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ABSTRACT

Histopathology image classification can provide automated
support towards cancer diagnosis. In this paper, we present
a transfer learning-based approach for histopathology image
classification. We first represent the image feature by Fisher
Vector (FV) encoding of local features that are extracted using
the Convolutional Neural Network (CNN) model pretrained
on ImageNet. Next, to better transfer the pretrained model to
the histopathology image dataset, we design a new adaptation
layer to further transform the FV descriptors for higher dis-
criminative power and classification accuracy. We used the
publicly available BreaKHis image dataset for classifying be-
tween benign and malignant breast tumors, and obtained im-
proved performance over the state-of-the-art.

Index Terms— Convolutional Neural Network, Fisher
Vector, transfer learning, image classification

1. INTRODUCTION

Visual analysis of histopathology images is regularly per-
formed in the clinical routine of cancer management. For
example, the differentiation of benign and malignant tumors
typically relies on the diagnosis from histopathology im-
ages. The manual process is however time-consuming, and
computerized approaches that can provide automated clas-
sification of histopathology images have been proposed to
reduce the workload on pathologists. While some approaches
have reported good classification performance with standard
or customized features that are handcrafted [1, 2], the recent
trend is to learn features automatically especially with the
unsupervised methods (e.g. autoencoder) [3, 4, 5].

Supervised models, in particular CNN, have also been ap-
plied to histopathology image classification. For example, a
CNN model is designed to perform patch-level classification
of breast cancer images [6]. The patch-level processing helps
to increase the amount of training data, which is essential
to achieve high classification performance with CNN. This
property renders CNN particularly suitable for problems with
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naturally large amounts of training data, such as cell detection
and segmentation [7, 8]. On the other hand, when the training
data is limited, one way to leverage knowledge from more
image data is to use CNN models pretrained on ImageNet
[9]. The vast amount of images in ImageNet helps to repre-
sent a large variety of image patterns, and the resultant CNN
models can be transferred to other image datasets effectively.
Also, to further adapt the ImageNet models to the specific
problem domain, fine-tuning can be performed by training the
CNN model up to a certain convolutional or fully connected
layer. Such a transfer learning approach has been adopted in
various biomedical imaging studies, demonstrating that pre-
trained models are useful in biomedical applications despite
the significant differences in visual characteristics from the
general images [10, 11].

In this study, we design a transfer learning approach for
histopathology image classification. To represent the images,
we first use the CNN model pretrained on ImageNet to extract
a dense set of local features. FV encoding [12] is then used to
aggregate these local features into a high-dimensional image-
level descriptor. Next, we propose to better adapt the FV de-
scriptors to the histopathology images with a new adaptation
layer, which is formulated as a locally connected layer in the
neural network structure. The transformed FV descriptors are
finally classified using Support Vector Machine (SVM) to ob-
tain the image label. Note that in our method, the CNN model
is applied at image-level rather than patch-level, and fine-
tuning is conducted via the additional adaptation layer rather
than the existing layers in the CNN. For evaluation, we used
the publicly available BreaKHis database [13], and achieved
good performance improvement over existing studies based
on handcrafted features [13] and fusion of domain-specific
CNN models [6].

2. METHODS

2.1. CNN-based Fisher Vector

FV descriptors represent an image by aggregating dense local
features based on Gaussian Mixture Model (GMM). To gen-



Fig. 1. Illustration of our proposed method. (a) The design of the adaptation layer. (b) The overall flow for training the
parameters and computing the feature descriptors.

erate the FV descriptor, local or patch-level features are first
computed from the training images. Based on these local fea-
tures, a GMM with K components is then generated. Given
a test image I with N local features, each local feature fn is
soft-assigned to each of the Gaussian components. Then for
each Gaussian component, its first and second order differ-
ences from each local feature are computed and accumulated
based on the soft assignments. Subsequently, these difference
vectors for all K Gaussian components are concatenated to
produce the FV descriptor h of image I . Note that assuming
the local feature fn has a dimension of D, the dimension of
FV descriptor h is 2KD.

The local features can be computed in many ways. For
example, the original FV descriptor uses the Dense Scale-
Invariant Feature Transform (DSIFT) features. FV encoding
of CNN local features has also shown excellent performance
of texture classification in general imaging [14]. In this work,
we use the VGG-VD model [15] pretrained on ImageNet to
obtain the local features. VGG-VD is a deep CNN model with
19 convolutional and fully connected layers. The last convo-
lutional layer produces a number of local features of D = 512
dimensions each, which are used as the dense local features
to derive the FV descriptor h.

2.2. Adaptation Layer

Recall that the CNN-based local features are extracted using
the VGG-VD model pretrained on ImageNet. It is intuitive
to consider fine-tuning the VGG-VD model using the prob-
lem dataset before generating the FV descriptors for higher
classification performance. The advantage of such fine-tuning
has been reported on general imaging [16]. However, we
found no performance improvement with this approach on our
histopathology image dataset. Instead, we introduce a new

type of neural network layer, called the “adaptation layer”,
to be applied after the FV descriptor is generated. With this
adaptation layer, the FV descriptor is further transformed and
better adapted to the problem dataset, and the descriptor ob-
tained from the adaptation layer is used to perform image
classification using a linear-kernel SVM.

We design the adaptation layer with a locally connected
structure. As illustrated in Fig. 1a, given an FV descriptor h
of 2KD dimensions, we divide the descriptor into 2K sec-
tions of D = 512 dimensions each. Each section is passed
through a filter, which is modeled as a fully connected layer of
D1 neurons (we set D1 = 64). The filter weights are locally
shared among every four sections, hence there are a total of
2K/4 unique filters. Each filter is also followed by ReLU ac-
tivation [9]. The collection of these filters (with ReLU) can be
considered as a locally connected layer. Then, another locally
connected layer is added with filter size D2 (we set D2 = D1)
and ReLU, to further transform the descriptors. These two
locally connected layers then constitute the adaptation layer,
and the output of the adaptation layer has a total dimension
of 2KD2. The transformed descriptor is then classified using
linear-kernel SVM to obtain the image category.

To learn the filters, FV descriptors of training images are
generated as inputs to the adaptation layer. A fully connected
layer of L neurons (L being the number of classes in the
dataset) and a softmax loss function are added to the output of
the adaptation layer, as shown in Fig. 1b. During training, to
initialize the filter weights, we first train the filters individu-
ally by appending a fully connected layer and loss layer to the
D2-dimensional output of each section. These section-wise
filter weights are then used to initialize the overall network.
Our empirical results show that such initialization provides
better classification results than random weight initialization.
In addition, when considering the overall network (Fig. 1b),



Table 1. The classification accuracies (%), comparing our method (CNN-based FV descriptor with adaptation layer) with
existing results on the BreaKHis dataset, including the benchmark approach [13] (only patient-level results available) and the
state-of-the-art [6]. We also include the results using CNN-based FV descriptors only without the adaptation layer. In addition,
the results obtained using features derived from the last fully connected (FC) layer of VGG-VD are shown as well.

Method
Magnification factors

40× 100× 200× 400×

Patient level

Handcrafted features with SVM [13] 81.6±3.0 79.9±5.4 85.1±3.1 82.3±3.8

CNN with random patches [6] 88.6±5.6 84.5±2.4 83.3±3.4 81.7±4.9

Max pooling of four CNN models [6] 90.0±6.7 88.4±4.8 84.6±4.2 86.1±6.2

Our method 90.0±3.2 88.9±5.0 86.9±5.2 86.3±7.0
FV without adaptation 90.0±5.8 88.5±6.1 85.4±5.0 86.0±8.0

FC feature VGG-VD 86.9±5.2 85.4±5.7 85.2±4.4 85.7±8.8

Image level

CNN with random patches [6] 89.6±6.5 85.0±4.8 82.8±2.1 80.2±3.4

Max pooling of four CNN models [6] 85.6±4.8 83.5±3.9 82.7±1.7 80.7±2.9

Our method 87.0±2.6 86.2±3.7 85.2±2.1 82.9±3.7
FV without adaptation 86.8±2.5 85.6±3.8 83.8±2.5 81.6±4.4

FC feature VGG-VD 80.9±1.6 81.1±3.0 82.2±1.9 80.2±3.8

Fig. 2. Sample images of different magnification factors from
the BreaKHis database. The top row shows benign cases and
the bottom row shows malignant cases.

this learning process is equivalent to backpropagation only
to the adaptation layer without affecting the earlier convolu-
tional layers and FV encoding.

2.3. Dataset and Implementation

Experimental evaluation was performed on the BreaKHis
database. This dataset contains 7909 hematoxylin and eosin
(H&E) stained microscopic biopsy images of benign and
malignant breast tumors. There are 2480 benign and 5429
malignant samples, which are collected from 82 patients with
varying magnification factors, i.e. 40×, 100×, 200×, and
400×. Each image has 700× 460 pixels in RGB format, and
example images are shown in Fig. 2. The goal was to classify
the images into benign or malignant classes.

To compute the FV descriptors, the images were scaled
with multiple factors (2s, s = −3,−2.5, . . . , 1.5) so that the
CNN-based local features were extracted at multiple scales.
For each image, all of its multi-scale local features were ag-
gregated using a single GMM to generate the FV descriptor.
With K = 64 Gaussian components and D = 512 dimen-
sional CNN-based local features, the FV descriptor h was
thus 2 × 64 × 512 = 65536 dimensional. For the adaptation
layer, we set D1 = D2 = 64 and the transformed descriptor
at the output of the adaptation layer was 2× 64× 64 = 8192
dimensional. The learning rate was set to 0.05.

For training and testing, we performed cross validation,
using the same folds released with the dataset. A total of five
splits were tested, with each split containing 70% of images as
training data and 30% as testing data. Images of the same pa-
tient were grouped into either the training or testing set only.
Similar to the existing study [6], results were measured by
classification accuracies at both image and patient levels.

3. RESULTS

The patient- and image-level classification results are listed
in Table 1. To compute the patient-level results, following the
existing approaches [13, 6], a patient case was classified as
benign or malignant based on the majority voting from the
classification outputs of the images from the same patient.
The results show that our method achieved overall the best
performance at different magnification factors for both image-
and patient-level classification.



The current state-of-the-art [6] presented a domain-
specific CNN model, and four different techniques to gener-
ate image patches for training the CNN model from scratch.
The techniques included random sampling or sliding win-
dow patch selection, with different patch sizes. Among the
four techniques, it was shown that random sampling of 1000
patches of 64 × 64 pixels from each image provided the
best result overall. The classification results were further
improved by integrating the classification outputs from the
four CNN models using max pooling. These approaches
have shown large improvement over the initial approach [13],
which was based on the Parameter-Free Threshold Adjacency
Statistics (PFTAS) feature. This indicates the benefit of using
automated feature learning for the histopathology images.

One of the differences between our method and [6] is that
we did not train a new CNN model using the image patches
from the histopathology images. Instead, we used the pre-
trained VGG-VD model to obtain the local features, and we
used the entire image as the input without subdividing the im-
age into patches. FV encoding then aggregated the local infor-
mation to represent the image-level characteristics. It can be
seen from Table 1 that even without the adaptation layer, these
FV descriptors could provide better classification results than
the state-of-the-art. However, if image-level features were ob-
tained from the last fully connected layer of VGG-VD, as a
more standard way to use a pretrained CNN model, the clas-
sification results were lower than the customized CNN mod-
els in [6]. These results demonstrate that FV encoding of
CNN-based local features from the last convolutional layer
was an effective method for transferring the pretrained VGG-
VD model to the histopathology images, even though these
histopathology images appear different from the general im-
ages contained in ImageNet. Then, by transforming the FV
descriptors using the adaptation layer, our final results show
further improvement in classification accuracy, especially for
the seemingly more difficult 200× and 400× cases. Also, we
obtained overall higher improvement in image-level classifi-
cation compared to patient-level classification. This was be-
cause with the majority voting, some changes in image label
would not affect the patient label.

4. CONCLUSIONS

In this study, we proposed a method for automated classi-
fication of histopathology images. Our method comprises
two main components. First, image features are computed
by FV encoding of CNN-based local features based on the
VGG-VD model that is pretrained on ImageNet. Second, the
FV descriptors are further adapted to the problem domain
with a neural network-based adaptation layer. We applied
our method to classify benign and malignant breast cancer
images using the publicly available BreaKHis dataset, and
achieved improved performance over the state-of-the-art for
both image- and patient-level classification.
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