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ABSTRACT

Matching pursuit algorithms are a popular family of algo-
rithms for compressed sensing and feature selection. Origi-
nally, Matching Pursuit (MP) was proposed as an algorithm
for the least-squares objective, but has recently been general-
ized to arbitrary convex objectives. Here, we are concerned
with the case of a general objective that is separable over
observed data points, which encompasses most problems of
practical interest: least-squares, logistic, and robust regres-
sion problems, and the class of generalized linear models. We
propose efficient generalizations of Forward and Backward
Stepwise Regression for this case, which take advantage of
special structure in the Hessian matrix and are based on a lo-
cally quadratic approximation of the objective. Notably, the
acquisition criterion of the generalized stepwise algorithms
can be computed with the same complexity as the ones for
the least-squares objective. We further propose a modifica-
tion to the Newton step to avoid saddle points of non-convex
objectives. Lastly, we demonstrate the generality and perfor-
mance of the forward algorithm on least-squares, logistic, and
robust regression problems, for which it compares favorably
to generalized Orthogonal Matching Pursuit (OMP) on prob-
lems with moderate to large condition numbers.

Index Terms— Matching Pursuit, Optimization, Sparsity,
Feature Selection, Compressed Sensing

1. INTRODUCTION

The optimization of objective functions under sparsity con-
straints is an important problem in signal processing, machine
learning, and statistics with applications in medicine [1, 2],
engineering [3], and materials science [4]. Given a set of
atoms D def

= {ϕi}, referred to as a dictionary, and its ma-
trix representation Φ = [ϕ1 . . .ϕm] ∈ Cn×m, we define the
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sparse optimization problem of an objective f : Rn → R as

min
x
f(Φx) subject to ‖x‖0 ≤ k. (1.1)

Matching pursuit algorithms are a family of greedy al-
gorithms for this problem, were first proposed for the least-
squares objective, f(Φx) = ‖y − Φx‖22 where y is a target
vector, and iteratively add atoms to an active setA. For exam-
ple, Matching Pursuit (MP) and Orthogonal Matching Pursuit
(OMP) add the atom that has the largest inner product with the
residual r = y−Φx toA during each iteration [5, 6]. For the
least-squares objective, this acquisition criterion is equivalent
to the component of the gradient with the largest magnitude:

argmax
i6∈A
|〈ϕi, r〉| = argmax

i6∈A
|∂xi

f(Φx)|, (1.2)

which provides the basis for the existing generalization of
matching pursuit algorithms to general objectives [7, 8, 9],
and is also referred to as the linear minimization oracle [10].

Forward Stepwise Regression (FR) is a related algorithm
which iteratively chooses the atom that, upon its addition to
A, minimizes the least-squares residual:

argmin
i6∈A
‖rA∪i‖22 = argmin

i6∈A
|〈ϕi, rA〉|2

/
‖ϕi‖2RA , (1.3)

where rA = RAy is the residual, RA = I − ΦAΦ+
A, and

‖ϕi‖2RA = ϕTi RAϕi is an energetic norm [11]. Because
of the inner product with the residual on right side of the
equality in (1.3), the forward algorithm is also known as Opti-
mized Orthogonal Matching Pursuit (OOMP) [11] and Order-
recursive Matching Pursuit (ORMP) [12]. Herein, we propose
an efficient generalization of the stepwise algorithm, which
employs a quadratic minimization oracle for the important
special case of the problem (1.1) for which f takes the form

f(Φx) =
∑
i

gi
(
[Φx]i

)
(1.4)

and gi : R → R, also referred to as ridge functions [13], are
twice continuously differentiable. Unless otherwise stated,
we also assume that gi is convex, though in Section 3.5, we
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also show how to adapt to non-convexity. While the separa-
bility assumption is stronger than in prior work on general-
ized matching pursuits, it captures an important structure that
occurs in most practical applications, including least-squares,
logistic, and robust regression problems, and the entire class
of generalized linear models [14].

Our main contributions are of algorithmic nature. We pro-
pose 1) a numerically stable algorithm for the computation of
support-restricted Newton steps for (1.4), 2) generalizations
of the forward and backward stepwise algorithms based on
quadratic approximations to the objective, 3) efficient algo-
rithms for the computation of the stepwise acquisition criteria,
and 4) provide numerical experiments highlighting the advan-
tages of the proposed algorithms.

2. RELATED WORK

There is a large body of related methods for the solution of
the problem (1.1) under the least squares objective, ranging
from relaxations of the counting norm [15] and greedy algo-
rithms [16] to probabilistic methods [17]. [18] is one of the
earliest works on generalizing matching pursuits to arbitrary
objectives. [19] provides sparse recovery guarantees for gen-
eralized MP based on the restricted isometry property (RIP)
of the dictionary. More recent work provides a unified op-
timization view on generalized matching pursuits and Frank-
Wolfe algorithms [10], and jointly analyzed matching pursuits
and coordinate descent, yielding sublinear convergence rate
for smooth convex objectives [20]. On the algorithmic side,
[21] proposes Blended Matching Pursuit (BMP), a particu-
larly efficient first-order optimization algorithm for general
convex objectives, which blends support-restricted gradient
steps with coordinate-wise steps. The work of [22] relates re-
stricted strong convexity of an objective to weak submodular-
ity and uses this to provide approximation guarantees for the
forward stepwise algorithm for the subset selection problem.
[23] establishes an equivalence between a stepwise regression
algorithm and a coordinate-wise optimization algorithm for
Sparse Bayesian Learning and [24] proves conditions under
which the backward stepwise algorithm solves the subset se-
lection problem to optimality.

3. METHODS

First, we observe that the Hessian matrix of the objective
(1.4) has a special structure which we can exploit to com-
pute Newton steps for the coefficients in the active set A ef-
ficiently. For ease of notation, we define the vector functions
g =

[
g1 . . . gn

]
, g′ =

[
g′1 . . . g′n

]
, and g′′ similarly.

The gradient and Hessian of (1.4) with respect to xA are then

∇Af = ΦT
Ag′, and

HAf = ΦT
ADg′′ΦA,

(3.1)

where Dg′′ is the diagonal matrix with g′′ on the diagonal.

Algorithm 1: Numerically Stable Newton’s Method

Data: ΦA ∈ Cn×k, convex gi ∈ C2, initial xA
Result: Minimizer xA

1 while not converged do
2 z← ΦAxA

3 g̃′ ← D
−1/2
g′′(z)g

′(z)

4 Φ̃A ← D
1/2
g′′(z)ΦA

5 Q̃, R̃← qr(Φ̃A)
6 d← R̃−1Q̃T g̃′

7 xA ← xA − stepsize(x,d) d

8 end

3.1. Stable Computation of Restricted Newton Steps

In case of collinearilties in Φ, the Hessian might be ill-
conditioned. To derive a numerically stable direction method
for the computation of the Newton step, note that it can be
rewritten as

(HAf)
−1∇Af = (ΦT

ADg′′ΦA)
−1ΦT

Ag′

= (Φ̃T
AΦ̃A)

−1Φ̃T
Ag̃′

= Φ̃+
Ag̃′,

(3.2)

where Φ̃A = D
1/2
g′′ ΦA and g̃′ = D

−1/2
g′′ g′. This is the so-

lution to a canonical least-squares problem with the overde-
termined system Φ̃ and can be solved for in a numerically
stable manner with a QR factorization of Φ̃. Due to the sepa-
rable objective and the resulting diagonal structure of Dg′′ , Φ̃
can be formed inO(nk) operations and factorized inO(nk2).
Algorithm 1 shows code for an efficient and stable implemen-
tation of Newton iterations based on this observation. We em-
ploy it for the support optimization step of both OMP and FR.

3.2. Generalized Forward Regression

Stepwise regression algorithms constitute a popular class of
feature selection algorithms. Instead of adding an atom to
A based on the largest magnitude of the gradient, stepwise
algorithms update the atom that leads to the largest improve-
ment or smallest deterioration in the objective. While effi-
cient methods exist for the least squares objective [11, 12, 24],
an application of this strategy to general objectives would re-
quire the solution of O(m) separate regression problems dur-
ing each iteration of the algorithm, which quickly becomes
expensive.

Here, we generalize the stepwise algorithms by calculat-
ing the stepwise acquisition criterion using a quadratic ap-
proximation to the objective function. Given efficient calcu-
lations with the Hessian matrix are possible in the case of a
separable objective, the generalized stepwise algorithms have
the same complexity as their canonical counterparts. In par-
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ticular, the quadratic approximation of f at the point xt is

f(Φx)−f(Φxt) ≈ q(δ)
def
= ∇[f ]T δ + δTH[f ]δ/2

= g′Tt Φδ + δT (ΦTDg′′t
Φ)δ/2,

(3.3)

where δ = x − xt, g′t = g(Φxt), and g′′t = g′′(Φxt).
Based on equation (3.3), the minimum of q(δ) is achieved
for δ = −H−1g′t and the corresponding predicted decrease
in function value is equal to −g′t

T
H[f ]−1g′t/2. Restricting

the support of δ to A ∪ i, where A is the support of xt, and
i 6∈ A, we can use the formula for a block matrix inverse
to derive the predicted decrease in value upon adding a sin-
gle atom and setting all parameters of the augmented support
to their optimal values under the quadratic approximation q.
It can be shown that, based on equation (3.3), adding the ith

atom and setting the values of the augmented support to their
optimal value under q(δ), leads to a predicted change in func-
tion value

min
δ∈span(ΦA∪i)

q(δ) = −∇2
i

/
σi, (3.4)

where σi = HA∪i\HA is the Schur complement of HA in
HA∪i. Due to the particular structure of H, HA∪i\HA can
be computed stably and efficiently using a QR factorization
of a modified dictionary. Indeed, with similar reasoning as
for the Newton step, we can rewrite the Schur complement as

HA∪i\HA = ‖ϕ̃i‖22 − ‖Q̃T
Aϕ̃i‖22, (3.5)

where Q̃A, R̃A = Φ̃A and ϕ̃i = D
1/2
g′′ ϕi. We can take ad-

vantage of this structure to efficiently compute the acquisition
criterion for the generalized forward regression algorithm in
O(nmk) operations, the same complexity as the efficient al-
gorithm for the least-squares objective. This improves on the
O(mnk2) operations that are even required for naı̈vely com-
puting O(m) separate least-squares regressors.

3.3. Generalized Matching Pursuits

Algorithm 2 shows the structure of a generalized forward
greedy algorithm, and provides a unified view on MP, OMP,
and FR. The initials in the beginning of Lines 5 to 8 indi-
cate which algorithms execute the respective line, and shows
the subtle differences between the three variants. For ex-
ample, the matching pursuit heuristic is shown in Line 4,
while the proposed generalized forward regression heuristic
is alternatively shown in Line 5. In our implementation, the
optimization of the atoms in the active set in Line 6 is carried
out by the Newton algorithm sketched in Algorithm 1. We
compare the three algorithms in experiments in Section 4.

3.4. Generalized Backward Regression

Notably, we can also generalize the backward stepwise elim-
ination criterion, based on the quadratic approximation to the

Algorithm 2: Generalized Forward Algorithm
Data: Matrix Φ ∈ Cn×m, desired sparsity k
Result: Support set A, optimized coefficients xA

1 A ← ∅
2 while |A| < k do
3 ∇ ← ∇[f ](ΦAxA)
4 MP / OMP: i∗ ← argmaxi6∈A |∇i|
5 FR: i∗ ← argmaxi 6∈A |∇i|2

/
σi (3.4)

6 FR / OMP: xA ← argminz f(ΦA∪i∗z)
7 MP: xA ← argminz f(ΦAxA +ϕi∗z)
8 A ← A∪ i∗
9 end

objective. Solving for the predicted change in the objective
value upon removing an atom and setting the remaining to
their optimal values under q yields:

min
δ∈span(ΦA\i)

q(δ) = |xi|2/γi, (3.6)

where γ = diag(H−1A ) = diag([R̃T
AR̃A]

−1). Minimizing
(3.6) over i yields the index of the atom that is to be elimi-
nated. As pointed out by [24] for the least-squares objective,
this is similar to magnitude pruning, and differs only in the γi
factor, which takes into account the local curvature of the ob-
jective. While the use of backward steps in conjunction with
forward steps has proven effective in achieving a very high
degree of sparsity [23, 25], we defer an experimental study of
the generalized backward criterion to future work and instead
focus on tackling non-convex objectives.

3.5. Non-Convex Separable Objectives

Certain non-convex objectives are of great practical interest,
like the Cauchy likelihood and more generally the Student-t
distribution for robust regression. In this case, we propose a
modification of the Newton step that is similar to the saddle-
point free Newton method of [26], which takes the absolute
value of the Hessian matrix to ensure escape of saddle points
and convergence to a local minimizer. Using the same justi-
fication, we can simply take the absolute value of the diago-
nal matrix Dg′′ in the expression (3.1) for the Hessian of a
separable objective to calculate an optimization direction for
non-convex objectives:

(ΦAD|g′′|ΦA)
−1ΦT

Ag′. (3.7)

This has the advantage of avoiding an Eigen-decomposition
of the Hessian during each iteration, as would be required
by the general saddle-point-free Newton method. For a de-
tailed justification of this procedure as a trust-region method,
see [26]. Note that even on a non-convex objective, the modi-
fied Newton iterations will eventually evade saddle points and
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Fig. 3.1. Empirical mean and standard error of the function value of MP (blue), OMP (orange), and FR (green) during the
optimization of the least-squares regression (left), logistic regression (center), and robust regression with the Cauchy likelihood
(right). The dashed lines correspond to results using dictionaries with a condition number κ(Φ) = 1, while the solid lines
correspond to κ(Φ) = 100. The shaded areas around the lines indicate twice the standard error of the corresponding means.

land in local minima in which the Hessian is positive (semi)-
definite, allowing for the application of the generalized step-
wise acquisition formulae (3.4) and (3.6) above.

4. EXPERIMENTS

The following experiments aim to highlight the generality of
the algorithm for sparse optimization problems ranging from
least-squares, logistic, to robust regression. For all of our ex-
periments, we created dictionaries Φ of size 64 × 128 with
condition number κ(Φ) as follows. We define Sκ as a diag-
onal matrix with uniformly spaced values between 1/κ and
1 on the diagonal, and let Φκ = USκV

∗, where U,V are
two orthonormal matrices computed by an SVD of a random
matrix. The ground truth coefficients x were created with
sparsity k = 16 and each non-zero element was Rademacher
distributed. We let b = Φx + ε where the perturbation vec-
tors ε are uniformly distributed on the 10−2-hypersphere. To
highlight the generality of the algorithms, we report results on
three different objectives:

1. Least-squares regression, where gi(z) = (z − bi)2.

2. Logistic regression, where gi(z) = log(1 + exp(z))−
zyi, where yi = (1 + exp(−bi))−1.

3. A robust regression, where gi(z) = (1 + (z − bi)2)−1.

For the robust regression problem, we corrupted the tar-
get vector with outliers by adding ±1 to three entries in ad-
dition to the Gaussian noise ε that is added for all problems.
Note that the Cauchy likelihood (3.) is non-convex, testing
the method proposed in Section 3.5. We ran each experiment
with 128 independently instantiated dictionaries and recorded
the mean and standard error of the function values during the
execution of Matching Pursuit (MP), Orthogonal MP (OMP),
and Forward Regression (FR). See Figure 3.1 for the results.

On the instances with a higher condition number κ(Φ) =
100 (solid lines), FR improves on OMP for all three objectives
on average, though this advantage is not guaranteed for every
problem instantiation individually. For κ(Φ) = 1 (dashed
lines) no difference larger than the magnitude of statistical
fluctuations is present, highlighting that FR primarily has an
edge for systems with collinearities. This is in line with the
theoretical work of [22], which proves stronger approxima-
tion guarantees for FR than OMP for subset selection.

Notably, solving 128 separate one-dimensional logistic
regression problems takes 125 ms using a Newton solver.
The computation of the forward regression acquisition index
via (3.4) takes 9.79 µs, and combined with the Newton opti-
mization of the support, 967 µs. The timings were recorded
on a 2021 MacBook Pro with an M1 Pro and 32 GB of RAM.
Since the time for the index calculation is negligible com-
pared to the numerical optimization, the speedup of (3.4)
compared to canonical greedy algorithm is approximately
m-fold in this scenario.

5. OUTLOOK

We note that the methods put forth herein are also appli-
cable to non-separable objective, but would incur a O(n3)
cost for a Cholesky factorization of the Hessian of the input
of f , which is required to form the modified matrix Φ̃ in this
case. Adding support for regularization terms to the methods
proposed herein could improve extrapolation performance
for predictive problems and conditioning of the optimization
problem. We hope to inspire further research on the theoreti-
cal properties of the novel quadratic minimization oracle that
we proposed in generalizing Stepwise Regression. Due to the
general applicability of the methods, we believe they could
be of use to practitioners looking for general feature selection
and sparse optimization algorithms.
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