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Abstract

In this paper, we present AISHELL-3 a large-scale multi-
speaker Mandarin speech corpus which could be used to train
multi-speaker Text-To-Speech (TTS) systems. The corpus con-
tains roughly 85 hours of emotion-neutral recordings spanning
across 218 native Chinese mandarin speakers. Their auxiliary
attributes such as gender, age group and native accents are ex-
plicitly marked and provided in the corpus. Moreover, tran-
scripts in Chinese character-level and pinyin-level are provided
along with the recordings. We also present some data process-
ing strategies and techniques which match with the characteris-
tics of the presented corpus and conduct experiments on mul-
tiple speech-synthesis systems to assess the quality of the gen-
erated speech samples, showing promising results. The corpus
is available online at openslr.org/93/ under Apache v2.0
license.

Index Terms: open source database, text-to-speech, multi-
speaker speech synthesis

1. Introduction

Speech synthesis, or Text-to-Speech (TTS), is the automated
process of mapping input text specifications to target utter-
ances [1]. In recent years, TTS synthesis systems have achieved
marvelous results in terms of audio quality and perceptual nat-
uralness [2]. This flourishing research progress is made largely
due to the introduction of neural-network based deep learning
models, e.g. Tacotron [2, 3], Fastspeech [4] etc., and neural
vocoders that map the lower dimensional acoustic representa-
tion to waveforms [5, 6, 7, 8].

A key characteristic of TTS is the lack of constraint, which
renders the task essentially as a one-to-many mapping [1, 3].
Given only textual input, neutral or agitated speech is equally
valid as output, as is speech rendered by a female or a male
voice. But real-world application of such systems requires ro-
bust and consistent behaviors. This begs the question of whether
we could provide further specification to the system to gain
more flexibility over conventional approaches. There is a grow-
ing interest within the field in designing TTS systems that are
more flexible and with stronger constraints on its behaviors. Re-
cent publications on expressive TTS tend to associate the acous-
tic model with explicit control signals as augmented input be-
sides normalized texts [9, 10, 11, 12]. A more natural and im-
portant attribute of speech is the speaker identity. And multi-
speaker acoustic models give TTS systems the ability to disen-
tangle perceptual speaker identity from the textual contents of
the synthesized utterance by explicitly conditioning the model
on the desired speaker [13, 14, 15, 16].
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Training such systems naturally requires significant amount
of annotated data. VCTK [17] is a freely available multi-
speaker corpus that could be used to train such systems. How-
ever, VCTK only includes utterances in English. As suggested
by previous studies [18, 19], despite the cultural influence of the
English language as a lingua franca in the academia, language
specific subsystems and model modifications are indeed an area
of active research. TTS systems targeted on tonal languages
such as Chinese Mandarin become more challenging given their
complex tonal and prosodic structures [20]. The lack of pub-
licly available multi-speaker TTS corpus in Mandarin makes
research in this area more difficult and costly.

To this end, we introduce the freely available AISHELL-3
corpus to fill this vacancy in open resources. Furthermore, we
trained multi-speaker Tacotron-2 and Fastspeech models and re-
port the data-preparation techniques and experimental results in
this paper. DiDi-Speech [21] is a concurrent work to AISHELL-
3, also addressing this resource gap and contains a much larger
population. However, it has less number of utterances per
speaker, with relatively high level of background-noises. And
it includes only character-level labels with auto-generated pro-
nunciation annotations.

The rest of this paper is structured as follows: Section 2
introduces the presented corpus and some basic statistics. Sec-
tion 3 covers the data-preparation procedure and baseline sys-
tems. Section 4 shows and interprets the experimental results
obtained on the trained baseline models. Conclusion is provided
in Section 5.

2. The AISHELL-3 Corpus

AISHELL-3 is a multi-speaker Mandarin Chinese audio corpus,
which could be used to train multi-speaker TTS systems. It con-
tains in total 88035 utterances from 218 native speakers reading
texts from given scripts with neutral emotion.

Table 1 and Table 2 show the distribution of some basic
attributes across the entire corpus.

2.1. Script Preparation and Recording

The topics of the textual scripts spread a wide range of do-
mains including smart home voice commands, news reports, ge-
ographic information and number strings. These texts are first
gathered from respective corpora. Then data-masking is per-
formed to eliminate sensitive contents. The resulting texts are
segmented by punctuation marks and further filtered to contain
only Chinese-characters.

The speaker population is composed of amateur subjects
covering both genders and northern/southern accents. The
recording is set up in quiet indoor environments with no sig-
nificant background noise or reverberation. The audio data
is recorded with high-fidelity microphones (44.1kHz, 16-bit
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Table 1: Utterance length & number per speaker distribution

mean  median max min
uttr. length (character) 11.3 11 39 1
uttr. per speaker 403.84 452 505 138

Table 2: Speaker attributes distribution

attribute distribution

gender 176 female / 42 male
accent 165 north / 51 south / 2 others
age group < 25:175/> 25: 43

depth), which are 20 cm away from the speaker. All speakers
read the contents of the scripts in a neutral fashion.

2.2. Transcription

The character-level and pronunciation-level labels included in
AISHELL-3 are manually transcribed from speech after record-
ing, reflecting the actual readings. This addresses four key diffi-
culties in automatically deriving pinyins from Chinese character
level scripts via dictionary lookups:

1.Homograph. Some characters could be pronounced
in multiple ways depending on the textual context they re-
sides [22]. 2.Tone sandhi. Some tones shift under certain
phonological contexts. A good example being, normally char-
acters in the initial part of consecutive third tones shift to the
second tone, e.g. guan3 li3 (to manage) should be pronounced
as guan?2 li3, but this rule does not apply to all such circum-
stances. 3.Erization (erhua). The Chinese character for son
(pronounced er2) behaves like a normal character in some con-
texts, but it also acts as an rhotacization marker indicating the
preceding character has an rhotacized final. 4.Accents and
Mispronunciations.

These difficulties make the phonetizing process non-trivial
for Chinese and the manual transcripts valuable.

3. System and Dataset Preparation
3.1. Multi-Speaker TTS Systems

To assess the feasibility and quality of the presented dataset in
multi-speaker TTS tasks, we select two mainstream TTS sys-
tems, one RNN-based and one feed-forward, as the baselines.
Since these two models were first published without multi-
speaker support, we follow common one-hot embedding based
method to perform multi-speaker TTS experiments.

3.1.1. Tacotron-2

In general, Tacotron-2 [2] is an RNN-based seq2seq structure
with three major components: a CNN-BiLSTM based encoder,
a LSTM decoder and an attention mechanism in between.

The location sensitive attention [23] was originally used
in Tacotron-2, which leverages both contextual and locational
information to determine the attention scores. However we
find this formulation not generalize well on long sentences [24]
and converges slower during training especially without studio-
quality data. Since most of the utterances in AISHELL-3 are
short, we follow [25] and adopt the GMMVv2 attention, which
has an open-source implementation available'.

'github.com/mozilla/TTS
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For multi-speaker synthesis, we add a 128 dimensional
learnable embedding dictionary in conjunction with speaker-id
labels. The embeddings are concatenated to the encoder’s out-
put sequence, conditioning the attention and decoder modules
on both speaker and textual information.

3.1.2. Fastspeech

Fastspeech is a fully-feedforward architecture based on Trans-
former encoder-like building blocks [26]. It includes encoder
and decoder modules operating on text and frame level features
respectively, with a supervised duration predictor and regulator
to control the correspondence between the two sequences.

Again, in order to achieve multi-speaker modeling with
Fastspeech, we use trainable embedding-dictionary as speaker
representation. Each embedding vector in the dictionary is 256
dimensional, matching the model dimension (dj). The embed-
ding vectors are added to the encoder output before duration
prediction and decoding separately.

The feed-forward nature of Fastspeech combined with this
separation simplifies the interaction between its sub-modules.
This allows us to disentangle the voice and intonation of the
synthesized sample, by simply injecting different embeddings
in the decoder and the duration-predictor respectively. A more
fluent and confident speech could be synthesized using another
speakers duration embedding while still preserving the target
speaker’s voice. We call this inference trick cross-speaker du-
ration migration (DM), and explores the impact of its use in
section 4.3.

3.2. Dataset Preparation

We select and prepare a subset of the presented corpus as the
training dataset used throughout our experiments.

3.2.1. Data Partitioning

The number of utterances per speaker in the presented corpus,
though averaged to 403.84, is unevenly distributed. In order
to guarantee that a more balanced training dataset is used, we
selected 161 speakers as train-set speakers while the rest are
reserved as testing data for textual input in evaluation.

It’s worth noting that not all utterances from the train-set
speakers are used in model training. Speeches containing si-
lence segments beyond 0.4s (35 frames) are detected and kept
away from training. This data filtration procedure significantly
boosts the stability of the trained model.

The resulting train-set contains 56467 utterances, which is
around 55 hours long.

3.2.2. Duration Extraction for Fastspeech

The duration predictor in the Fastspeech model is trained with
the guidance of the alignment information produced by an auto-
regressive TTS system. We use pre-trained Tacotron model to
extract the duration of the training samples following [4]. How-
ever, we find the multiple heads of the GMM attention interfere
with the extraction procedure. This results in highly inaccurate
duration labels which causes Fastspeech to produce blurred out-
puts.

We therefore constrained the arg max operator in the orig-
inally proposed extractor to operate on a small window sized
2w centered around last time-step’s spotted alignment region
¢i—1. For attention map a € R5*7, and desired duration se-
quence {d;} € NT, where S denotes the length of the spectro-
gram and 7 the text sequence. We extract the duration sequence



Table 3: Dataset usage

Model Dataset
Tacotron-2 AISHELL-3
Fastspeech AISHELL-3
HiFi-GAN fine-tuned on AISHELL-3
ecapa-tdnn  vox2 [27], tuned on AISHELL-2 [28]
resnet-se  private dataset including AISHELL-3

with Eq. (1) and (2). This improves the extraction accuracy and
enables us to train Fastspeech with minimum front-end prepro-
cess.

di = 551 [cs = ] (1)
a=0 @
C; = argmaXic, ;—t|<w Qi,t,

4. Experimental Results

We implement and train the baseline TTS systems using the pro-
posed corpus and perform evaluations on the synthesized sam-
ples. The experimental setup and results are described in this
section.

4.1. Experimental Setup

The Tacotron-2 and Fastspeech models are trained using Adam
optimizer with (Ir = 10™2, weight_decay = 107°). We use
a batch-size of 32 in our experiments. Tacotron and Fastspeech
converge at 50k and 400k steps respectively. But given Fast-
speech’s fast iteration speed, the two takes approximately the
same amount of time to train.

We generate all our test-samples using HiFi-GAN [8]. The
model is based on an open-source pre-trained checkpoint?, and
fine-tuned with GTA features generated by Tacotron. Table 3
summarizes the dataset usage in our experiments.

4.2. MOS on Naturalness

We synthesize 10 samples for each trained system to perform
MOS naturalness evaluations. The evaluation is conducted
by 20 native mandarin speakers, and all samples (including
ground-truths, which are down-sampled) are in 22kHz format.
The results are shown in Table 4, where real speakers denote
target speakers from the trained embedding table, and sam-
pled speakers are unseen new embedding vectors sampled from
a distribution (see section 4.5 for experimental procedure and
analysis).

The overall results show that both trained systems are able
to produce high-quality speeches from textual inputs. However,
the entry for vocoder analysis-synthesis samples perform worse
than nearly all synthesis systems, which is irregular. This may
be due to the vocoder used is fine-tuned directly with Tacotron-
GTA features, causing it to produce obvious artifact when used
with ground-truth spectrograms.

4.3. Impact of Cross-Speaker Duration Migration

An unfortunate consequence of using speech corpus recorded
by amateur subjects is that some speakers are unsure of their
scripts and present a hesitant or mechanical tone. these at-
tributes can be captured by the trained acoustic model and may
degrade the overall naturalness as perceived by listeners.

2github.com/jik876/hifi-gan UNIVERSAL_VI
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Table 4: MOS results

System Speakers  MOS (95% CI)
gt - 4.51(£0.09)
vocoded - 4.01(+£0.13)
Tacotron real 4.21(+£0.09)
Fastspeech 4.08(+0.11)
Tacotron sampled 3.89(+0.11)
Fastspeech P 4.14(+£0.11)

u DM no preference vanilla

68

0% 10% 20% 30% 40% 50% 60% 70%

Figure 1: Prosody preference test result

The structure of the Fastspeech model provides a way of
replacing “bad” duration predictions with fluent ones during in-
ference (DM). We conduct a subjective preference test to ex-
plore the impact of DM on listeners’ perceptual preference in
identical models. 4 speakers exhibiting said flaws are picked as
target voices, and a single confident speaker as target duration.
We synthesized 12 pairs of utterances with the same content and
voice but different durations. 20 listeners are invited to deter-
mine which one is more preferable prosody-wise. The result is
illustrated in Figure 1.

This result suggests that cross-speaker duration migration
is preferred in such cases where the speaker’s intonation is less
than ideal. The impact of this strategy in terms of speaker simi-
larity is also studied in section 4.4, which shows that the target’s
voice is well preserved under DM.

4.4. Objective Evaluation of Speaker Similarity

We conduct objective evaluation regarding speaker similarities
on synthesized speech samples. The intention of this experi-
ment is to assess the ability of the TTS models to synthesize
speeches with the target speakers’ voice. We employ two sepa-
rately trained Speaker Verification (SV) systems as judges of
speaker similarities. The SV systems are marked as resnet-
se [29] and ecapa-tdnn [30]. Also note that AISHELL-3 is in-
cluded in the training data of resnet-se. Thus it is an in-domain
evaluation for resnet-se.

Given an SV system, the speaker similarity between two
speech samples can be measured by the cosine similarity of
the embedding vectors extracted from the SV model. There-
fore, the compactness of a group of embeddings could be char-
acterized by the intra-class similarity (intra), and conversely,
well-separatedness by inter-class similarity (inter).

The Equal Error Rate (EER) is a widely adopted met-
ric in literature as a performance indicator of SV systems. In
addition, it can be used as a measurement for the quality of a
multi-speaker speech synthesis system, which aims to produce
results that are indistinguishable from real recordings in terms
of speaker similarity [14, 16].

For every speaker from the training set, 15 utterances are
drawn from the corpus as ground-truths (gt). Correspondingly
15 samples are generated using the trained multi-speaker TTS
systems. Trials for EER measurement are generated by sam-
pling 10* (enroll, verify) pairs from a pool By X (EgtU Esyn ),
where Ey; stands for the set of ground-truth embeddings, and
FEsyn the set of synthesized embeddings.



Table 5: Speaker similarity evaluation results

System Cosine Similarity

sV TS intra  inter ~ORCP)
gt 0.900 0.371 1.07
ccapa-tdnn tacotron 0.827 0.306 1.43
P fastspeech  0.839  0.311 1.46
fast+DM  0.829 0.301 1.51
gt 0.884 0.037 0.06
resnet-se tacotron 0.746 0.035 0.34
fastspeech  0.739 0.038 0.36
fast+DM  0.731 0.036 0.37

Results concerning speaker similarity are shown in Table 5,
where the mean intra-/inter-class similarity over all speakers
are reported along with the EER. The similarity measurements
from both SV systems show a drop between ground-truths
and synthesis systems, and a mild downward trend across the
three TTS models as the model architecture becomes more con-
strained. However, the highest EER 1.51% from our evaluation
results still can be considered as an outstanding performance on
speaker similarity. This implies that voices from seen speakers
can be stably reproduced by the trained models.

4.5. Generalization Potential

The embedding dictionary based approach we employ limits the
known target voices to be exactly the speakers in the train-set, as
the corresponding relationship is built along-side model train-
ing. But synthesizing new voices is still possible under this
setup. One way is to sample embeddings from the Gaussian
space estimated from trained embeddings. Nevertheless, the
quality and variety of the voices obtained through this method
are not guaranteed. For example, N distinct sampled embed-
dings may correspond to only one voice. We conduct experi-
ments to explore the generalization potential and the quality of
samples synthesized using this method.

We fit the trained embedding table of each TTS system us-
ing a 3-component full-variance Gaussian Mixture Model fol-
lowing [31] and randomly sample N = 4000 vectors as the set
of potential speakers S. We synthesize n = 10 utterances for
each speaker to form the sample set U. Then 10 utterances are
randomly drawn from U for MOS evaluation to assess the qual-
ity of sampled voices. We then try to determine the variety of
potential voices by counting the number of distinct speakers in
U.

Again, we extract speaker embeddings e, ; for each utter-
ance in U, and calculate the mean embedding per speaker {& }
as well as the cross-speaker similarity matrix D.

eo= TN e ®
n

DZ'J' = COS(éi, éj) (4)

A=D<d 5)

Since the speaker population is over-sampled from a sys-
tem of 161 known speakers, we expect a smooth continuous
transition among sampled speakers in {€,}. Therefore, an un-
supervised clustering such as DBSCAN [32] does not yield the
correct approximation. Instead, we define two speakers i, j are
mutually exclusive if D; ; < d for a preset threshold d. The
threshold d is determined as the 5% quantile in the distribution
of the distance between known sample points and their respec-
tive class-mean. Under this formulation, the boolean matrix A
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Table 6: Speaker generalization potential

System Generalization

SV TTS d(5%) |Ve|
tacotron 3381

ecapa-tdnn fastspeech 0.823 648
tacotron 3724

resnet-se fastspeech 0.791 1579

in Eq. (5) can be considered as the adjacency matrix for an undi-
rected graph G describing the mutually exclusive relationship.
And the number of distinct speakers equals the number of ver-
tices (|Ve|) in the maximal complete subgraph (clique) of G.
Since finding maximal clique is NP-complete, we employ mul-
tiple greedy search from random sources and report the maxi-
mum in Table 6.

This number characterizes the span of potential distinct
voices the trained model could generalize to. This reflects the
variety of the underlying dataset seen during training. But the
results may not be interpreted as 1.the maximum number of po-
tential speakers, since the clique found is not the global maxi-
mal, and it is limited by /V; 2. an enumeration of actual speakers
unknown to us, since the clique found is not unique.

The experimental results show great generalization poten-
tial given all |V, | greatly exceeds the number of speakers from
our train-set (161). We note also that Fastspeech have a lower
|Ve| count than Tacotron, but give a higher MOS score in
Table 4. We found that 3 samples included in scoring for
Tacotron includes unusual raising pitch at the end. By manu-
ally eliminating the scores for these samples, MOS for entry
tacotron+sampled becomes 4.10(£0.11). Though this exclu-
sion is irregular, it hints the potential of the presented corpus on
more stable systems.

5. Conclusions

In this paper, a new publicly available Mandarin speech corpus
that could be used for multi-speaker TTS systems is presented.
Two representative TTS systems are trained and evaluated to
highlight the overall quality of the corpus. We evaluate the per-
formance of the resulting models subjectively in terms of over-
all MOS scores and listener preferences. Furthermore, objective
evaluations are conducted with regards to speaker similarity and
generalization capacity which reflects the variety of the under-
lying dataset. We found that our trained systems are capable of
producing speeches with decent quality (with MOS up to 4.21),
and even improved prosody in certain cases. Moreover, experi-
ments show the trained models generalize well to a potentially
vast range of voices. We believe that the presented corpus is
valuable for TTS research in Mandarin, and we see vast oppor-
tunities for more sophisticated approaches to improve upon the
reported baselines.
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