Dripper clogging: emphasis on the problem and how to minimize impact

Autores

  • Isabela Alvarenga Almeida Department of Biosystems Engineering, Luiz de Queiroz College of Agriculture, University of São Paulo - USP, Piracicaba, SP, Brazil.
  • Diego José de Sousa Pereira Department of Biosystems Engineering, Luiz de Queiroz College of Agriculture, University of São Paulo - USP, Piracicaba, SP, Brazil.
  • Jéfferson Costa Department of Biosystems Engineering, Luiz de Queiroz College of Agriculture, University of São Paulo - USP, Piracicaba, SP, Brazil. https://orcid.org/0000-0002-5387-7880
  • Carlos Alberto Quiloango-Chimarro Department of Biosystems Engineering, Luiz de Queiroz College of Agriculture, University of São Paulo - USP, Piracicaba, SP, Brazil. https://orcid.org/0000-0002-2649-8105
  • Rubens Duarte Coelho Department of Biosystems Engineering, Luiz de Queiroz College of Agriculture, University of São Paulo - USP, Piracicaba, SP, Brazil. https://orcid.org/0000-0002-0472-8301

DOI:

https://doi.org/10.18011/bioeng.2022.v16.1095

Palavras-chave:

Drip irrigation, Water quality, Emitters

Resumo

Irrigation is a useful tool to achieve a better productivity and quality foods, which contributes to a higher efficient use of agriculture land. Drip irrigation is characterized by higher application efficiency, providing an efficient control of the irrigation depth required. Moreover, it has advantages such as lower evaporation loss and higher crop yields when associated with fertigation. However, dripper clogging is pointed out by several authors as the main limiting factor for a rapid adoption of drip irrigation on a larger scale. Emitter clogging susceptibility depends basically on five parameters: water quality, filtration system, fertilizer quality, labyrinth architectural layout and maintenance procedures. The adoption of chemical treatments helps to control biological agents and precipitates, making it possible to minimize the risk of clogging. This paper aims to understand how drip clogging process occurs, providing scientific arguments and support on the development of a standardized test pattern, making progress in order to identify commercial emitters that are less susceptible to clogging under field conditions.

Downloads

Não há dados estatísticos.

Referências

Adin, A., & Elimelech, M. (1989). Particle filtration for wastewater irrigation. Journal of irrigation and drainage engineering, 115(3), 474-487. https://doi.org/10.1061/(ASCE)0733-9437(1989)115:3(474)

Adin, A., & Sacks, M. (1991). Dripper-clogging factors in wastewater irrigation. Journal of Irrigation and Drainage Engineering, 117(6), 813-826. https://doi.org/10.1061/(ASCE)0733-9437(1991)117:6(813)

Almeida, A. N. D., Coelho, R. D., Costa, J. D. O., & Farías, A. J. (2017). Methodology for dimensioning of a center pivot irrigation system operating with dripper type emitter. Engenharia Agrícola, 37, 828-837. http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v37n4p828-837/2017

Angelakis, A. N., Zaccaria, D., Krasilnikoff, J., Salgot, M., Bazza, M., Roccaro, P., ... & Fereres, E. (2020). Irrigation of world agricultural lands: Evolution through the Millennia. Water, 12(5), 1285. https://doi.org/10.3390/w12051285

Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture. Rome: Food and Agriculture Organization of the United Nations.

Bernardo, S., Soares, A. A., Mantovani, E. C. (2006). Manual de irrigação. 8.ed. Viçosa: Ed. UFV. 625p.

Bounoua, S., Tomas, S., Labille, J., Molle, B., Granier, J., Haldenwang, P., & Izzati, S. N. (2016). Understanding physical clogging in drip irrigation: in situ, in-lab and numerical approaches. Irrigation Science, 34(4), 327-342. https://doi.org/10.1007/s00271-016-0506-8

Bucks, D. A., Nakayama, F. S., & Gilbert, R. G. (1979). Trickle irrigation water quality and preventive maintenance. Agricultural Water Management, 2(2), 149-162. https://doi.org/10.1016/0378-3774(79)90028-3

Capra, A., & Scicolone, B. (1998). Water quality and distribution uniformity in drip/trickle irrigation systems. Journal of Agricultural Engineering Research, 70(4), 355-365. https://doi.org/10.1006/jaer.1998.0287

Coelho, R. D., de Almeida, A. N., de Oliveira Costa, J., & de Sousa Pereira, D. J. (2022). Mobile drip irrigation (MDI): Clogging of high flow emitters caused by dragging of driplines on the ground and by solid particles in the irrigation water. Agricultural Water Management, 263, 107454. https://doi.org/10.1016/j.agwat.2022.107454

Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., & Galdiero, M. (2015). Silver nanoparticles as potential antibacterial agents. Molecules, 20(5), 8856-8874. https://doi.org/10.3390/molecules20058856

Kang, S., Hao, X., Du, T., Tong, L., Su, X., Lu, H., ... & Ding, R. (2017). Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice. Agricultural Water Management, 179, 5-17. https://doi.org/10.1016/j.agwat.2016.05.007

Khozyem, H., Hamdan, A., Tantawy, A. A., Emam, A., & Elbadry, E. (2019). Distribution and origin of iron and manganese in groundwater: case study, Balat-Teneida area, El-Dakhla Basin, Egypt. Arabian Journal of Geosciences, 12(16), 1-16. https://doi.org/10.1007/s12517-019-4689-1

Lamm, F. R., Ayars, J. E., & Nakayama, F. S. (2006). Microirrigation for crop production: design, operation, and management. Elsevier.

Li, G. B., Li, Y. K., Xu, T. W., Liu, Y. Z., Jin, H., Yang, P. L., ... & Tian, Z. F. (2012). Effects of average velocity on the growth and surface topography of biofilms attached to the reclaimed wastewater drip irrigation system laterals. Irrigation Science, 30(2), 103-113. https://doi.org/10.1007/s00271-011-0266-4

Lili, Z., Yang, P., Ren, S., Li, Y., Liu, Y., & Xia, Y. (2016). Chemical clogging of emitters and evaluation of their suitability for saline water drip irrigation. Irrigation and Drainage, 65(4), 439-450. https://doi.org/10.1002/ird.1972

Liu, H., Fu, C., Gu, T., Zhang, G., Lv, Y., Wang, H., & Liu, H. (2015). Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water. Corrosion Science, 100, 484-495. https://doi.org/https://doi.org/10.1016/j.corsci.2015.08.023

Miao, L., Hou, J., You, G., Liu, Z., Liu, S., Li, T., ... & Qu, H. (2019). Acute effects of nanoplastics and microplastics on periphytic biofilms depending on particle size, concentration and surface modification. Environmental Pollution, 255, 113300. https://doi.org/10.1016/j.envpol.2019.113300

Michalakos, G. D., Nieva, J. M., Vayenas, D. V., & Lyberatos, G. (1997). Removal of iron from potable water using a trickling filter. Water research, 31(5), 991-996. https://doi.org/10.1016/S0043-1354(96)00343-0

Nakayama, F. S., & Bucks, D. A. (1991). Water quality in drip/trickle irrigation: a review. Irrigation science, 12(4), 187-192. https://doi.org/10.1007/BF00190522

Niu, W., Liu, L., & Chen, X. (2013). Influence of fine particle size and concentration on the clogging of labyrinth emitters. Irrigation Science, 31(4), 545-555. https://doi.org/10.1007/s00271-012-0328-2

Pizarro Cabello, F. (1996). Riegos localizados de alta frecuencia. 2ª ed. Mundi-Prensa, Madrid.

Puig-Bargues, J., Arbat, G., Elbana, M., Duran-Ros, M., Barragán, J., De Cartagena, F. R., & Lamm, F. R. (2010). Effect of flushing frequency on emitter clogging in microirrigation with effluents. Agricultural Water Management, 97(6), 883-891. https://doi.org/10.1016/j.agwat.2010.01.019

Qingsong, W., Gang, L., Jie, L., Yusheng, S., Wenchu, D., & Shuhuai, H. (2008). Evaluations of emitter clogging in drip irrigation by two-phase flow simulations and laboratory experiments. Computers and Electronics in Agriculture, 63(2), 294-303. https://doi.org/10.1016/j.compag.2008.03.008

Ravina, I., Paz, E., Sofer, Z., Marcu, A., Shisha, A., & Sagi, G. (1992). Control of emitter clogging in drip irrigation with reclaimed wastewater. Irrigation Science, 13(3), 129-139. https://doi.org/10.1007/BF00191055

Resende, R. S., Coelho, R. D., & Piedade, S. M. D. S. (2000). Suscetibilidade de gotejadores ao entupimento de causa biológica. Revista Brasileira de Engenharia Agrícola e Ambiental, 4, 368-375. https://doi.org/10.1590/S1415-43662000000300011

Sánchez, L. D., & Viáfara, C. A. (2014). Impacto de los sólidos suspendidos totales sobre la obstrucción en emisores de riego localizado de alta frecuencia. Ingeniería y Competitividad, 16(2), 199-210. https://doi.org/10.25100/iyc.v16i2.3695

Song, P., Li, Y., Zhou, B., Zhou, C., Zhang, Z., & Li, J. (2017). Controlling mechanism of chlorination on emitter bio-clogging for drip irrigation using reclaimed water. Agricultural Water Management, 184, 36-45. https://doi.org/10.1016/j.agwat.2016.12.017

Stewart-Wade, S. M. (2011). Plant pathogens in recycled irrigation water in commercial plant nurseries and greenhouses: their detection and management. Irrigation Science, 29(4), 267-297. https://doi.org/10.1007/s00271-011-0285-1

Tajrishy, M. A., Hills, D. J., & Tchobanoglous, G. (1994). Pretreatment of secondary effluent for drip irrigation. Journal of Irrigation and Drainage Engineering, 120(4), 716-731. https://doi.org/10.1061/(ASCE)0733-9437(1994)120:4(716)

Taylor, H. D., Bastos, R. K. X., Pearson, H. W., & Mara, D. D. (1995). Drip irrigation with waste stabilisation pond effluents: Solving the problem of emitter fouling. Water Science and Technology, 31(12), 417-424. https://doi.org/10.1016/0273-1223(95)00528-U

Wei, Q., Shi, Y., Lu, G., Dong, W., & Huang, S. (2008). Rapid evaluations of anticlogging performance of drip emitters by laboratorial short-cycle tests. Journal of irrigation and drainage engineering, 134(3), 298-304. https://doi.org/10.10610733-9437

Wei, Z., Cao, M., Liu, X., Tang, Y., & Lu, B. (2012). Flow behaviour analysis and experimental investigation for emitter micro-channels. Chinese journal of mechanical engineering, 25(4), 729-737. https://doi.org/10.3901/CJME

Zhang, J., Zhao, W., & Lu, B. (2011). New method of hydraulic performance evaluation on emitters with labyrinth channels. Journal of irrigation and drainage engineering, 137(12), 811-815. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000365

Zhang, J., Zhao, W., Tang, Y., & Lu, B. (2010). Anti-clogging performance evaluation and parameterized design of emitters with labyrinth channels. Computers and Electronics in Agriculture, 74(1), 59-65. https://doi.org/10.1016/j.compag.2010.06.005

Zhang, L., Wu, P., Zhu, D., & Zheng, C. (2017). Effect of pulsating pressure on labyrinth emitter clogging. Irrigation Science, 35(4), 267-274. https://doi.org/10.1007/s00271-017-0532-1

Zhou, B., Li, Y., Song, P., Zhou, Y., Yu, Y., & Bralts, V. (2017). Anti-clogging evaluation for drip irrigation emitters using reclaimed water. Irrigation Science, 35(3). https://doi.org/10.1007/s00271-016-0530-8

Downloads

Publicado

17-06-2022

Como Citar

Alvarenga Almeida, I., José de Sousa Pereira, D., Costa, J., Alberto Quiloango-Chimarro, C., & Duarte Coelho, R. (2022). Dripper clogging: emphasis on the problem and how to minimize impact. Revista Brasileira De Engenharia De Biossistemas, 16. https://doi.org/10.18011/bioeng.2022.v16.1095

Edição

Seção

INOVAGRI Meeting 2021