y
it i1s seen that the prime convoluticn product is commutative.

Also, from (6.4),

= A S F
(fxlg)w'h 2 f.g h fnl‘gu'h)

and [(£*'g)*'h](0)=£¢0)g(0)h(0)=[f*'(g*th)](0) i+ follows that B

(£%'g)*'h=f*'(g*'h)

and the associativity of the prime convolution product is proved.

’

"\, Let us prove that/ s
(n) (m) _(n+m) ) .
, 1 @)t |
¢ = (n>1) .
..z(n) oh 1 (l*X)n+l
n!

So,

1 (R L1 ae® LESx). 1 L)t

¢ == - 5 = =9
'z(n)*‘z(m) oN=1 (y_yyntl ,m-1 (1-x>W+1 2 Tontmel g _yyn¥mil Y (ntm
nl m! <o ' n+m

Similarly,

-

v o, =y .
. z(n)mZ(m) z(n+m)

nt m! (ntm) ! c - T

. pf course,
. Z(n) (m) - (n+m)

n! +'Zm! (0)=?n+m)1(0) ’

obtaining (6.5)

The double prime convolution product

The double prime product was defined in [. 7] by

-

M emTrim e L e i aseme tetemee s emim e eime R, - - en e re s e e S o=
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9f(z-t) ag(t)

3z : ot 3t

' Z
f:’: "g - f
0

where of is the discrete analytic derivative of f, defined
dz >

in Section 4. Invoking formula (4.7) and (6.2.) we get

(1-X) .~ -(0) (1-X74_<¢_(0)

. g :
X ) = g ) - X

= (

¢'f* "g

Let for ¢ € RX

5 o (1-X06-0(0)
X

Then.

- X3 3
¢f*"g - E ¢f¢g (pf*"g - (6-6)

Sl
<

th
<

from which the commutativity of the double prime product is seen.
Also,

- - o 6 X
(1-X) he _ X(1-X) % v = _
¢f¢g 4 4 - 716 ¢f¢g¢h T fRM"(g®"h)

=1

¢(f*"g)ﬁ"h =

Similary for the Y's 3 thereofre

(fxhMg)*th = f*"(g*"h)

. 7. New Proofs to some results in Deeter and Lord [4].

In this section it will be shown that Theorem 1, Lemma 2 and
Theorem 7 in Deeter and Lord [4] (here propositions 7.1, 7.2, 7.3

respectively) are immediate consequences of formula (6.4).

Deeter and Lord [4] defined the mean of the function on the

positive x-axis and y-axis vrespectively by,

F(m;0) [f(m,0) + £(m-1,0)1 m=1,2,...

ST N

F(0,m) [f(Oo,m) + f(O,m-1)] m=1,2,...
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So, in our notation,

b 'f‘<m,o>x““=x$f 'f‘(o,m)ymﬂaf. . (7.1)

m=1 . .m

1n M8

1l

If f has mean zero on the x(y) axis tihen 'E}(ﬁf)so .

Proposition 7.1 (Theorem 1 in [4])

. .. 3 \
If two discrete analytic functions are such that the mean of either

function is zero on an axis then the mean of their (prime convolution)

\
product is zero on that axis.

Prcof: Immediate from formula (G.4) .

Proposition 7.2 ‘(Lemma f/in (1)

. Let f,g. ‘be discrete analytic and satisfy,

F(1,0)= ... =T(n-1,0)=0, F(n,0)#0

gll,0)= ... =g(m-1,0)=0, g(m,0)#0

-

then F¥'g(l,0)= .,. =F*Tg(m+tn-2950) . | X

and ¥ Tg(m+n-1,0)=¥(n,0)g(m,0)#40 .

:

Proof: From (7.1), the.leading term of $f is 'f'(n,U)Xn-l , the

‘ leading term of \$g is 'g_(m,‘O')iém"l and thus the leading term of

X¢f

_le=Xo —
*'g'x_7_¢f¢g

3

n+m-1

is T(n,0)g(m,0)X and the conclusion follows from (7.1).

\

Proposition 7.3 (Theorem 7'in,[u3)

"Let f be giécrete analyq;c, a necessary and sufficient condition

for the existence of a solution of the equation

,!la' . : »

e heem A D L L eee e aeses s gy v R e Rt et s et TR Sy -

tepe
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.is that there exist ﬁonnegativejintegers.vm and n such that

£(1,u)= ...\=?(km,qj=o , ?(km+1;0>#o

£(0,1)= ... =£(0,kn)=0 , F(0.kn+13#0 .
" Prcof: Since

— ,1-X. k-1, |k , .‘\
¢g*:k-(—§f) (¢g> .

Tgu ik (=X Y)k‘1<w yk

~the conclusion follows from Lemmé 2.1;

8. DISCRETE VOLTERRA INTEGRAL EQUATIONS N

Let £f(z) and X(z) be discrete analytic functions in a recténgﬁ-
. lar region. R which (without loss of generality) will be assumed to be
thz+ . Duffin and Duris [7] considered the problem of finding a dis-~

crete analytic solution u(z) +to the equation
o oy

? .
-

2 T _
u(z)=f(z)+r[k(z-t):ult)ot . - : S (8.1)
0 . .

Where XA 1is an arbitrary constant. Translated to our langﬁage (8.1)

‘ reads, .

4T T D B -
Yo VeIV Yy ) ' : - (8.2b)
Thus | - -
A¢k
¢, ¢t Ly (1+X)=¢ (0)] L : ,(8.3a)

- ’

-
J n e tmp o A Ppe emme e S e e o e oty oy 55 e

oo —— . " ———— o e e S & e e ot e o

- se—
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- b T A D =y (0] '_ |  (8.3b)

Now, if a solution u(z) to (8.1) exists, ¢,(0)=p (0)=£(0) by (8.1).

.

So, _ S
- Moy : |
¢ L1~y (1+X) I=¢ o= £=£(0) : S (8.4a)
iA-—- By ' : . :
Y (=250 (1Y) J=y o~ — = (0) . ; . (8.4Db)

4

"'Theorem 8.1 (Theorem 5.2 in ref. :[7])

Let f(z) and k(z) be discrete anélytic’functions in z¥xz®
Tﬁen there exists a unique function u(z) discrete analytic in
z¥xz¥  such that e _ X '
‘ u(z)=f(z)+AZk(z—t):u(t)at ' | _ (8.1)
for all values except possibly A=1/h[k(0)+k(h)] where h equals’
+1, +i,. (This is not exactly the original wording but it is equiva-

lent to it).

Proof: A solution of (8.1) exists iff there is a solution of (8.ha),
(8.4b) simultaneously. A solution of (8.u4) exists (and then is unlque)

. 1f the coefficient terms of both
_ l—%Ek(l+X) and l-——m (1+Y)
are not zero; i.e., if ' ‘ | "_ .

.1¢§<k(o>+k<1>>

145X 0 094k (1)) ~ B

-~

- - e s e a o6 e e e SEEn TS e £ 5\ - P e S4B rag e WSS - G ew W S G, 1T ~Wm s s e
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and in this case the unique solution u;(¢u,wu) is given by:

Ady A -1
b= (0 f(O))[l-E¢k(l+X)]

AT,
= (e ‘<f(0))El—l>‘_ (1+v)17% .

If the condition on A is not satisfied, i.e.,
CA=4/[h-(k(0)+k(h))]
for either h=l or n=i . Then a solution may or may not exist accord-
ing to the leading term of the vr.h.s. of (8.4). The.solution is not
unique iff . |
1-3F (1+X)=0 or 1 - 22 «(14v) = 0
RSN T Yk = .
¢. b X +¢k.(0)
@ < am? T
or

d.e.,

et Y (0
KN (apy? TFY O

.
*

It is also possible to prove, by the method of this chapter, most

of the results in Duffin and Duris [ 8].

9. A REPRESENTATION FORMULA FOR THE HALF PLANE N
. - Consider. the abelian group Txy of all formal power series
z a XY : (9.1)
m,n=—°° mn *

(note that we allow here also negative powers).

Define, again,

Ta__X Myt +zu XMy =E(a_ . )men .

- x)

o~ —r— B D it L B
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Let,
A=fa  X"Y" ; B=Ib_ X'Y"
_..—C=AB is said to exist if ‘ -

c.. = £ b
mn k=~
rP=—c0

a
r,k m-r,n-k

converges absolutely for each m,n ‘intggers.
: N The following lemma is trivial

Lemma 9.1: uf A,B,CETXYV

\ . .
zgro terms and if both (AB)C and A(BC) ~exist, then

30

and B has only a finite numbher of non-~

(AB)C=A(BC) .

+ Now we can reprove the following representation formula from

‘Dufun Le] (p. 3u47).

Theorem 9.2: Let q(z) be a discrete function such that

Lq(z)=0 ,  z#0 : Lq(0)=1

(8.2)

and let f(z) be a function which is analytic in every unit square.of'

| the. upper half plane; suppose that for each fixed 2

f(z)q(z-zo)iolzl-l Imz>0

Then if ’
® 6(z)=q(~2)+iq(1-5)
Qe have

f(z )= f. f(m)e(zovm) , Imzoao

m— - 00
and the r.h.s. is zero for Ipmo<0 .

Proci: Let = ¥ (m,n)XmYn , from (9.2)
oot q q

LN

4% . T o S s, ) 4R et S By - % O S ame e b cAster s S imis — o e e - A s o e
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1 ,-1,~1 1

(L+iX77=X"7Y 7=iY T)g=l .

Let d(z)=q(~z) then

L]

g=a(x~ 1,y

Thus,
(1+iX~-XY-iY)g=1 .
Now

8(z)=q(~z)+iq(l-2)=q(z)+iq(-1+z)

8=(1+iX) .

So, S
T(L+iX-XY-iX)8=1+iX o . (9.6)
.Let, ' ‘
@  :xv:=Ff £ linmd
n=0 m=-—

$g(X)= _% £F(n)X™ .

Nn==w

Since f is discrete analytic in the upper half plane, similar'

considerations as in section 3 show that

CE(X,Y) (LHAX-XY-1Y)= ¢ (X) (L+iX) . (8.7)

Multiply both sides by 6(X,Y) (The product exists by virtue of

condition (9.3))

[£(X,¥) (L+iX-X¥-1X) 10 (X,¥)=[6 4 (X) (1+1X)T9 (X,Y) .
By Lemma 9.1 ) -
(X [LHEX-XY-1X)8(X, V)] = ¢ COL(L+iX)8(X, V)]

Ssince all products involved exist. By (9.6)

 £(X,Y)(1+iX):¢0(X)E(lfiX)g(X,Y)]=¢0(X)EQ(X,Y)(l+iX)]=E¢O(X)g(X,Y)](l+iX)
- : o . . .

. -
- T

13
! -
L N e st AT SRR Rt

———— Y m—— . e
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Let E(X,Y)=£(X,¥)-6,(X)0(X,Y) . | . (9.8)
We want to show F(X,Y¥)=0 and then it would follow that

EXLY)=6, (X)X, Y) | e ' (c.9)

which is the same as (9.5) .
From (9.8) ' ' I

F(¥,Y) (1+iX)=0 T . (8.10)

\

But
CE(X,Y) (L+iX-XY=-1¥)=£ (X, ¥) (1+iX-XY=-1Y¥)=[¢ (X) 8(X,¥) I(L+iX-XY-iY)=

=64 (%) (1+8X) =4 (RITBCX, ¥) (L+iR-XY=1¥) T2, (XD (LX) =g o (X) (1+iX)=0
o N

1‘. So

P E(X,Y) (1+iX-XY-iY)=0 . Co | ' ~(9.11)

Multiply equation (8.10) by (1+i¥) and subtract from (8.11) to get

‘

" F(X,Y)2iY=0 |
.. ’ / ~ {.f 4
and consequently ~ F(X,Y)=r0 .

.
' . AN
Y ‘

.
Lore m emes = eovmmsmm s e e e e e e £ e e 3 o8 e+ s + A ettt @ 5+ o
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CHAPTER III.

SOME NEW PROPERTIES OF DISCRETE ANALYTIC FUNCTIONS.

1. Iantroduction.

In this chapter we prove discrete analogues of the
classical theorems of Liouville, Phragmén-Lindeldf and

Paley-Wiener.

2. Discrete analytié functions of polynomial growth.

Duffin [6] defined a bipolynomial to be a discrete analytic
function which assumes the values of one polynomial on the even"
lattice points and the values of another (possibly the same)

polynomial on the odd lattice points.

'Theorem 1. Every discrete analytic function F of polynomial

growth is a bipolynomial.

Proof: Assume h =1 , (the proof for genefal h is similar)

and let F(m,n) be a discrete analytic function of polynomial

growth: |F(m,n)| ¢ C(|m| + Inl)k for some constants C and ¥k
. Then (Edwards [11], Chapter 12)
* The lattice point (mh,nh) is said to be even [odd] if

m+n is even [odd].
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F is the Fourier transform of a distribution
' D on the 2 dimensional torus '1'2(“'= 22) N
F(m,n) = D(elMt*ins,

Substituting this into I(2) one gets

Of F(m,n)+iF(m+1,n)-F(m+1l,n+1l)-iF(m,n+1)

_D(elmt+1ns)+iD(e1(m+l)t+1nsj_D(el(m+Dt+l(n+l)s)_iD(eimt+ﬂh+l)s)

- Dﬁeimt+ins+iei(m+l)t+ins _ ei(m+1)t+i(n+1)s _ ieimt+i(n+l)s)

; PR s s
t-e*t lS_lelS)elmt 1ns)

= D{(1l+ie = O.
‘; 2
for every point (m,n) € 2 Thus
(1+ielt - oTT¥IS _ 5538y p = ¢
The only roots of 1+iett o QITFIS 3015 - g are the points

(0,0) and (w,m) , which implies that D is supported in thece

points. So if § denotes the Dirac measure and § denotes

(m,m)

the Dirac measure translated by (w,7m) , D can be written

(Donoghue [ 5] p. jg3) as a finitesum of derivatives of § and

S(n,m
KoL ) KL R
D = a, § + b .
. k=0 K2 Bkaz k=0 k& akaz (mym)
2=0 2=0
So
imt+ins Kol k+4 Kes 12
F(m,n) = D(e ) = ) ap, GDFMREm G
k=0
£=0
K,L . s
+ 1 b (DM amK it eImiinT
k=0
2=0

s
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P(m,n)+Q(m,n) ,m+n even

P(m,n)*(-l)m+nQ(m,n) =

P(m,n) - Q(m,n) , mtn odd

where P Q are the polynomials

K,L X

P(m,n) = i‘ (-i)k+4 a m® n*
k=0
. 2=0
: K,L

Qm,n) = § -0 o nt
k=0
2=0

In the algebra Cm(T2) the discrete analytic functions of
‘ . -polynomial growth .are exactly the Fourier transforms of
distributions which annihilate the ideal
‘(l+.ieit - eitiis _ ieis) c®(T?) . If the mesh size of the lattice
is h instead of 1 , then the discrete analytic functions of |

polynomiai growth are the Fourier transforms of distributions on
T T |

=X E which annihilate the ideal
' o, T T
a.h(t,s)C ( 5 % I—x) R
. iht iht+ihs . _ihs
’ where ah(t,s) - lfie” - e —1€ .
-(1+i)h :

Now

~(1+idha (t,s) = 1+ieIt_giht+ihs _ 5 INS _ 541 14int+0(h2))

~(1+ ht+ihs+0(h?)) - i(1l+ihs+0(h?)) = ~(1+ih[(t+is)+0(h) 1.
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So ah(t,s) = (t+is) + 0(h)

Now let f(z) = f(x+iy) be a (continuous) entire function

of polynomial growth. Then f(x,y) = D for some

oo

temperate distribution D , and by the Cauchy-Riemann equation

(—3§ + i %y) 6 = 0 or, via the Fourier transform
(t+is) D- = 0

So (continuous) entire functions of polynomial gvowfh are

exactly the Fourier transforms cf temperate distributions which

<«

¥
(t+is) D = 0 implies that D 1is supported at the point (0,0)

.annihilate the ideal (t+is) C: (R x R) = ao(t,s) C, (R x R) . But
. . and therefore is. a finite sum of derivatives of the Dirac
measure & , and the familiar Liéuville theorem drops out:
an entire function of polynomial growth 1is a polynomial. Since
ab(t,s) = t+is vanishes just at one point (namely (0,0) € Rz)
while a, (t,s) vanishes at two points ((0,0) and (%-,~1)'€ % X %J

it is clear why, in the discrete theory, we encounter

bipolynomials and not just polynomials.

‘ 3. A Phragme/n - Lindelof principle for discrete analytic

functions

In the classical theory of analytic functions there are a number
of theorems, ascociated with the names of Phragméﬁ and Lindelof,
which compare the growth of an analytic function inside a

sector, or & strip,with the growth of the function ca the boundary.

* A temperate distribution is a continuous linear functional on the
Frechet space C: (Rz), the space of rapidly decreasing functions,
cf. Donoghue [5]1, p. 13u.
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The only sectors that can be treated conveniently in the
discrete theory are, evidently, the ones bounded by the axes.
For the sake of definiteness we choose to consider

+ + .
7 x 2Z = {(m,n) 3 m and n integers, m3> 0 , n > 0}

Theorem 2. Let F(m,n) be a discrete analytic function in the

. + + 4
quarter lattice Z x Z , and assume that there are constants

T>1, S>1 'and -C;, , C such that

1 2
|F(m,0)]| < cle , m>0 (3.1a)
|ECo,n)| € C,8" , n3>0 . (3.1b)
Then for every Ty > T, S, > max {s , %;% } there exists a
+ +
, @ constant C such that |[F(m,n)| g CTI]IjL s7 Yim,n) € 27 x 2
Proof. Consider the formal power series
: S m _.n
F(z,w = § Fm,n)Z w
m=0
n=0

Then
(L+iz-zw-iw)F(z,w) = (l+iz)¢F(z)+(1—iw)wF(W)-F(O,0)
[F(m,n)+iF(m+l,n)-.F(m-}-l,n+l)-iF(m,n+l)]zm+lwn+l (3.3) .

0
0

® n
n=
where ¢F 3 wF are the formal power series

) .
y F(m,0)z™
m=0 .

-
s |
RS
]
~
1t

<
|
~
=
~r
1

=]
§ F(O,n)w?
n=0 :
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Now, since F(m,n) is discrete analytic in 72" x gt s

the last term on the r.h.s. of (3.3) is zero and consequently
(1+iz-2w-ivw)F(z ,W) = (l+iz)¢F(Z)+(l+iW)wF(W)-F(O,0) . (2.4)

Until now, ¢F s wF -and F were cqnsidered as formal power
series, but by (3.1a), ¢p(z) is convergent in {|z]| < % }
and represents an analytic function there. Similarly, by (3.1b)
Yp(w) represent an analytic function in {|w] < %} so the
r.h.s. of (3.4) is an analytic function of two complex

variables in the polydisc {]|z]| < %} x {|w] < % } . Thus

o . (1+i2)¢p(2)+(1-1)Yp(w)-F(0,0) -
F(z,4) = A

b
1+iz-2w-iw

which was only defined a priori as formal power series, is a
convergent power series in the polydisc {|z]| < %} x {|w] < %,}

T+1

where S' = max {S, =7 -

Finally, since F(m,n) is the coefficient of z® w? in

the Taylor expansion of F(z,w) it follows by Cauchy's ineguality

that for every Tl >T , Sl > max {S, %;% there exists

a constant C such that

|F(m,n)| < cT7 ST,

. + -
for every point (m,n) € Z x 77
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b, Discrete Fourier analysis and discrete analytic functions.

The chareactersof the group R can be identified as the class

of functions e™®* : s € R = R . Clearly each character can be
extended analytically to the whole complex plane as

- + L . . —
els<X iv) 2 elS¥e™SY .+ Now look at the group 2 , with characters

A

elmt(t € T = 2) . One may ask: What is the natural discrete
2 4

\

analytic extension of e™(m € Z) +to the whole discrete lattice 2
With the continuous example in mind, let us try for an extension of

fﬁe form = == —_
imt, 4 (n)  with  6.,(0) = 1 .
e t t
Substituting this into (1.2) we obtain eimt[¢t(n)+ieit¢t(n) -

- elt¢f(n+l)- i¢f(n+l)] = 0 . Therefore

(1+1e )9 (n) = (i+el®) ¢ (n+1)

If t # % % one gets
. . .
. 1t
_ l+ie
¢.t(n) = (—e-i%'z) n E Z

So the natural analogue to the exponential function et

el5% = 18X o7SY (5 € R) is

s i rielt \ 1 |
Z(itym+in) = e 1Mt (l lit > (t €T, t# i%) (4.1)
ite . _

which we shall call the discrete exponential function. This
coincides with the discrete exponential function introduced

by Ferrand-Lelong [13]:
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e L o 2+s 2+is
e(mt+inss) = ( ) ( 15 )
if 2+5s it

=5 = e . As the above considerations showed, our

exponential function seems to be a more natural analogue of the
continuous exponertial function, at least for the purpose of

doing Fourier analysis. 1In fact, the main theme of this chapter

2

is that continuous analytic function theory (on R° = ¢) is

what it is bzcause of the dudl group of R : ﬁ =R , and

discrete analytic fgnction theory on Zﬁ is what it is because

of the duai group of Zh gh = %- . Notice that if

t = % = - % » then (4.1) still defines a meaningful exponential
' function for n =20 [n £ 0]. The analogue on the lattice

X . ith\ ™
S, (itjmh +inh) = elmth 1tie
h elth+i

Notice that for any fixed t € R

il 1 Y )
s . ith . .
oz . 1tx l+ie h _ +
eh(lt;x+1y) = e ( + ) elt(x iy)

elth+1
' ~as h ¥ 0 , since
) 1 _
1+ietth \ ot
ith, . 7 *
e +1

[l

Let us return to che case h = 1. Immitating the notation

in the continuous case we let Z2' denote the upper half
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lattice {(m,n)3;n 2 0} and define the class H2+(Z) as

follows:
Definition. A discrete analytic function F on Zz+ is said
to belong to H2+(Z) if
® o\ 1/2
sup ( ) |F(m+in) | ) < o . (4.2)
n30 \m=-« '

We are now in a position to give a discrete analdgue to the

famed one sided Paley-Wiener theoremn.

Theorem 3: If F 1is ‘discrete analytic on Z2+ and if

©

7 [r(m)|2 <= then F ¢ u2¥(z) iff

(+o]

m -
Fg(t) = Y F(m) et - g . a.e. in (-7,0) and in
-0
that case T has the representation

™

F(m+in) = 2—1} [ ®Gtymtin)EV(D)dt . (4.3)
0 (@]

Proof. Suppose Fg(t) = 0 a.e. in (-71,0) . then (4.3) defines
a discrete analytic extensioﬁ of the starting sequence F(m)

to the upper half lattice 72* ; and

n
. T / . 4t . :
® "F(m) = Flm+in) = L1 (F7(¢)| itle ) el™t 3¢
0

implies, by Plancherel, that for n = 0

. 2n
. 1t
Lo | I e
ite

S . N2 2 -1 m
F(m+1n)| = F = =
Dl 1% 2 57

N

1 T v, 2
L grrom at .
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l+ielt

T <1 for teg [0,7].

Since

ite
. 2+
This proves T € H® (Z)

Conversely, if F € H2+(Z) then Fn € 22 = L2(Z) for
o’ . .
n >0 and FX(t)= ) F(mtin)e ™™ ¢ 1.2(T)

m=-—co

Now, using ' I(2)- it is readily seen that

‘+ieHEY (1) = (retHEY (1) (n > 0)

Since the Fourier coeflicients of the two sides match:

/ (l+ielt)FX (t)e*™tat

Nll—-’
3

Fn .(m)+i Fn (m+1)

F(m+in) + iF(m+l+i n) = i F(mti(n+l)) + F(m+1l+i(n+1))

s . _ 1 ., it v imt
= iF 4 (m) # F,,(mtl) = 5= [(i+e™) F ., (t)e™ dt .

Therefore
. n
. . 1t :
FX(t) = —1—“&%— ) FZ(*I:) (n 3 9) . (4.4)
ite ‘

Now, suppose that FZ does not vanish a.e. in (-m,0] . Then

there exists an interval [a,8] < (-7,0) such that [P FZIZ 20,
o .
and so
" . n 2
t
.2 _ 1 TV 2 1 m <l+lel ) v
F(m+in) = = F (t) dt = &=— F (t) dt
Iznl l 2T -1.!; | n | 2T -":TI' i+elt o
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in which

. it
l+le:JL..t |§a<t43} >1

i+te

k = min {

contradicting condition (4.2).

m -
Hence Fg(t) = ) F(m)e ™™t = g a.e. in (-7,0]

==

By (4.4), for n 2 0

. . n

T . 1t
. _ 1 imt | l+le v :
F(mtin) = F_(m) = 5= é e (——> F_(t)dt

« . 1
l’l"et

i

m F(itsm+in) Fy (£)dt
0

establishing (4.3).

' ' By (4.3) a function F(m+in). of class H2+(Z) is uniquely
determined py its restriction to the discrete real line n =0 ,
SO H2+(Z) can be viewed, in an obvious fashion, as a

subset of 22 = L2(Z) and Theorem 3 tells us that

2+(Z)

12(z) = L¥(-m1,m 2120, ==H
which is in perfect analogy with the line (c¢f. Hoffman [17], p. 131)
+
2+

L2(rR) =-L2(R)" 2 L2¢0,=" = HZT(R)

and the circle (cf. Hoffman [17], p.39)

12em = 12y = 12z = m2temy .

7
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Unfortunately, Beurling's elegant theorv of invariant
subspaces does not seem to have an analogue in the discrete

theory, due +to the fact that the dual- group of 2 , 2 = T

is not ordered (c¥f. Rudin [12],chapter 8, p. 210).

Define HZ27(z) to be the class of discrete analytic function on

the. lower half plane 72" = {(m,n)3n < 0} satisfying
sup ) |F(m+in)|% < .
ns0 m=-®

It is now readily checked that

- ﬂ -
H2 (z) = L2(-ﬂ,0)' » So one has the orthogonal
decomposition
22 = 12¢z) = u2%(2) 8 HZ(2)
’ Let X[O 'Tﬂ be the characteristic function of [0,7] and let
?
: B a N
T . T f.,. it .
1 . . 1 it+ie imt
8(m,n) = 5= r X T(it; m+inddt = = [ .——————-) e dt
> 27 £w [o,m] ’ 2T o \iteit
0 .
= %F [ tan n(—,§.+ %) e ™ at
0
which turns out to be Duffin's ([2], p. 349) discrete Cauchy
kernel. Now,.if F(m,n) € H2*  then FY(t)X = FY(t)
o (t) o)
[0 ,m]
. so by (4.4)
_ . n A N
.2t
; l+ie
: F (m) = [F'(t)x () () =
n [.o [o,n] iTelt' )
. n ”
: . 1t
l+tie .
F S |-X _— ) ] = F * 0
o [o,m] <i+e1t o n

L 3 - L + L
) obtaining the following representation formula for H? functions:
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F(m+in) = ) F(k) 9(m-k+in) | (4.5)

m=-«

(Compare Duffin [6], p. 347 formula 52).

Anothe. consequence of (4.4) is

o qora s i 2n+2 :
} [FGn+i(n+1)]’ = ltie - I[EV(t)|? at
m=-”l ' I é ’ i+elF °
.. 2n
m . 1t @
< [ | FV(t) |2 in) |2
— dt =
0 iteit | o' - l mz_w|FFm+1n)|
[+
Thus |[Fn||2 = ¥ |Fm+tin) [° +  and
m=-c
. @ o
‘ v sup ( )} |F(m+in) |2)l/2 = ()] |F(m) [2)1/2
n 0 Te=® m=—c

and we have proved

n

+ . .
Corollary. H“ (Z) is a Hilbert space with norm

[IE]] =sup (J [Fm+im)|2)12 = (7 |rm)|%H1/?
nx0 m= - m= -

and reproducing kernel  6(mt+in-k) .

. Finally, let uc remark that if we chose +to consider

h % 2y

(4.3), the representation formula

Z instead of Z x Z we would have obtained, instead of

! n/h _
F(xtiy) == [ e, (it,x+iy)Fy(t)dt
b o
which, on letting h +'0 "tends” to the classical Paley—Wiener
representation formula:

Fxtiy) = [ elt(x+iy)

v
! Fo(t)dt .
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5. Discrete Paley-Wiener-Schwartz theorems.

Let us recall that aAdistﬁibution D on the real line R ,
with compact support, has a Fourier transform B(E) = D(eixg)
which can be exteﬁded to an entire function .B(;) = D(%XC) =
D(eixie—xn) » T = E+in ; and one has the following vresults

(Donoghue [5], p. 210-213):

a) Let D be a distribution supported in [-a,al] then the

al

Fourier transform D(Z%Z) satisfies an ineqdality of the form

Incy| < cerelzyN o2lnl

where & = &+in and N is the order of D

"N
b) The Fourier transform ¢(%) of a testfunction <9 supported
in [-a,al is an entire function. TFor each integer %k there

exists a constant C such that

k
6oy | < e arlzhyx ealnl
c¢) (converse to b)) Let F(Z) be an entire function with the

- property that for every integer k > 0 there exists a constant

Ck such that

lFcey | < ck(1+lr,l>‘k eI“'a

where ¢ = &+in ; then.there exists a testfunction ¢ supported in

[-z,al] such that g(C) = F(2%)

d) (converse to a)) Let F(%) be an entire function which

satisfies an inequality of the form

|F(z)| < ca+|zg]HY e2lnl s then F(g)
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is the Fourier transform of a disfribution supported in [-a,al.

We were able to prove discrete analogues for a) and c) by
translating their proofs‘tO'the language of the discrete case.
However, the proofs of b) and d)do not carry over due to the fact
that the discrete e#ponéntial function is not as nice as the
continuousg?fn the case of b)) and to the fact that the multiplication
of two discrete.anaiyfic functions is not, in general, discrete
analytic (in the case of d)). .

Let us consider the exponential eixc as an entire function
of ¢ and let x vary along the extended real line i ; we see
that eixc defines an entire function for each x € i\\i w,=w} (=R)
and for each fixed r , eix; behaves nicely as long as one stays
-away from ©® and -« . Now, the. discrete exponential function
e(it,m+in) , t € T is singular only at t = g (if n < 0) o
t = -% (if n > 0) so, the pair of points 'Q; y - %} plays
the role of the pair {»,-«} in the continuous case. Therefore;
compact subsets of R = i {-w,o} will be replaced by compact
subsets of T\\\{-g , % }. Indeed, if D is a distribution on T
whose support is a compact subset of T\\\f—% R %} then D(m) =

D(elmt) = D(¥(it;m+i0)) can be discrete analytically continued

to the whole lattice by

D(m+in) = DCE(it,m+in)) . | (5.1)

This follows from the fact that D is linear and e(iti;m+in) 1is

discrete analytic for each +t in the support of D .
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Let us now turn to the statement and proof of the disctete

analogue of a).

Theorem 4. Let D be distribution on T whose support is a

compact subset of T\\\{-% , %} and let it be contained in
{]t] ¢ aYV{]t-7] € a} , (0 < a < %) 3 then D(m+in) given

by (5.1), satisfies an inequality of the form
ID(m+in) | < K(2+|n|+|m[>¥ cinl (5.2)

where k is the order of D, K 1is a constant depending only

upon D and

. =ia
Cq = F(-iaz0+i) = 1E2e :
ite
. Proof. The proof is similar to the proof cf a) as given in Donoghue [5],

P.211,only that instead of the nice formula

%? eltlm+in) _ .o yeit(mtin) _ .0 dt(m+in) - it(m+in)

you have a somewhat more involved equality

gf e(itimtin)=ime(it;mrin)-Fle(it;m+i(n+LFE(itsm+iln-1))]

' k

from which g—k e(itym+in) can be computed inductively. Beside
dt

this minor technical complication the proof is the same.

Let F and G be functions on 22 and let

F: a - zo’zl""’zm = b denote a discrete contour
(lzi+l - Zil =1, 0¢€ i€ m-1) . Duffin [6] defined the contour
integral
m z_-2
£ F: Go%z= nzl(F(Zn)+F(zn_l))(G(zn)+G(Zn_l))(—E—EE:l—) (5.3)
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and showed that if F and G are.discrete analytic in a region
containing T , and I' is a closed contour then
[F:G3z=0 . (5.4)
1!

Let us turn to the proof of the disctete analogue of c).

Theorem 5. Let F(m+in) be a discrete entire function with the

property that for every integer k * 0 ‘there is a constant K

such that
|F(m+in)| ¢ Kk(l+|n|+|m|)"k CLnl (5.5)
‘ ' . —-ia
where Ca = 'é'(_ia;o_{,i) = %+lfla ,
1+e

then there exists a C  function ¢ supported in

A, = {]t] ¢ o} U {|7-t|] <€ o} such that
,\ . it \ ®
F(m+in) = ¢(m+in) = [ ¢(t) o*F (11ie at . (5.6)
A it+e
o
Proof. For each n s Fn(m) = F(m+in) decreases faster

than any power of 'T%T and thus

v _ T -imt
. F (1) = mE_fn"“’ e

is a C° function on T for every n € Z , and it is easily

checked just as in the proof of Theorem 3 that

it

v _|1+ie
Fn(t) "( ‘y it
1LTe

n
) FU(t) Yne z

and'thus
n

. ' I .
Fv(t) e1mt l+1ie at .
fo) .+elt

T
F(m+in) = [
- i

(1

! —
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It remains to show that Fg(t) vanishes outside
Ay = {|t] ¢ o} U {|r-t] €.} i.e. inside
: Ty LT n T - ' m T
{lt"fl <5 - a}U{|t.+.7| <z -'a . Take B € {lt—7| <z - o}
and consider the discrete contour integral
[ e(igs;m+in):F(m+in) (5.7)
CR ‘
where the discrete contour is taken to be the boundary of the
. rectangle -Rg<m g R, 0 <n < R . Since both efiBj;m+in)
" and F(m+in) are discrete entire and CR 'is a closed contour it

follows that the contour integral (5.7) vanishes. But by the

Definition (5.3)

o
1]

e(iB;mt+in) :F(mtin) =
[
o °R
R :
7 o(eifm oy o1BMtL)y (p(my+F(m+1)+ [ S(iB;m+in) :Flmtin)
m=-R ) c'
R

=

where CR is the part of CR which lies in the "open" half

lattice n > 0 .

By (5.5)
. \n
. |le(igsm+in) |+ |F(m+in)] ¢ K (1+|n|+|m|)‘k 2 .
| - k Yy
‘ Since IB—;- l S—;I -Q, Cg = e(-iB;0+i) > Co and

f e(ifgjym+in) :F(m+in) +tends to zero as R * ®

!
CR
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Consequently,
3 iBm . _iB(m+1)
lim ) (e + e J(F(m)+F(m+1l) = 0 (5.8)
R+® m=-R
But ¢(-B) = F'(-B) = § F(m)elFm
o : 4
and ¢5.8) implies that
(l+elB)2 )) F(m)e*sm = 0. Since B # - % it
m=-o
follows that ¢(-B) = 0 for every B in |t'- %] < % -a i.e.
¢ vanishes in |t + %| < % - a . If Cp is chosen in the lower

half lattice you get that ¢ vanishes in |t - %| 3 % - o and

thus FZ(t) = ¢(t) is supported in Aj = {|tls a} U {|t-m] ¢ o}

and (5.6) follows.
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CHAPTER IV

A TAYIL.OR EXPANSION FOR DISCRETE ANALYTIC FUNCTIONS

1. Introduction

Duffin [6] introduced the following basis for

discrete analytic polynomials

k .
_odt [2+tyx ,2+it vyl
Pl = % 1= e

t=0

(z = x+iy) , which he called pseudo-powers.

Each pk(z) is a discrete entire functions and a
polynomial of degree k in (x,y) . Duffin [6] showed
‘ that every discrete analytic polynomial can be expressed as

a linear combination of these pseudo-powers.

Duffin and Peterson [9] introduced an analogue of the

McClaurim series in terms of these pseudo-powers. However,
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their analogue has the disadvahtage that the convergence of

©

o
) a E" on ¢ does not ensure the convergence of Y a p (z).
o " ’ g nn

==}
on Z x 2Z . In fact they showed that Z'anpn(z) converges
0

on the whole lattice Z x Z only if

1/n
Iim (la [nt) <2 °

In Section 2 other "reasonable" bases for discrete analytic

polyncmials will be considered. These will be called systems

of pseudo-powers, and it will be shown that the above drawback
of Duffin's basis {p_(z)} as regards the convergence of
Z anpn(z) cannot be removed by using other systems of

pseudo-powers.

On the other hand, we shall construct a system of pseudo-~-
<o

[]
powers {m (z)}, such that ) a,m, (z) converges absolutely on the
0

. + + _. .
quarter lattice Z x Z = {(x*tiy) ; ¥ and y integers,

-k
akt i,
plane. (The divergence of g %T pn(l,o) shows that this
property is not enjoyed by the Duffin-Peterson series.)

x 2.0 , v 2 0} whenever converges on the entire

.

o~ 8

. In Section 3 we shall consider the existence and uniqueness
o]
of the expansion ) akﬂk(z) . The discrete analogue of
' 0
'multiplication by z' corresponding to the above basis will

‘ also be dealt with.

In Section Y4, we discuss the lattice
+ +
h X Zh where

AY

Z
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z; = hz" , h > 0 and show that if :{ﬂi(z)} is the

0
corresponding basis then

) a,m(z) +~ ) acz
g Kk o x
when h ¥+ 0 along a sequence for which 2z € Zh X Zh )
o :
provided j akgk is an entire function of exponential type.

The analogous problem of representing monodiffric functions
(that in functions satisfying (i-1) f(x,y) - if(x+l,y) +
f(x,y+1) 2 0) by a series of polynomials was considered by

Atad%anov [x1].
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Definition: A basis '{ﬁn(z)}m for the discrete analytic
0
polynomials is called a system of pseudo-powers if the following

properties are satisfied:
(A1) p (0) =0 for every n > 0

(A2) v{pn(z)} ‘satisfies the Binomial identity

n n
Z G B (z9)p, 1 (2,)

pn(zl+zz) = .

k

(A3) py =1 and forn > 0 p (2) = z0 + §n_l(x,y)

where 5n-1 is a polynomial of degree g n-1 .

It is readily checked that Duffin's basis '{pn(z)} constitutes

a system of pseudo-powers. On the other hand, Duffin's basis

‘fails to satisfy the following:

(

. [+
*)y ) anpn(z) converges absolutely for every z € Z X Z
if Z angn converges in the whole g-plane.
0

One may ask: Does there exist a system of pseudo-powers
satisfying (#)? That no such system exists follows from the

next lemma.

Lemma 2.1l: Let {pk} be any system of psceudo-powers. Then
there exists a point Zq in the half lattice {x+tiy , y > 0}

and a complex number EO such that

3
9
z

8

o~
P BCA

pk(zo) faiis to converge absolutely.
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Proof: Suppose that the statement is false, i.e., there exists

a system of pseudo-powers '{pk} such that

k

=T pk(z) converges

e(zgsz) = o

nNe-1 8

k=0

absolutely for every point in the half lattice and for every
complex number: g .. Then, for every such z , e(g,z) is
an entire function in z aud by (A2)

k n

e(z;zy)e(z;32,) = 9) B+ Pyc(zy) (] s+ p,(z,)
°°cn n n °°Cn
= g = L g (P (290p, 4 (2,00 = g 2T Pr(21%2,) = e(g;zy+2,)

Thus
e(gix+tiy) = f(l;)X g(?;)y

where f(z) = e(g;1) , glg) = e(g;1) .

Since e(g3z) is discrete analytic in the upper half lattice

. I(2)

F()¥g (o 1+if(r) - £lg)glr)-igle)} = 0 .

must be satisfied there:

Thus
_ 1+if(r)
g(8) = T
and
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l+if(C))Y

elgsxtiy) = £(0) ()’ -

Since e(Z3;z) 1is entire in ¢ for each fixed 2z in the
half lattice and in papticuiar for z = 1,-1,i we see that

+1 . . . .
f(g) , 1/f(z) and l?%§§%%— are entire. But this implies

that £f(g) is entire and excludes the values 0 and -i . By
the "little" Picard theorem (Rudin[18], p.324) this is too much
to ask from a non-constant entire function. Evidently £(z)
cannot be constant and so we arrive at a contradiction and

the lemma is proved.

We saw that .there is no system of pseudo-powers satisfying
. . (%). The next theorem will demonstrate a system of pseudo-

powers satisfying the following weaker property.

(o]
as) Y anpn(z) converges absolutely for every
: 0

z € Z+ x 27 = {xtiy 3 x 20 , y > 0} if ) ansn
0

converges in tﬁe whole E-plane.

n
The divergence of X %T pn(l) shows that Duffin's basis -

‘ does not satisfy (AL).

Theorem 2.2: The sequence of functions .

4 -z
k . .
m (x,y) = =S (D)™ - 1% [(1-Det™ + 1) (2.1)
k , : =
dg z=0
k=0,1,2,... . Consiitutes a system of pseudo-powers satisfying

(Ah).
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Proof: The discrete analyticity of ﬂk(x,y) is readily
checked. (Al) 1is trivial, while (A2) follows from Leibnitz'
formula.  Aleco, by a straightforward computation

LN

’ 1 ;.o . . . . :
Tt $X6¥) = 537 {{x=-yIm (x,y) + 1xwk(x-l,y)+1yﬂk(x,y—l)} (2.2

Since ﬂo(x,y) = 1 it follows by induction that each nk(x,y) is a
'polynomial of degree k and that (A3) holds. -.Since 'Duffin
[8] shcwed that the dimension of the space of discrete analytic

polynomials of degree < k is k+1 , it follows that {ﬂr}k

. 0
is a basis for the discrete analytic polynomials of degree < k
(o]
. and consequently that {m.} 1is a basis for the discrete analytic
0

polynomials. Thus {ﬂk} is a system of pseudo-powers.

Now, let us note that for a fixed =z = xtiy € 7zt x z*

z -z
© k ~—— —
e(Tyxtiy) = [ m (x,y) fr = [Q+D)e™™-i1® [(-D)e™™ +i3Y |
- 0 . .

Since x and y are non-negative integers, the right hand
side is an entire function of exponential type and the Taylor
ﬂk(x,y)

k!
there exist constants C and T (depending on (x,y)) such

' coefficients being you have (Boas [2], p.11l) that

*that

lﬂk(x,y)l < crk .
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1/k
Thus Z akﬂk(x,y) converges absolutely whenever 1im Iakl =0,

since ) aka does. This holds for every (x,y) €zt x z*

and it follows that {nk} is a system of pseudo-powers satysring

(A4).

k

By Theorem (2.2) it follows that whenever a, & is an

Il/k

or~1 8

entire function; i.e., whenver 1lim |ak
© ) .
) akwk(z) converges to a discrete analytic function in zt x z*
C .

(substitute in (1.1) and rearrange terms, using the fact that

= 0, then

each ﬂk(z) is discrete analytic).

Let 04 be the algebra of entire functions and let Sz) be the

set of discrete analytic functions on z¥ x 2¥ . Define a

‘ . 'mapping

t'“;)'”" -L'C.}

by

T() anEn) y a m (2)
0 0

Let ? c @ be the range of T . '(:7'- can be made into an
‘ . algebra by requiring T +to be a homomorphism:

=]

© =] n
(] a,m(z)) (} b m(z)) = ( ym(z)
Lok L Pk Lo adn

. ”r
‘.}f

Thus in our class & , multiplication is defined for every

pair f,g € é& . This is an improvement on the mult iplication

in the Duffin-Peterson class,
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o —— 1/n
i;DP = {g a e (z) ; Iim (|an|§!) /n 2}

which is only defined on a subset of éIDP X E}DP . In particular

exp f 1is well defined in our class:

eXP (g a,m (2)) = T(exp (g akEk))
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3. Existence and uniqueness of Taylor expansion.

Formula (2.2) motivates the following analogue for the

continuous "multiplication by z"
2 ay) = o (=) EG,y) + ixf(x-1,y) +iyElx,y-1)} . (3.1)

Tt is readily checked that if f is discrete anélytic, then so

is a;f and, by (2.2)

2"k = T+l

;e(&;x+iy) =,a% e(gx+iy)

Let us res*trict attention to df), the class of discrete analytic
functions on 727 x Al . It was shown in Chapter II. that each
f € 52) is uniquely determined by the pair of formal power

series (¢f,wf) where

$e(X) = [ £(x,00%
x=0
pe(Y) = [ £C0,y¥Y

y=0
and we write f = (¢f,wf)

Since ;f(x,O) = Tl-l_:l'.' {xf(x,0) + ixf(x-l,O')}
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© % _ 1 © e . )
g;o Z}f(X3O)X = 13T Xgo X(f(X,O) + lf(x-l,ﬂ))x
= X d N
* 17 3% [(1+1X)¢f(X)] .
Similarly
yoos ' - _Y d . "
Zo af(O,y)Yy e [‘lY—l‘)gf(Y)]

1. .

wis L

W WL e
-~ .

—

So the operation of é% in terms of formal power series is

Chpste) » pip (X I [Q#iX 601 , ¥ [GY-1v (DD . (3.2)

® * Thus afso ief
c

K= 3 ™ Iy

s

£00,0) = ¥-(0)) . So,

(The constants agree since ¢.(0)

unfortunately, 25 has a non-trivial kernel.

Clearly, é;f(O) = 0 for every function f discrete analytic
. | in 2% «x Z+_. Let g€ @ » g(0) = 0 then f E‘;\,Q' given by
: ¢ _(X) ., @ X
_ 1+i g _ 141 g(x,0)X
0 = g [ Ty X - IFiX [g X +cl
6 (Y)Y . _ i % go,»YY
’ - 1+ > = — [2 2 + C]
VY =g [ By T TEEY Y Ty

solves é%f =g
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We have thus obtained

Theorem J.1: The operator

‘2 :ég)f 52)

has range {f 6;9; £(0,0) = 0} and kernel
{Cfo}

where fo € ) is given by

_ 1 . —
¢f T 1+1X l!’f T I-1Y :

o ’ 7
Let us consider the class &< £ defined at the end of
Section 2. It is not yet known whether the inclusion ;zc:ED

is proper or not; i.e., whether every discrete analytic function

+ + . ' .
on Z x Z possesses a discrete Taylor expansion

£f(z) =

a, m, (z) : (3.3)
X k'k .

ne-18

0

‘ Theorem (3.1) implies that even if such a representation
exists it need not be unique. However if attention is restricted
to the class

<7

5 —_— 1/
Te = {g a,m (z) ;3 Tim (kt|a,[) % ¢ @)

then the representation (3.3) is unique, as follows from the

c on

following
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0 in 27 x2z' and

Theorem 3.2: If g akﬂk(z)

Tim (ktla /"

< ® then 3 = 0 for every k .

Proof: By definition (2.1)

4 =z

(xvy = K [+ eI i1 -1y Ee1 Y 4
mtX,y) = 2ni‘[ R+1 - dt
2
where T is any contour surrounding 0 . So ,
s 1 k!ak lE X ZE y
- _ . 1. s 1 ,.
f(z) = g am (x,y) = 72= { (ZZE;T)[(1+1)e i]J7[(1-1e +i]7 dg
‘ . for any contour I for which
o kla
k
CEo () = )
B X=0 §k+l
is defined. fB(C) is the Prel transform of
£S() = ) aka
k=0
® and £ (g) converges for |[z| > type £© (see Boas [2], p.73).
Thus
L
£(z) = o= [ £ (p)[(1+idet 11X (1-1)el* 411V ar
211 I., B

and for some constant M
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| £(x,0)|scM®

and ¢f(t) = ) f(x,O)tX converges in the disc |t]| < % .
0o : A
We have then

B4

6.08) = ] £G,00t% = Lo [ £ ] [@ridetTh o 17%eX
x=0 r 0
o NESLL-
Co2mi g L
1-[(+i)e™™d - i3t

The right hand side defines an analytic function in any region
in the t-plane for which the denominator of the integrand does
‘ - - not vanish in a neighborhood of T'" in the Z-plane. In particular,
this includes a neighborhood of the point i in the |

t-plane. Thus for any discrete analytic function of class 32
o.(t) = L £(x,00t"
f <=0

whose radius of convergence is in general smaller than 1 ,
can be analytically continued through the boundary of the circle

‘ of convergence to a neighborhocd of t = 1

Now g a, M (2) 0 implies a5 =0 and

1
o

() o, (z))
2 ; K"k-1
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w . . *
Let gq(z) = ) aM._1(z) . Then g, € §'e and hence ¢g (t)
- 1

1
can be analytically continued to a neighborhood of + = i But
e e . en _ . C _
le = 0 4implies, by Theorem 3.1, that ¢gl(t) = 733f for some cons- .
tant C . This forces C = 0 for, otherwise ¢g would have
S

a pole at t i. Thus;

g,(z) = g a,m_,(z) = ¢ and a; =0

Continuing inductively we get that a, = 0 for every k and

the theorem is proved.
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4. Limiting behavior as h ¥+ 0 .

Let h >0 . For the lattice of mesh size h

Z, % Dy = {¢hm, hn); m, n € Z}

discrete analyticity is defined by

F(x,y) + iF(x+h,y) - F(x+h,y+h) - iF(x,y+h) = 0 . (4.1)"

The above discussion carries over to discrete analytic

functions for such lattices (all it amounts to is a change of

. ) scale). Now we have the basis
th X ~-Zh v
k = = — (4.2)
M Ge,y) = =S (Tsel™ - i1 r-1)e 4 117

az £=0

And for discrete analytic functions on the lattice Zh X Zh

the exponential function is

th X -zh y

k T X I~ sl
e, (,y) = 1 mpGe,y) gr = [+)el™ i1 [(1-)et™ + 7]

" k=0

Now as h + 0

zh
1+1

8

[(1+i)e

-th
[(1-i)el®™ + i]
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g (x+iy)

So eh(x,y) + e and conseqﬁéntly

ﬂi(z) - zk as h+ o0

n
g .
~ 0 .
Suppose |a_| < ¢ —y for some constants C and g, , by

dominated convergence

h —co h ® e
£ (z) =} a,me (z) =+ ) a, z
0 0
as h+t 0 . We obtaineq
1/
Lemma 4.1: If Iim (lak!k!) < » then

k

Dz) » £€9¢2) = 5 a, z

k

o~ 8

' . ot +
along a sequence h ¥+ 0 for which 1z € Zy x Zh
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CHAPTER V
DISCRETE ANALYTIC FUNCTIONS OF EXPONENTIAL GROWTH

1. Introduction.

In this chapter we shall prove theorems on discrete analytic

functions of exponential growth which are analogous to certain

classical theorems abaﬂ:gntire fﬁnctions of exponential type
(Boas [2] is the s*tandard reference for the latter). Perhaps

. the main result of this chapter is a proof of the discrete

. .analogue of the (fwo-sided) Paley-Wiener theorem (Theorem 3.4).

Our methods, which are completely different from the ones used
in the classical theory, use duality arguments on certain Banach.
spaces of analytic functions of two complex variables. In essence
the trick is to translate into discrete language a 'continuous'
idea due to Ehrenpreis [12] (see the prefacea of the latter).
Ehrenbreis deals with the solutions of partial differential

. equations, whereas present interest focuses on solutions of the
simple partial difference equation Lf = 0 , based upon the
Duffin operator L introduced in I(2). Since the discrete case
is, by its nature, simplcr than the continuous one, no explicit

reference need be made to Ehrenpreis [12].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

The key idea of this chapter is to associate with each discrete
function f:2 ¥ Z - ¢ a linear functional Tf defined on the
algebra

M N

f% = { EM EV amnzmwn 3 oa € ¢ , M,N integers}
m=-M n=-}

 .of polynomials in z,z-1 R w,w—l which is given by
M N M N
T-C) Y a 2% = Y Ya  fim,n)
'y -y mno o M -ff an i

and using the fact that (1.1) holds iff

Tf((l+iz-zw—iw)zmwm) =0V (myn) € 2 x 2
we get that f(m,n) is discrete entire iff 'I'f annihilates the

ideal (l+iz-zw-iw)é§ .

We shall first consider, in Section 2, discrete analytic
functions of exponential growth defined only on the upper right

n 30} .

.

‘ quarter lattice zt x 2zt = {(my,n) 3 m3x 0

2. Discrete analytic functicans of exponential growth on the upper

right quarter lattice.

Let J;; be the algebra of polynomials

. M N
{ 20 20 am’nzmwn ; a,, € £ ,M,N integers }.
m=0 n=

LY
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Any discrete function £:27 x z¥+ ¢ . induces a linear functional

Tf on ﬂ'+ given by
PY e M ] ] oay fmn
T( a z'w) = a f(m,n (2.1)
£ m=0 n=0 mn m=0 n=0 mn ’

and for any linear functional T on fQ+ , T =1 where

g(m,n) = T(zTw™

Let r,s be any positive numbers and consider the pélydisc

{]z] < v} x {Jw] < s} in ¢? . Let H(r,s) be the class of functions
holomorphic on' this polydise and continuous on.its closure. This

is a Banach space with norm

Hull, = sup |ulz,w)|
z|<r
W|<s

(see Rudin [20], p.3).

Evidently éﬂ cH(r,s) and in fact J§+ .is dense in H(r,s)

We.now make the following

' ' ] + + . )
Definition: A discrete function f:Z2 x Z =+ ¢ is said *to be of

exponential growth (R,3) if there exists a constant C such that

+
[£(m,n)| < crR®s"  for every (m,n) € zt x 27 . .

Later we shall need the following
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Lemma 2.1: Let £:27 x z¥ + ¢ be df'expénential.growth (R,S)

and let v >R, s >S5S 3; then Tg, defined on $3+ by (2.1)

.can ‘be extended continuously to the Banach space H(r,s>

Proof:

(o] o

F(z,w) = Y ) f(m,n)z
m=0 n=0

-(m+l)w-(n+1)

is defined and holomoﬁphic in {]z| > R} x {|w] > S} . Let

ul(z,w) € §§+ , then

= [ F(z,w)ulz,w)dzdw

T-(u) =
£ (271)2 T

for some poly-contour T in the poly-annulus {R < |z]| < r} x

o . '{s < |w| < s} . Thus
|TzCu) ] < (B[ |u]],

for some constant C(F) depending only on F  (and hence on £)

Since v9+ is dense in H(r,s) , the lemma is proved.

The "typical" discrete function of exponential growth (R,S)

‘ is f(m,n) = zglwg1 for some complex constants z,,w, for which
lzq] = R, |wyl = S and the induced linear functional T, is
the "point evaluator" at (zn,wo) s J(ZO’WO) R Tf(u) = vlzg,wy) =

- . £ ~ S mn - 4.2
J(zoiwo)(U). 1f we require tha? zyW, be discrete analytic then
1+iz .

Wo = 77~ and so the "typical" discrete analytic function of

0 .

exponential growth is
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e(z3m+in) = zM(EEiZ)n
z+1
which is of exponential growth (]|z], |§%%|')

The next theorem tells us that every discrete analytic
function of exponential growth is in some sense 2 "linear combination"

of (discrete) exponentials e(zj;m+in)

Theorem 2.2: Let f be discrete analytic in the éuarter lattice

z¥ x 2¥ and let it be of exponential growth (R,S) there. Then

there exists a plane measure du(z) supported in the.region
: z-1
AR,S={Z € ¢ 3 IZI < R, I-Z.Tf[ < S}

. for which

f(m,n) = [ elz;m+in)du(z) (2.2)
Proof: We proceed by steps.

Siep1: Tg annihilates the principal ideal (l+iz-zw-iw)\ﬂ; .

Proof: Since f(m,n) is discrete analytic in 2Z x Z

. Tf((l+iz=-zw-iw,‘zmwn) f(m,n) + if‘(m+1,n) - f(m+l,n+l) - if(m,n+l)

Lf(m,n) = O

um

for every (m,n) € AR

Step 2: T, extended to H(r,s) as in Lemma 2.1, annihilates
the ideal (t+iz-zw-iw) H(r,s) .
Proof: This follows immediately from Step 1 and the fact that

$¥+ is dense in H(r,s).
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Step 3: Let
Vr,’S = {(z,w) ;5 |z] <>, |w| <s , 1ltiz-zw-iw = 0}
then
(1+iz-zw-iw) H(r,s) = {u € H(r,s) ; ul = 0}.
Vr,s

Proof: This is the famous Hilbert semi local nullstellenstaz

for a very special case. Supposec ulv = 0 then
r,s
.. _ ul(z.,w) . .0 ‘
v(z,w) = gp—=2-——  is holomorphic in {[z| < r} x {jw]| < S}'Jvr,s

and locally bounded in {]|z| < r} x {|w] < s} , (Gunning and

. Rossi [14],p.19). By the Riemann Removable Singularity Theorem
¥(z,w) can be extended to be holomorphic in {|z| < r} x {|w| < s}
and is evidently continuous en its.closu?e,'i.ea, v(z,w)EH(r,s). Thus
u(z,w) = (L+iz-zw-iw) v(z,w) € (l+iz-zw-iw)H(r,s) . The opposite

inclusion is trivial.

Step 4: There exists a measure dﬁ(z,w) on ¢? supported in Vr,s_

such that

‘ Te(w) = V'( ulz,w)dp(z,w) , u € H(r,s)
r,s

" Proof: Let (z,w) € {|z] < »} x {|w] < s} and denote by T (z,w)

thc point evaluator at (z,w)

J(z,w)(U) = u(z,w)

By Step 3 and Step 2
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)(u) =0 V(z,w) € Vr s

b

J(z,w = Tf(u) =0

(z,w) € V_ } is

Thus the a.nihilator of span {J(z w) .S
H 9

contained Zn the annihilator of Te - Since H(r,s) is a
Banach space, it follows (ef. Taylor [21], p. 225-226)
that Tf is contained in the closed linear span of

{Jg (z,w) € Vr } . Consequently there exists a sequence of

(z,w)? »S

atomic measures {dun} , supported in Vr g Such that for every
3

w € H(r,s)
f u(z,w)dun(z,w) - Tf(u)

By Helly's selection principle there is a measure da(z,w) s

supported in Vr s such that

b

f ulz,w)dy - { u(z,w)dn Yu € H(r,s)
and we have

.. Te(u) = ulz,w)dp(z,w)

v
r,s

Step 5: 1is to complete the proof of the theorem. Let du(z)

be the "projection" of d;(z,w) on €

[ v(z)du(z) = [ v(z)dp(z,w)
z
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du(z) 1is supported in

o = . lz—il
AI‘,S {z€¢,|z|<r,z—+i-<s}

for every r» > R, s > S and hence in

AR’S={ze¢;|z|sR,|§—;§]ss}

and finally

m (l+1z)n

T du(z)

f(m,n) = Tf(zmwn) = f 2™ dp (z,w) =
Vr,s AR,S

= f e(zym+in)du(z)
Ar,s

Obviously, the knowledge of {f(m,0)} and {f(O,n)}Z_O
m=0 -
uniquely determines the discrete analytic function f(m,n) on the

+ . . .
whole of 2 x Z+ . The next theorem shows that if f satisfies
an appropriate growth condition then the knowledge of f Jjust on

the m-axis, i.e., the sequence {f(m,O)};=0 > détermines £ on
o a11 z7 x z¥ .

+ .
Theorem 2.3: If f 1is discrete analytic on AR anda of

: + :
exponential growth (R,S) where R > 1, S < |§:%| then the values

{f(m,O)};=0 uniquely determine f .
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R+l|

Proof: By drawing a diagram it is easily seen that if S < IR-l

then

Ap.s * {z e |z] « R, IEE%I ¢ S}

is simply connected. Let r > R , s > S be such that

- ) z-1
AOI’,S = {Z € ¢ H IZI <r, l"zTi-l < S}
is still simply connected. Then by Runge's theorem (Rudin [191],

/ p. 258) each holomorphic funection in A° can be approximated,

uniformly on compact sets, by polynomials. For every m 3 0
. N z8du(z) = f(m,0) is known and hence dy is determined
- A
R,S

on the polynomials. Since AR S is a compact subset of A° )
2 \ I’,S

du - is uniquely determined by its restriction to the polynomials

and hence f 1is uniquely determined by {f(m,O)}z , the theorem

is proved.

3. Discrete entire functions of exponential growth.

In this section we deal with discrete entire functions, that

is functions f: 2 x Z -+ ¢ such that Lf 20 on 2 x Z .

Let §A be the algebra generated by z,z-l,w,w—l

M, 3 M,N integers, a__ € € }

mn mn

2012
fu
N

' M
RS
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then as already mentioned in Section 1, each discrete function

£f:2' x 2 - ¢ induces a linear functional Tf on
m n . ‘ '
TG a zw) s ] a_-f(m,n) (3.1)

\ Moreover, if T dis a linear functional on @} and f(m,n) = T(z™w™)

then T = Tf .

It follows much as in Section 2 that f(m,n) is discrete

entire iff Tf annihilates the ideal (l+iz-zw-iw) J\ .

We define

‘Definition: A discrete function f:Z2 x Z +~ £ 1is of exponential

growth (R,S) if there exists a constant C such that
|£(m,n)| < C riml glnl (3.2)

for every (m,n) € Z x 2 .

1 1
Let R >1, 8>1 and Ugg = {ﬁ <]z| < R} x {.§ <|w|] < S} .

. The class of functions continuous on GRS and holomorphic in URS

iz a Banach space with sup norm which we_sﬁail denote by

, H(R,S) , and insteaa of T.emma (2.1) we have

Lemma 3.2.: If f(m,n) .is of eﬁponential growth (R,S8) and » > R ,

s >8 , then T; defined on A by (3.1) can be extended to be

a continuous linear functional on the Banach space H(r,s) .
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There is an analogue to Theorem 2.2 also, which can be proved

in much the same way.

Theorem 3.2.: Let f(m,n) be discrete entire and of exponential

growth (R,S), (R > 1, S > 1) . Then there exists a plane measure

du(z) supported in

AR,S = {z € ¢ ;

o] b

such that

flm,n) = _f e(z;m+inddu(z)
Ar,s

for every (m,n) € Z x Z
The measure dp(z) 1in the above theorem is a continuous

linear functional on the algebra of bounded holomorphic functions on

.'.

the region A° At this point the following theorem due to

r,s ’
Havin [15] is useful.

Theorem: (Havin) Let G be an open set in ¢ aand let ‘@ (&)
be the space of analytic functions on 6 . Put F = C ~ G and
‘ assume » € F . Then for every continuous linear functional ¢ on

©(G) there exists a unique locally analytiec function g4 such that

if gy is analytic on some Gy o F such that gy - = g then

T The impatient reader may skip immediately to the Paley-Wiener
theorem (Th. 3.4) the proof of which Is independent of the present

circle of ideas.

-
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L f f(z)g, (z)dz

2mi T

¢ (£)

where T is a contour in G n Gy -

Applying this theorem to our functional du(z) on the space

of bounded holomorphic functions on the region R; s We have
?

the following

Theorem 3.3: Let f(m,n) be discrete entire and of exponential

growth (R,S) 3 let »r >R , s > S . Put érs = ¢2’A;S then

there exists a unique locally analytic function g such that if

g, 18 analytic on some Gk > Br,s such that 1 Brs = g +then
' - 1 , .
f(m,yn) = o= { elz;mtin)g (z)dz (3.3)

[}
where T' c A r,s n Gk .

The above theorem can be viewed as the discrete analogue of
{he reprasentation theorem for entire functions of exponential
. o type (cf. Boas [2], p.74): "If f(z) 4is an entire function of
exponential type, D 1is its conjugate indicator diagram and C
dis a contour containing D in its interior, then

£(z) = [ Flw)e®aw

1
2T C

where F(w) is the so called Borel transform of £f(z)."
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Imitating continuous usage we may call the. support of du
the "econjugate indicator diagram" and the fﬁnction g of Theorem
3.3 the "Borzl transform" Notice that the suppdrt of du (the
"conjugate indicator diagram") 1is not, in general, simply connected.
We shall finish this chapter with a discrete énalogue to the

celebrated two-sided Paley-Wiener theorem (Boas (2], p. 103):

Theorem (Paley-Wiener) : The entire function £(z) is of
exponential type T and belongs to L2 on the real axis iff
eizt

T
£(z) = |
-1

é(t)at

where ¢(t) € L2(-T,T)

In the following T will denote the unit circle {]|z| = 1}

Theorem 3.4: Let f(m,n) be discrete entire and of exponential

R+l|
R-1

growth (R,S) where S< | and suppose it belongs to L2

on the discrete real line
. - 0

I olfm0]? <o

ms=c

then tbere exists a function ¢ € L2(T) whose support is a compact

subset of T ~ {i,-i} = {z € ¢ 5 |z| =1, z # + i} such that
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f(m,n) = %F f¢(z)e(z;m+in)dz =
T . ‘

dt

Nrd
=3

i ) . . . +aoit
[ [ig(e™Dre Tlei™(iien
- e” " fi

Proof: By Theorem 4.2
F(m,n) = [ e(z;m+in)dp(z)

for some measure du supported in

X 1 1 -1
Ap g={z€el ;3 g<lz] <R, 5% |2%] < s}

. R, z+1

Since S <[Bil|

R-1
R.S consists of two simply connected components, one containing
b

the complement of RR S is connected
M b

~

(A

z =1 and the other z = - 1 )

Let » >R , s >8 be sufficiently close to R,S (respectively)

to make the complement of

~

® Ag’S:{z€¢;%<|z|<r,l

L < lz-i < }

z+i

(0]

"connected. Then by Runge's~theorem (Rudin [9], p. 258) every bounded

holomorphic function on A° can be apnroximated uniformly on

r,s
compact sets by polynomials. It follows that the values
f zZMu(z) , m = 0, +1 , *2,... determine du . Also for every

M
polynomial wu(z) = )] a zB
_ M W

~
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M
[ ulz)du(z) = | a_f(m,0)
-M ™M

@

Since } lf(m,O)l2 < o, dp can be extended to be a linear
. - 00

functional on L2(T n A ) and by Riesz' representation theorem

. . 2 : = A
there exists a function ¢(z) € L°(Tpg) ‘(where Tpg =T N AR,S) R

such that for every bounded holomorphic function u(z) on A°r S
. b

(which automatically then belongs to L2(TRS))

[ u(z)du(z) = %— [ ¢(z)ulz)dz
A T
R,S RS
‘ In particular
f(m,n) = %F f e(z;m+in)¢(z)dz
Trs

TRS =TnN AR,S is a compact subset of T ~ {i, -i} and
evidently

ie%t¢(eit)~= ) f(m,O)e"lmt

-0

vanishes, a.e., outside TRS
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APPENDIX Al.

UNIQUENESS THEOREMS FOR HARMONIC IFUNCTIONS OF EXPONENTIAL GROWTH

1. Introduction and statement of resulis.

The purpose of this appendix is to prove the following

two theorems.

Theorem A. Let u be a real valued harmonic function in RF©
Al x|

n
astisfying [u(x)| <Ce where A <w , [x| = [ [x;] and

: ’ i=1
C is a constant. If u vanishes on the integer lattice points of
1/2)

t+hen it vanishes

' - - 1
the hyperplanes x, =0 and x| = a Qal§ (H:T)

identically.

u
Xl'l

Q

. . Theorem B. Let u be as above and suppose both u and

|

Qo

vanish on the integer lattice points of x, =0, then u

vanishes identically.

Theorem A is a generalization 6f a theorem of Boas [1]
who proved if for n = 2 . Boas used the fact that
in the two-dimensional case every real valued entire harmonic
function is the real part of an entire (analytic) function.

. ﬁvidently, this method does not generalize to higher dimensions.

Our strategy will be, instead, to view u as a "distribution"
(i.e., a continuous linear functional) on the test space of
bounded analytic functions on the polystrip .2 [lImtiI < Aﬁ} c ¢

1=1
for A" > A .

2. Proof of the results.

We shall proceed by a sequence of lemmas.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Lemma 1. If u is harmonic in R% and |u(x)| < Ce

then any partial derivative of u enjovs the same properties.

Proof: For any Xq € R" 1look at the Poisson representation
formula for the ball |[ly-x,|| < 1 , differentiate under the

integral sign and estimate.

Let S be thc class of analytic functions of n complex

variables of the form

S = o™ [ vt e = § xity)

‘ where v € C;(Rn) . All these functions are bounded in
n
Kpn = .Xl {|Imt;| < A"} for every A" . Define a linear
i=

functional on A by

T, ( M2 [ yxelxt ) = [ ux)vix) (2.1)

The next lemma will show that Tu can be extended continuously
to )LA" » the Banach space of bounded holomorphic functions on

K

INEE provided A" > A .

Lemma 2. Let u be harmonic in R" and satisfy [u(x)}| < cehlxl,

Let A" >A, then T, defined on i) by (2.1) can be extended
to be A continuous linear functional on the Banach svace }QA" R
which consists of bounded analytic functiosns on KA" where the

norm is given by
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llfIIAn = sup If(f)l‘
- EKA,,

Proof: Let A < A' < A" and let R, = [0,0)., R_ = (-»,0] .

Then

/2

-n ‘ -ixt
U con (t) = (2m) [ . ux)e dx
% * RiXRix“‘xRi
2 rl - ~
belongs to L ( X A{Imt; = ¥ A"} ) and for v € f
i=1 . .
T, (V) = E [ ulx)vix) = ; | i Upeony (dvtddty . .dt ~ (2.2)
RyXeo o xRy X {Imt, = 3 A")
i=1
. The sums in (2.2) each contain 2% +terms, corresponding

to all possible choices of sign. Let us consider the term in

the sum on the right hand side:of (2.2) involving U_ _ _(t)

and let us write, for the moment, @ = R_x R_x ... x R

Then, by Green's formula

. / _ -ixt
(2m)P/2 u_ () = ulx)e ™ *tax = [ u(x) Ak;f__g__—f )
e Q 2 l+...+tn

f e c : 3 - _a—ixt
= o [ Aulx) =2+ [ ux)e [ ] do
7 7 * 3 7, 2
tl+.‘.+tn ag tl*.‘.*‘t
-ixt
- .=t o (2.3)
BQ 'Ll+ 00+‘tn

The first term on the right hand side of (2.3) vanishes

since u is harmonic. Now 230 consists of n pieces:
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{xi = 0} N Q

Q
e
u
necs

i=1

Let us consider the contribution from the face % = 0 .
9 3 '

Here '5; = 'a?-i- and
. . . -ixt
-1xt it.e
3 -e 1 do
u(x)—— (-—————————) dx,...dx_ = [ u0,%,,...,%)
_ an 2 2 2 n ‘. 1720 > n 2 2
and (2.4)
-ixt .
f ) ’g—‘l'(x)g——_d_'g = f a—u- (0 ’X 9 ¢ o0 ’X ) x
n t2+”.+t2' ‘ axl 2 n
{x,=0}nQ 1 n {x,=0}nQ "
. -ixztz- o‘. o-ixntn
1t1e
l e 0 o n

Now look at (2.2), the contribution from (2.4) is

[ n v(t)dtl..,dtn [ u(O,xz,...xn) X
=A =A" - ,
{Imtl-A }xg {Imti A'} {xl o}ng
. . . ‘ . -lxztz_o . .-an'tn
. 1tle 4 4
X X box
2 2 2 . (-n

) t1+...+tn

But there is a similar contribution, with an opposite sign,
n
from integration on {Imt;= -A'} x X {Imt;=A'}. Let Fp1 Dbe the
2 ' :
rectangular contour in the t,-plane with sides +*iA' *# R +then,

as R =+ @ , +the sum of these contributions is
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v(tl,...,tn)ltl

/ ¢(tys. et ddt,...dt

dt (2.6)
n Dra, tieet? 1
X{Imt;=A'} :
9 i
where
—iX t -...-iX t
~272 n n
d(t, et ) = / u(0,%,5...,%_Je ! dx,...dx
2 2™n {x1=0}nQ 22 **n 2 n
For fixed t2,...,tn
N . .‘Ti{V(Tl;tz’..."tn)+$(—’rl’t2’..',tn)}
f v(tl,...,tn)ltl .
T 5 5 dt, = if lImTll < A'
‘ Al 'tl'*‘...'*"t
n 0 if |Imt,]| > A!
where T, = T,(t t_) is given b 12+t2+ +t2 =0 1i.e
l l 2,0.., n g y 1 2 o o o n - LN
e ,.2 2.1/2
Ty = 1(t2+...+tn) Now
My, = {(t t ) € gL Imt,= A’ Imt_= A' , |Imt,| <A'}
Al 23 cesly ) ) ey n ) 1

W.. o o n
is seen to be a compact subset of X {Im.ti = + A'} and we
‘ i=2 S
get that the contributioi: from the pair of boundary terms,

(obtained in (2.3)) considered is

ML [ ¢Ctysee e st DIV(T sty eeest ) + V(=Ty sty see st D 1dt,. . dt - (2.67)
M : -
Al .

e
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and its absolute value is € constant ll;llA"

Similarly, if

' (tnyeeart ) = -
27T %, =0I0R_X. L XR_

—iX .t —-..—iX -t
X e z°2 nn dxz...dx

The net contribution from the two terms in (2.2) involving

V(e yenn,st)
[ 1 N0 Ge. (2.7)

' 2 2 1
A t1+noo+hn

' (tyseee,t)
. {Im‘c2=A’}><.{.><{Imtn=A'} AR

which is equal to

1 ~ ~
"f ¢'(t2’oo.,tn) * ',l._' [V(Tl’t2,coo,tn)-v(—Tl,tz’.no,tn)Jd.t2o-adt

My 1 n

(2.7")

.

which, in absolute value is < comstant ||v]],,

In a similar way we can consider all other terms of (2.2)

n-1  iorms of the form (2.6') and

and write it as a sum of n?2
nZn“l terms of tha form (2.7') . The resulting formula defines
T, ({) for every f € MQA" and T, 4is a bounded linear

functional on }CA" .
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Lemma 3. For every x € RI ,'Tu(elXt) = (27r)-n/2 ulx) .

Proof: Let KE bea C compaét support approximate identity,

then fKE(y—x)elytdt > elXt in the topology of }KA" and

IXt5 = 1im Tu<}'K€(y-x)elytdy) =
e=>0 .

H3
ol
~N
0
n

1in (21)™™2 [ K (y-x)uly) = o2 ux) .
eV :

Lemma 4. There exist measures dul s du2 on {tn = 0} = g7~ s

supported in the compact set

‘ Lan = {Ctg5e0est 1) 3 |Imt1| < A",...,lmtn_ll < A",

ﬁ-l)l/zl < A" }

|Re(tZ + ...+t
such that for every f € JﬁA"

- s 042 2 1/2
Tu(f) - ff(tl,ao-,-tn-l 9 l(t1+too+tn_l) )dpl

(2.8)
. 2.2 2 1/2
‘ + f f(tl,-.-’tn_l, -l(tl+o-o+tn_l) du2 .
In particular
. . 2 2 1/2
lX . +o . .+1X. .t -(.t +. . n+t ) Y
ulx) = f e 1-1 fi=1l n-1 e 1 n-1 n dul
(2.9)
. . 2 2 1/2
ix t.+...+1ix t (t3+. ..+t ) X
+ f e 171 n-1"n-1 e T n-1 n du2
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of V

Proof: Let V,, = {(tl,...,tn) € Kyn 3 ti + tg

Then by the proof of Lemma 2, by adding all the terms like (2.6"')

+...+ £2 = 0}
n

and (2.7') we gct that there exists a measure dv , supported in

VA" such that for every f € &LA"

Tu(f) = | f.dv

Let dw = d\)l+d\?2

2 2 1/2 . .
{(ty,tyseensiley +ouatt] J) )} and dv, is supported in

where dvl is supported in

.2 2 \1/2
{(tl,tz,...,t ,-1(tl+.,.+tn_1) )} . Let du,,d, be the

n-1l
brojections' of dv,,dv, respectively on t, =0 . Then the
lemma follows since dul,du2 are supported in the projection

an on tn = 0 which is LA""

Now we are in a position to prove the theorems.

Proof of Theorem A. Since A < 7T we can choose A < A" < 71

It is easily seen that LA" is contained in

n-1 '

X  A{Imt;] < A"} x {|Ret;| < A"} and since A" < 7 the span
i=1 :

of {e**' ; x ¢ 7271} yhere 2771 are the integer lattice points

of R, is dense in the space of bounded hclomorphic functions '
on LA" . By (2.9)
dul+du25 0
and
a2+, 42 )12 a(t+.. 4t2_H1/2
e duy + e ., = 0

since 2 ¢ (I
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X . . 2 2 _
it follows that du,,dn, are supported in {tj+...t_ ; = 0}
and by (2.9) u(x) is identically zero. o

Proof of Theorem B. Applying 5%— to (2.9) we get
0 ,

3 ix tl+...4

) 1 iy athe1 L2, 1/2
e (Xl,...,Xn_l,O) - - f e (tl+oo"tn_l) dul ’

. : ix b+, 4ix ot
\ 11 n-1"n-1,, 2 2 1/2
+ + +
[ e (1:1 e tt -1) du,

As in the proof of the Theorem A we get that

dul + du2 =0

2 1/2
CE1*. o o+tl ) (duj-du,) = 0
Thus du; = - du, is supported at the set '{t§+...+t§_l =0} -
and by using (2.9 ) it once again follows that u vanishes
identically.

RETERLNCLS

1. R.P. BOAS, Jr.: A uniqueness theorem for harmonic functions,
J. Approximation Theory, 5, 425-427 (1972).
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APPENDIX A2 | ' 1.

BINARY OPERATIONS IN THE SET OF SOLUTIONS OF A PARTIAL
DIFFERENCE EQUATION. '

1. Introduction.

Let 2" be the n-dimensional lattice and consider a

partial difference operator on AL

YE(m) = C. £(m+k)
[k]gN »
n N
. thr'e ‘m,k e Z 9 lkl = izl Ikil b ] N k= (kl’ . o 0 ,kn)
and N is an integer. In this appendix we shall characterize
all products * of the form
(Fag)(m) = [  dp, £lr)glk) (1.1)
n
reEZ

@ : ' kez™

(only & finite number of terms on the right hand side

being non-zero) with the property that if ©f = 0 and

WYg = 0 then Af:g) = 0 . The product of Duffin and Rohrer
[1] falls in this category. Thc basic idea is to associate
with every discrete.function £:Z2" -+ ¢ a linear functional

on the algebra /A generated by the indeterminates

Tf n
-1 - ]
. {zl,zl", cen ,zn,znl} ., given by
kl kn

for every (kl,...,kn) € Z" and extended by linearity.
Conversely, (1.2) associates a discrete function £:27 + ¢

to every such linear functional.
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2. BINARY OPERATIONS ON THE SET OF SOLUTIONS OF Pu = 0

Definition 2.1. Any operation (f,g) - fxg which maps pairs

of functions on 2Z" +to another function on 7z and is of the

form (1.1) will be termed a Duffin product.

Lemma 2.2. Any Duffin product induces a linear mapping

3{ :ﬁxu - LQL2n

such that if 2z

(zl,...,zn) s, t = (tl,...,tn)

_ _ _ ,
Trag(ulz)) = TeT Julz,t)) (2.1)
‘ where Tng is the linear functional on Q, on defined by
k.ry _ K r ‘

and extended by linearity.

Proof: By (1.1)

. ) X
@ Trug(z™ =(f2g)(m) = | i, T (2T (+7)

- m _k,.r
= ng(Z dy .z t)

Define &(z™ = 7§ dﬂrzktr and extend by linearity. 2bviously

/
(2.1) defines a Duffin product for each such mapping.
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3.

Lemma 2.3: Let §° be a partial difference operator with

constant coefficient;
TEm) = § Cflmtk)

and let P(z) € J\n be its symbol,

P(z)

n

P Ckzk .

0 iff T, annihilates the principal ideal
{P(2)ulz) 5 ul(z) € Q)

Then T f

\
P(Z)\F\‘n

‘ Proof: The statement is self-evident from the identity

my _ m+k, _ '
Te(P(2)z") = Te(f ¢ 2" ) = 1O fm+k)

Now we are in a position to prove our central result.

Theorem. A Duffin product induced by the mapping %F:{?n *§}2m s
given in Lemma 2.2; maps pairs of solutions of 6&15 0 into
another solution if QF(P(Z)££1) is contained in the ideal
generated by {P(z),P(£)}, i.e., if for every u(z) € { n

we can find a(z,t) , b(z,t) € ﬁ‘Zn such that

FP(z)u(z)) = alz,t)P(z) + blz,t)P(t)

{
Proof: [ (fzg) £ 0 if Tf*g(P(z)J}n) = 0

Ndw

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.

T (PR = T (TP = T,T (alz,00P() + blz,P()) = 0 .

3. APPLICATIONS.

The theorem makes very easy the verification that a
gi&én Duffin product preserves the property of being a solution
of a given partiall difference equation with constant coefficients.

This will be illustrated by the following two examples.

a) Duffin and Duris [2] introduced three kinds of 'convolution
products' for solutions of the discrete Cauchy-Riemann

equation.
P | £(m,n)+if(m+1,n) - £(m*1l,n+1)-i f(m,n+1l) = 0 (3.1)

They denoted them by f=xg , fx'g and f="g . An easy
calculation, which is not reproduced here in order to save
space, shows that the corresponding mappings F, F', OF" :
Q_2¢+ é}q are (make the notational transformaticn

z = (zl,zz) = (z,Ww) , t = (tl,tz) = (t,s))

u(z,w)-ult,w) u(t,w)-ult,s)

@ T+ oulz,w) + (1+£)(1+z) — + 1(1+s) (1+w) s

ulz,w)-ult,w) . $01ss) (14w) u(t,w)-ult,s)

v ou(z,w) > (1+z)(1-t) o W5

Freoulzw » (1-2)(1-t) WWultw) oy () gy gy WEWI-ulr,s)
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From these formulas we deduce easily that the corresponding
convolution products indeed preserve discrete - analyticity
(i.e., the property of being a solution of (3.1)). They can
aléo be used to advartage in giving short procfs of the

commutativity and associativity of these products.

b} Far a general partiail difference equation with constant
n
coefficients u =0, in Z~, Duffin and Rohrer [1] introduced
a 'product' which can be.shown, by a straightforward but a little

lengthy calculation, to be induced by

. i;(u(z,w).) = ts {U(t’S;:S(t’W) [P(Z’V;:i(t’W)] -

u(z,w)-ult,w) EP(t,s)-P(t;wSJ}
z-t S=W

= —ts Cutt,s)[P(z,w)-P(t,w)] - ult,w) [P(z,w)-P(t,s)]

(s=w)(z-t)

- u(z,w)[P(t,s)-P(t,w)]1] ,

where P(z,w) 1is +the symbol of © . ¢ is seen to satisfy
the hypothesis of the theorem, thus furnishing a short proof
to the fact that if ﬁgf =0 ard g = 0 then 'ﬁ%f*g) =0 ,

(see Duffin and Rohrer [1] ,pp. 691-S93, for the original proof).
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