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1. INTRODUCTION 

1.1 Motivation 

With roughly 500 000 new cancer cases in 2008 (nearly 50 % having lethal outcomes), cancer 

is still one of the most common cause of death and counts as one of the most severe 

diagnoses patients can receive in modern medicine. In Germany the highest numbers can be 

found in descending order for colon cancer (65 390 diagnoses), prostate cancer (63 440 

diagnoses), breast cancer (71 660 diagnoses) and lung cancer (see fig. 1, 49 530 diagnoses; 

Kaatsch et al., 2012) with the probability to contract cancer rising with age.   

 

Fig. 1: Cancer statistics of the Federal Republic of Germany of 2008 (Kaatsch et al., 2012) 

According to the German Cancer Research Center nearly 500 000 cancer cases were reported in Germany during the year 

2008 with a mortality rate of nearly 50 %.   

Similar numbers can be found in other nations like the United States of America with over a 

million estimated new cancer cases in 2008 (Jemal et al., 2008). Cancer treatment normally 

involves a combination of chemotherapy, tumor resection and radiation therapy but is often 
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complicated by factors like accessibility of the tumor and the selectivity of the prescribed 

chemotherapeutic agents, and is often accompanied by severe side effects ranging from 

nausea and alopecia to neuropathy, immunodeficiency and myelosuppression (Love et al., 

1989, Shapiro & Recht, 2001).  

Table 1: Cancer statistics of the Federal Republic of Germany of 2008 (Kaatsch et al., 2012) 

Localization Men Women Combined 

Bowel 35 350 30 040 65 390 

Prostate 63 440 0 63 440 

Mammary glands 0  71 660 71 660 

Lung 33 960 15 570 49 530 

Urinary bladder 11 460 4 510 15 970 

Stomach 9 210 6 660 15 870 

Kidney 8 960 5 540 14 500 

Melanoma 8 910 8 890 17 800 

Pancreas 7 390 7 570 14 960 

Non-Hodgkin lymphoma 7 270 6 430 13 700 

Uterus 0 11 280 11 280 

Oral cavity / throat 9 520 3 490 13 010 

Ovaries 0 7 790 7 790 

Leukemia 6 340 5 080 11 420 

Nervous system 3 180 2 990 6 170 

Cervix uteri 0 4 480 4 880 

Thyroid gland 1 710 4 160 5 870 

Esophagus 4 800 1 380 6 180 

Testicle 3 970 0 3 970 

Larynx 3 610 510 4 120 

Morbus Hodgkin 1 160 920 2 080 

All malign tumors 246 700 223 100 469 800 
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In recent years scientists try to shift cancer treatment from approaches generally attacking 

cells with high proliferation rates to selective and individualized cancer therapy using several 

new agents to selectively attack cancer cells. To enhance the effectiveness of cancer 

treatment, new approaches need to be analyzed and tested to minimize possible side effects 

and thereby lower the physical and psychological strain experienced by patients. 

Development of new pharmacological compounds and strategies always involves thorough 

testing and is therefore time consuming and expensive, furthering the need for fast and 

efficient screening platforms and testing methods. 

A similar situation can be assumed for neurodegenerative diseases like Alzheimer’s or 

Parkinson’s disease, which are amongst the most common forms of dementia with 4.5 

million people diagnosed in the United States alone (Hebert et al., 2003). A common 

contributing factor in both Alzheimer’s and Parkinson’s disease is oxidative stress caused by 

reactive oxygen species (ROS) like hydrogen peroxide or superoxide. Post mortem analysis of 

brain tissues obtained from patients affected by Alzheimer’s or Parkinson’s disease were 

reported to show increased signs of tissue damage induced by oxidative stress (Behl, 1999; 

Andersen, 2004). Even though these findings indicate a connection between elevated levels 

of oxidative stress and the observed neurodegeneration characteristic for these diseases, 

the connection remains unclear to a certain extent. 

The objective of this thesis is the establishment of a new high throughput testing system to 

analyze the effectiveness of new pharmacological compounds like antineoplastic drugs 

based on the already established working mechanisms of silicon-based field-effect 

transistors in conjunction with impedance spectroscopy measurements. The presented 

system can be used to monitor the effects of cytotoxic compounds on single cells and in real-

time. In addition, the proposed system is supposed to be used in toxicity studies to show its 
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general applicability in biological and pharmacological research providing researchers with a 

wide variety of possible applications ranging from studies on cellular adhesion to apoptosis 

induction and neurodegeneration.  

1.2 Cancer biology  

1.2.1 Homoeostasis 

The human body normally consists of approximately 1015 cells and needs to constantly 

balance proliferation and differentiation against programmed cell death to maintain this 

condition. Proliferation and cellular turnover events are normally tightly regulated and 

induced by the secretion of growth factors (e.g. epidermal growth factor EGF, fibroblast 

growth factor FGF, platelet derived growth factor PDGF; Bertram 2001) by surrounding cells. 

Turnover events in which old non-functional or damaged cells are replaced by new cells can 

be found among others at the basal layer of the skin, the replacement of cells in the 

epithelial layer of the intestines or the hematopoietic system (Bertram, 2001). Even in 

organs with relatively low levels of cell division like the liver proliferation can be triggered by 

trauma or infection (Bertram, 2001). Factors influencing or altering tissue homeostasis can 

be mutations in genes involved in the reception of growth factors (like erb-b, which is 

involved in EGF reception), mutations in genes involved in signal transduction pathways (like 

ras, which represents a family of plasma membrane bound signal transduction molecules) or 

mutations in genes involved in nutrient uptake (Finkel et al., 2007). Alterations to this 

delicate balance by biological, chemical or physical factors, if not corrected, do have the 

potential to alter the total number of cells in a tissue or a particular organ and thereby cause 

neoplasia or cancer. 
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Such neoplastic tumors can be categorized in two groups, benign tumors and malign tumors. 

Benign tumors are characterized by their slow non-invasive growth, high level of 

differentiation and slow development of symptoms. On the contrary malign tumors show a 

fast, invasive and destructive growth, a comparatively low level of differentiation, high 

potential for the development of metastases, a variety of cellular atypia (e.g. nuclear 

hyperchromasia) and a faster development of symptoms (Leischner, Oncology, 3rd edition, 

2014). 

 

Fig. 2: Characteristics of cancer (Leischner, Oncology, 3
rd

 edition, 2014) 

Malign tumors require several characteristic traits allowing for aggressive and invasive growth. These include apoptosis 

resistance, independence from external growth factors, the ability to generate growth factors autonomously and the 

ability to induce angiogenesis. 
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1.2.2 Apoptosis 

As mentioned it is necessary to sacrifice cells and replace them via controlled cell death. This 

is accomplished using the mechanism of apoptosis (see fig. 3).  In a healthy human adult 

apoptosis is responsible for the death of roughly a billion cells per hour in the bone marrow 

and intestines alone (Carson et al., 1993; Kerr et al., 1994). Since apoptosis is also 

responsible for removing damaged and unhealthy cells, it is easy to see that disturbances of 

this process plays a significant role in developing malignancy. 

 

Fig. 3: Apoptotic and necrotic cell death 

a) Apoptotic cell death is necessary for the development of extremities, in this case the development of a hand 

during ontogenesis 

b) Necrotic cell death caused by the venom of Bothrops asper 

c) General mechanisms of apoptosis and necrosis: apoptosis = characterized by controlled degradation and 

fragmentation of the cell for removal from the organism via phagocytosis; necrosis = characterized by 

uncontrolled swelling of the afflicted to the point of rupture, thereby releasing the cell’s contents into the 

surrounding tissue, damaging it. 
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The process of programmed cell death can be divided into an initiation phase and an effector 

phase. As the tool for maintaining tissue homeostasis the initiation phase of apoptosis can 

be triggered by external and internal factors like DNA damage, UV light or gamma radiation. 

But either way the basic mechanism is the activation of a caspase cascade which leads to the 

activation of nucleases which will then in turn cause the fragmentation of the nucleus. 

Additionally the cytoskeleton and the nuclear membrane are degraded, which leads to the 

formation of DNA fragments containing vesicles. In total the affected cell starts to break 

down without releasing its contents and will be removed from the organism via phagocytosis 

in the end (Bold et al., 1997). This happens in contrast to another major mechanism of cell 

death called necrosis (see fig. 3). This process can be seen as opposite to apoptosis in terms 

of control and affecting the surrounding tissue. Caused by extracellular damage, cells which 

undergo necrotic cell death will start to swell till they rupture and thereby release their 

contents into the surrounding area causing damage in the surrounding tissue. 

1.2.3 Cellular adhesion and apoptosis 

The connection between cell adhesion and cell cycle control is a topic of major interest in 

cancer research. It has become apparent that cell survival, cell death and general cell cycle 

control are heavily depending on cell adhesion between individual cells and the connection 

of cells to the extracellular matrix (Santini et al., 2000). Therefore the fundamental principles 

of cell-cell and cell-matrix adhesion will be described in this chapter. 

The ability of individual cells to connect to other cells and form complex structures and 

tissues is the basis for processes like the ontogenetic development of organs and tissue 

repair.  
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Tissues consist of many individual cells connected to each other and the extracellular matrix 

(ECM) via specialized contact points, which can be grouped into three functional categories 

(see fig. 4): 

 Communicating connections (e.g. gap junctions) 

 Sealing connections (e.g. tight junctions) 

 Anchor connections (e.g. adherens junctions, desmosomes, hemidesmosomes, focal 

adhesions) 

 

Fig. 4: Different cell connections in epithelia (Alberts et al., Molecular Biology of the Cell, 4th edition, 2004) 

Gap junctions are communicating connections consisting of several connexons, which create 

bridges between the cytoplasm of adjacent cells. Individual connexons consist of a group of 

6 connexin molecules forming a water filled connection between cells, enabling the 

transport of inorganic ions and small biomolecules. These connections are essential for the 

coordination the activity of electrically active cells (Alberts et al., Molecular Biology of the 

Cell, 4th edition, 2004). 
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Tight junctions are impermeable connections between cells, which play an important role in 

the creation of the concentration gradient of small hydrophilic molecules in epithelia. They 

seal the plasma membranes of adjacent cells, thereby creating an impermeable diffusion 

barrier and hindering the diffusion of transport proteins between the apical and basolateral 

areas of the plasma membrane of epithelial cells (Alberts et al., Molecular Biology of the Cell, 

4th edition, 2004). 

Anchor connections are of great importance, especially in tissues which face heavy 

mechanical stress. This type of cell-cell connection transfers mechanical stress through the 

fragile cell membrane onto the tensile components of the cytoskeleton or the ECM. 

These connections can be grouped in two categories characterized by the protein family 

mainly contributing to their respective structures. Adherens junctions and desmosomes are 

responsible for cell-cell connections and are normally consisting of adhesion proteins 

belonging to the cadherin family. Focal adhesions and hemidesmosomes connect cells to the 

extracellular matrix and consist of proteins belonging to the integrin family. Via such 

proteins cells are able to indirectly link their individual cytoskeletons or adhere to the 

extracellular matrix. This matrix makes up a considerable amount of the volume of tissues 

and consists of macromolecules (proteins and polysaccharides) secreted by the cells 

inhabiting this matrix. 

Integrins are the most important matrix receptor connecting cells to matrix components like 

fibronectin, collagen or laminin. Integrins themselves are heterodimeric transmembrane 

glycoproteins (see fig. 5a), consisting of two not covalently bound subunits which can bind to 

a large group of extracellular matrix components (Alberts et al., Molecular Biology of the 

Cell, 4th edition, 2004).  
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Cadherins are responsible for Ca2+ dependent cell-cell adhesion and play important roles in 

cell sorting and embryonic development (Alberts et al., Molecular Biology of the Cell, 4th 

edition, 2004). Most cadherins are glycoproteins with a single transmembrane domain 

consisting of roughly 700 amino acids. They organize in oligomers with large repetitive 

extracellular domains facilitating cell-cell adhesion (see fig. 5b). 

In tissue culturing fibronectin and polylysine are two of the most common substances to 

coat surfaces for cellular adhesion. In the case of polylysine the adhesion is based on the 

interaction between the polyanionic cell surfaces and the polycationic layer of the adsorbed 

polylysine (Mazia et al., 1975). Adhesion of cells on fibronectin coated surfaces is facilitated 

via integrins. 

 

Fig. 5: Schematic drawing of the structure of integrins (a) and cadherins (b) (Alberts et al., Molecular Biology of the Cell, 

4th edition, 2004) 
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1.2.4 Developing malignancy 

During oncogenesis, benign cells start to change progressively into malign cells. This process 

is caused by the acquisition of mutations in cell cycle controlling or cell cycle associated 

genes. The majority of such changes is not inherited, but arises spontaneously caused by 

DNA damaging influences of a diverse group of potential risk factors. These factors can be of 

a physical, chemical and biological nature (see fig. 7).  

 

Fig. 6: Cell cycle control (Alberts et al., Molecular Biology of the Cell, 4
th

 edition, 2004) 

Developing malignancy is always caused by a loss of normal cell cycle control leading to the abnormal activation of signal 

pathways stimulating proliferation and invasion.  

Physical risk factors like γ-radiation or UV-light cause damage to the chemical structure of 

the DNA due to their high energy content. Chemical factors (e.g. alkylating agents, 

carcinogens or procarcinogens) can cause mutations by intercalation into the DNA or via 

chemical modification.  

This can even be caused by the organism itself, which is the case for procarcinogens. Such 

chemical compounds are metabolized by the organism and develop their carcinogenic 

potential after being metabolized. Biological carcinogens (e.g. oncoviruses) can cause 

mutations by inserting their DNA into cells thereby changing the genome and transcriptome 

to decouple cell cycle control. All of the mentioned possible ways for DNA damage to occur 
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cannot be thought of as mutagenic events of their own since DNA damage alone does not 

lead to DNA changes without replication and cell division (Bertram, 2001). 

 

Fig. 7: Chemical, physical and biological risk factors beneficial for cancer development 

Intercalating chemicals, high energy radiation and oncoviruses are amongst the most common causes of developing 

malignancy. 

Many human cancer types seem to occur without obvious exposition to any chemical or 

physical carcinogen. Just as every other biomolecules, DNA constantly suffers chemical 

damage to its chemical bonds due to spontaneous thermal effects or attack by reactive 

molecules. The caused damage can lead to errors in reading and replicating DNA by DNA 

polymerases. During normal DNA replication there is a natural error rate of 1.3 x 10-10 

mutations/base pair/cell division which leads to the introduction of one miscoding error in 

every 10 divisions. 

As already mentioned DNA damage can also be caused by exposure to chemical and physical 

carcinogens. The most frequent chemical reactions damaging DNA are electrophilic attacks 
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on the DNA with the most significant target being guanine. The consequence of such attacks 

is a strong interference with base-pair recognition during DNA replication. Aromatic amines 

like nitrosamines or alkylating agents are examples of carcinogenic chemicals working in this 

manner. But not all chemical carcinogens are able to attack DNA directly; instead they have 

to be activated by cellular metabolism (Bertram, 2001). 

Many chemotherapeutic agents act as carcinogens themselves since they target DNA 

replication in cancer cells (Boivin, 1990). One example of this phenomenon is topotecan, a 

derivative of camptothecin found in the roots and fruits of Camptotheca acuminata. The 

working mechanism of this particular compound is the inhibition of topoisomerase I, which 

is an enzyme localized in the nucleus and involved DNA replication and repair. Inhibition of 

topoisomerase I blocks the replication fork introducing an irreversible strand break and 

thereby inducing apoptosis (Devy et al., 2004). 

In addition to chemical carcinogens there are also physical factors like ionizing radiation 

(gamma radiation) or UV light that can be responsible for the development of malign 

tumors.  

Ionizing radiation is able to cause direct damage to DNA by inducing single and double-

strand breaks to the helix. Additionally to direct damage, ionizing radiation can also cause 

indirect damage via radiolysis of water which will lead to the release of free radicals. 

Ultraviolet radiation on the other hand is able to induce chemical reactions in the DNA; the 

most relevant is the formation of stable thymine dimers which will disrupt normal base 

pairing thereby inducing mutations (Bertram, 2001).  

Besides spontaneous mutations or mutations caused by chemical or physical mutagens there 

is also the possibility to introduce mutations via DNA viruses. It is important to notice that 
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the connection between a viral infection and cancer can be difficult to see since there can be 

years between infection and cancer diagnosis. One other factor is that viral infections are 

only one step in developing malignancy, therefore other mutagenic influences are normally 

needed. Viruses can introduce genes into the cell that interact directly with cell cycle control 

and thereby cause unchecked cell growth. Another way virus can act as a carcinogen is by 

acting as a tumor promotor. One example for the first working mechanism is the group of 

papillomaviruses which can lead to the formation of warts or can infect the cervix and lead 

to cervical cancer (Frazer, 2004).  

Mutations responsible for carcinogenesis cover the complete range of possible mutations 

from point mutations and gene introduction over chromosome rearrangement due to 

chromosomal instability to chromosomal imbalance. Gene mutations in cancer cells normally 

have two basic functions. They either activate or increase the activity of oncogenes or they 

inactivate the gene function in tumor suppressor genes (Bertram, 2001). 

Under normal circumstances mutations can be compensated and corrected to a certain 

degree by several cellular repair mechanisms. But if the introduced mutations lead to 

permanent changes in genes responsible for cell cycle control or genes responsible for 

genomic integrity, cells will start to accumulate further genomic mutations which will further 

lead to malignancy and uncontrolled proliferation. Bypassing the control mechanisms of 

proliferation, the aspiring tumor cells need to acquire the following traits: 

• Independence from external growth signals, either by secreting growth signals by 

themselves or permanent activation of proliferation pathways. 

• Development of a refractory state to growth inhibiting external signals. 
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• Development of resistance to apoptosis induced by external signals. 

• Overcoming cellular senescence and development of infinite proliferative capacity. 

• Securing a continued supply with nutrients by development of angiogenic potential. 

If developing tumor cells acquired these traits over multiple mutations and over several 

generations a malign tumor develops. 

1.3 Classical approaches to cancer treatment 

One key factor in cancer therapy is early diagnosis. If diagnosed in an early stage, cancer 

treatment is significantly more effective. Cancer treatment normally consists of a 

combination of the following approaches: 

• Tumor resection 

• Chemotherapy 

• Radiation therapy 

Since there is a great diversity in tumor behaviors and responses to treatment, the 

treatment regiments need to be fitted individually to every patient. Therefore the individual 

treatment consists of a specialized combination of the already mentioned approaches 

(Bertram, 2001). 

1.3.1 Tumor resection 

Removing malign tissue surgically is the simplest approach to treat cancer and, in form of a 

biopsy, can also be used for diagnosis. The removed tissue can then be used to determine 

the developmental stage of the tumor and the severity of the disease. Final tumor resection 

does not only include removal of malign tissue but also the removal of surrounding benign 
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tissue and lymph nodes. This procedure is supposed to minimize the chance of survival of 

small colonies of (or even single) cancer cells. If done in an early stage the risk of metastases 

colonizing other parts of the body can be lowered considerably. If already metastasizing 

surgical removal can be used as a way of tumor control (Kreth et al., 2000). 

1.3.2 Chemotherapy 

In the context of cancer, the term chemotherapy describes the treatment of malign tumors 

using a variety of chemical compounds to directly attack the tumor cells. In many cancer 

cases, chemotherapy is not used alone but is combined with radiation therapy and tumor 

resection. The used compounds, so called cytostatics, normally affect cell proliferation and 

therefore tend to damage cells with high proliferation rates. This holds true for cancer cells 

but also for several benign tissues in the human body like for example hematopoietic stem 

cells (Bold et al., 1997).  

Targets for cytostatic compounds can be cellular components like the spindle apparatus or 

enzymes associated with DNA replication or RNA synthesis. Since the spindle apparatus, 

which primarily consists of microtubuli, is essential for cellular division and, this forms an 

ideal target for antineoplastic drugs like vinca alkaloids or paclitaxel. Both drugs affect the 

reorganization of tubulin monomers to microtubuli and therefore affect cellular division. 

Other drugs directly affect the DNA replication and introduce strand breaks or DNA 

mismatches and thereby induce cell death. 

1.3.3 Radiation therapy 

This particular form of cancer treatment can be used to treat larger areas or regions that 

cannot be reached by surgery easily which can be the case for metastases. 
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Radiation therapy is utilizing ionizing radiation like gamma, X- or beta radiation to damage 

malign tissues. The working principle of radiation therapy is energy transfer into the 

irradiated tissue causing normally neutral molecules to change into positively or negatively 

charged ones and triggering the formation of free radicals. This can cause double strand 

breaks in the DNA and can cause apoptosis (Nutting et al., 2000). 

1.3.4 Side effects 

Classical treatment approaches share a set of common side effects like nausea, hair loss, 

neuropathy, immunodeficiency, tiredness and pain in bones and joints (Love et al., 1989) 

causing a high amount of distress for patients suffering from cancer. Consequently 

researchers are trying to optimize cancer treatment to make it more efficient and to lower 

the distress caused by severe side effects.  Consequently new methods of personalized 

therapy need to be established to provide a fast and easy way to analyze the tumor at hand 

and to find an optimized treatment regime for the individual patient. 

The system presented in this thesis work can be used for both aspects. By analyzing tissue 

samples obtained from biopsy the effectiveness of the planned treatment could be tested in 

vitro before being administered to the patient. In addition the system could be used to 

provide a histological analysis of the obtained tumor sample within a significantly reduced 

time and without the need for immunohistochemical staining1. 

1.4 New approaches (nanostructures & tumor targeting) 

The effectiveness of classical cancer treatment approaches can be limited by several factors 

like low selectivity of chemotherapeutic drugs, the mutagenic properties of both 

chemotherapy and radiation therapy (possibly causing secondary cancer outbreaks) and the 

                                                           
1 S. Ingebrandt, A.Susloparova, X. T. Vu, D. Koppenhöfer - Device and method for measuring biological and/or electronic properties of a 
sample, and uses thereof, Application number PCT/DE2015/100040 
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accessibility of the tumor for surgery, therefore it is obvious that more selective approaches 

are needed. New approaches include the use of nanocarrier systems and solid nanoparticles 

coupled with antibodies which can be used for active tumor targeting and the use of 

antibodies for immune modulation or vaccination are currently under investigation.  

1.4.1 Immune modulation 

Several approaches are currently under development to activate and modulate the human 

immune system and use it to attack cancers (Kottke et al., 2011). Although cancer cells are 

not comparable to other pathogens in terms of immunogenicity, the immune system is still 

able to identify and attack tumor cells. However tumors frequently hinder an efficient 

immune response, the challenge is to develop strategies that augment antitumor responses. 

The possibility of using the human immune system is implied by both spontaneous tumor 

regressions in immune competent hosts and increased cancer incidence in immune 

compromised patients. Growing tumors can trigger cells of the innate immune system as a 

consequence of disturbances of their surrounding microenvironment. Under ideal conditions 

this will lead to inflammation and thereby trigger an adaptive immune response. But 

progressing tumors are often able to avoid detection using complex strategies like exclusion 

of immune cells from tumor sites or others (Blattman & Greenberg, 2004). The activation of 

the inherent immune response is one of many new approaches to cancer treatment with 

guiding and activating T cells being only one possible way to go necessitating approaches to 

effectively study T cell migration and adhesion (Law et al., 2014). 
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Fig. 8: Nano structures commonly used as carrier devices in cancer research and therapy (Ou et al., 2009) 

Nano structures can be used for cancer diagnosis and therapy, becoming conjugated or loaded with therapeutic agents 

or targeting structures like antibodies for active tumor targeting 

1.4.2 Nanostructures for cancer targeting 

Another possibility for cancer treatment is the use of advanced nanomaterials (usually in the 

range of 1-100 nm diameter), either as antineoplastic compounds on their own or as drug 
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delivery systems (Brigger et al., 2002; Brannon-Peppas & Blanchette, 2004; Peer et al., 2007; 

Ou et al., 2009). The most common nanocarrier platforms include polymer conjugates and 

polymeric nanoparticles, lipid-based carriers (liposomes and micelles), dendrimers, carbon 

nanotubes and gold nanoparticles (including nanoshells and nanocages, see fig. 8). 

These nanocarriers can be used to increase local drug concentration by releasing the loaded 

antineoplastic drugs in a controlled manner when bound to their targets. Such 

nanostructures can be used for tumor treatment and imaging via passive and active tumor 

targeting, with passive targeting off course being the easier way. This passive targeting can 

be done by using the enhanced permeability and retention (EPR, see fig. 9) effect which is 

characteristic for a large number of solid tumors. 

 If fast growing tumors reach a certain size it is essential for them to induce angiogenesis to 

insure the accessibility of nutrients. This fast and artificial induced angiogenesis leads to 

higher permeability of the newly formed blood vessels and thereby makes it easier for 

nanoscale platforms to reach the tumor. In addition to a higher permeability of newly 

formed blood vessels it has been shown that tumors have a much lower lymphatic drainage 

then benign tissue. Combined with the aforementioned high permeability this leads to an 

easy accumulation mechanism in solid tumors since particles carrying compounds can enter 

the malign tissue passively but cannot be easily removed, thereby leading to longer 

exposition to the used particle and compound. Passive targeting approaches, while 

promising, are limited by factors like diffusion capability of the transported compound and 

problems controlling drug release. Such a lack of control might lead to multi drug resistance 

in tumor cells. If this occurs, a tumor cell starts to overexpress transport proteins to expel 

chemotherapeutic drugs causing chemotherapy to become ineffective. 
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Fig. 9: Passive tumor targeting via the Enhanced Permeability and Retention effect (EPR, Peer et al., 2007): 

Tumor induced angiogenesis normally leads to the formation of blood vessels with less dense cell layers, leading to 

higher permeability of the blood vessel. Coupled with relatively poor lymphatic drainage this allows for the passive 

accumulation of antineoplastic compounds delivered by nanocarriers inside of the tumor where the drug can then be 

released. 

Active tumor targeting can be achieved by coupling the nanoparticle with tumor specific 

ligands to achieve specific localized effects. This is possible due to the high surface to volume 

ratio of most nanoscale structures which makes ligand binding highly effective (McDevitt et 

al., 2007). 

Targeting agents can be all types of molecules that can be specifically recognized by receptor 

proteins and are normally chosen from antibodies (which cannot just be used for targeting 

but also as chemotherapeutical compounds themselves), nucleic acid fragments, peptides, 

vitamins or carbohydrates. It is imperative that these ligands bind with high selectivity to 

highly expressed tumor specific surface markers. Monoclonal antibodies are the most 
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promising molecules for tumor specific targeting with several already approved for 

treatment like Rituxan or Herceptin. Both compounds consist of a monoclonal antibody 

which can be used for the treatment of non-Hodgkin’s lymphoma or breast cancer 

respectively. 

The most commonly used materials for the construction of nanoscale drug delivery systems 

are polymers like polylactic acid, chitosan or collagen. These polymers can be used to 

encapsulate chemotherapeutic drugs without further modification and later on release them 

in a controlled manner via surface erosion or diffusion. 

1.5 Neurodegenerative diseases and oxidative stress 

Dementia and neurodegenerative diseases in general are among the big medical challenges 

of our time with Alzheimer’s, Huntington’s and Parkinson’s disease among the most 

common forms of dementia. 4.5 million people were diagnosed with Alzheimer’s disease in 

the United States in the year 2000 alone. In both Alzheimer’s and Parkinson’s disease, signs 

of oxidative stress mediated damages can be found but the connection remains a topic of 

debate. 

1.5.1 Alzheimer’s and Parkinson’s disease 

Neurodegenerative diseases like Alzheimer’s or Parkinson’s disease are amongst the most 

common forms of dementia with 4.5 million people diagnosed with Alzheimer’s disease in 

the United States alone (Hebert et al., 2003).  

Alzheimer’s disease is a neurodegenerative disorder predominantly of the cerebral cortex 

which is clinically characterized by progressive mental deterioration, severe personality 

changes and memory loss. Memory loss in Alzheimer’s disease can be divided in two 

categories, namely the early loss of episodic memory and the late loss of short-term and 
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working memory. Most reports can be characterized as late onset or sporadic forms of 

Alzheimer’s disease; although early onset forms with a potential genetic background also 

exist (Behl, 1999). 

Alzheimer’s disease can be histologically characterized by the presence of neurofibrillary 

tangles (helical filaments consisting of tau protein) and amyloid β plaques in affected tissues 

leading to an ongoing sequence of degenerative changes (see fig. 10). The deposition of 

amyloid β is a major focus of research and is widely viewed as the central disease causing 

and promoting event in Alzheimer’s disease. This view is strongly supported by the fact that 

the majority of mutations associated with Alzheimer’s disease are connected to an increase 

of amyloid β production (Behl, 1999).  

Parkinson’s disease is an age related neurodegenerative disorder that affects roughly 1 

million persons in the United States of America alone characterized by resting tremors, 

rigidity slowness or bradykinesia, gait disturbance and postural instability (Olanow and 

Tatton, 1999). The disorder is correlated to the degeneration of dopaminergic neurons in the 

substantia nigra pars compacta and the presence of intracytoplasmic inclusions known as 

lewy bodies (Olanow and Tatton, 1999, see fig. 11). These histological signs of Parkinson’s 

disease can also be found in other parts of the nervous system, e.g. the locus ceruleus, 

nucleus basalis, hypothalamus and several peripheral components of the autonomic nervous 

system.  
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Fig. 10: Microscopic picture of neuronal tissue of an Alzheimer’s disease afflicted patient (Behl, 1999) 

Alzheimer’s disease can be histologically characterized by the presence of neurofibrillary tangles (helical filaments 

consisting of tau protein) and amyloid β plaques leading to an ongoing sequence of degenerative changes.  

Comparable to Alzheimer’s disease, one can differentiate between early onset forms and 

late onset or sporadic forms of Parkinson’s disease with the latter being influenced by 

several risk factors like exposure to herbicides or pesticides, cyanide or carbon monoxide, 

etc. Only 5 to 10 % of patients afflicted with Parkinson’s disease are reported to have a 

familial form of Parkinsonism showing an autosomal-dominant heredity transmission 

(Olanow and Tatton, 1999).  

One common important contributing factor in such neurodegenerative diseases is an 

observed elevated level of oxidative stress in afflicted tissues caused by reactive oxygen 
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species (ROS). Although the post mortem analysis of brain tissues of persons affected by 

Alzheimer’s or Parkinson’s disease were showing increased signs of oxidative stress induced 

damage (Behl, 1999; Andersen, 2004), the connection is not completely understood, making 

it unclear if oxidative stress damage is a possible cause or a symptom of such disorders.  

 

Fig. 11: Histological analysis of neuronal tissue of a Parkinson’s disease afflicted patient (Zarranz et al., 2003): 

a) Neuronal loss, secondary spongiosis, and pigment laden macrophages observed in the substantia nigra  

b) Concentric Lewy body in the cingular cortex  

c) Nonconcentric Lewy body in the cingular cortex  

d) Atypical elongated rod-like Lewy body in the pontine tegmentum  

e) Classic Lewy body in the locus caeruleus 

 

1.5.2 The Role of oxidative stress in neurodegeneration 

Oxygen is essential for all eukaryotic cells to keep their metabolism up and thereby stay alive 

but it can also damage cells beyond repair if converted to reactive oxygen species (ROS). 

Such reactive oxygen species like hydrogen peroxide (H2O2), hydroxyl radicals or superoxide 

are generated during metabolism and are normally kept in check via various detoxification 

processes in the cell. Detoxification of ROS can be achieved via various enzymatic steps using 
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enzymes like catalases, superoxide dismutase or glutathione peroxidase and reductase to 

avoid lasting damage to essential components of the cell. Reactive oxygen species can cause 

significant oxidative stress for affected cells and thereby can cause a variety of detrimental 

effects.  

Oxidative stress has been implicated as a contributing factor to several neurodegenerative 

disorders like Alzheimer’s or Parkinson’s disease due to signs of significant oxidative damage 

in brain tissues of patients afflicted with these disorders. Because of the relatively low 

antioxidant levels, low regenerative capacity and high oxygen consumption of neuronal 

tissue, a relatively high susceptibility is not surprising. The damaging effects of oxidative 

stress range from lipid peroxidation, enzyme impairment, protein modification to mutations 

(Barnham et al., 2004) and apoptosis (Harrison et al., 2005) induction. Lipid peroxidation can 

lead to the accumulation of HNE (4-hydroxyl-2,3-nonenal), inducing toxicity by crosslinking 

amino acids like cysteine, lysine and histidine. Chemical alteration of the DNA caused by ROS 

can lead to mutations unbalancing the metabolism, signaling and cell cycle control of 

afflicted tissues possibly leading to apoptosis induction. One example of misbalanced 

signaling can be found in both Alzheimer’s and Parkinson’s disease. Excessive production of 

ROS can ultimately lead to severe dysregulation of intracellular calcium signaling, possibly 

leading to an excitotoxic response caused by an ROS-induced calcium influx ultimately 

leading to apoptosis induction (Barnham et al., 2004). 

Damaging effects of oxidative stress also include protein modification (e.g. carbonylation 

and nitration) and misfolding leading to impaired degradation and thereby possibly 

contributing to the formation of tau protein and amyloid β plaques (Andersen, 2004) tightly 

associated with Alzheimer’s disease. In addition to these effects, oxidative stress can also 

lead to mitochondrial damage leading to reduced ATP generation (Andersen, 2004).  
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1.6 Impedimetric biosensor applications 

Impedimetric biosensors are promising tools for biomedical analysis. They allow for easy and 

fast computation of signals, making the ideal platforms for diagnosis and scientific analysis of 

diseases and functional disorders. Impedimetric biosensors can be counted among the group 

of affinity biosensors, with impedance spectroscopy being only one of a few physical 

approaches for the measurement of an analytical signal in real time (Ramanavièius et al., 

2005). 

Impedance spectroscopy is a versatile readout technique usable for a variety of sensor types, 

having already been successfully used for DNA analysis (Uslu et al., 2004, Ingebrandt et al., 

2007), nicotine and histamine recognition via molecularly imprinted polymer (MIPs) sensors 

(Peeters et al., 2013) or the detection of immunoreactions (Broeders et al., 2011). Gold 

electrodes are the most common sensor type used for impedance spectroscopy, having been 

used for bacteria detection (Varshneya et al., 2009), cellular adhesion measurements 

(Giaever and Keese, 1991) and for toxicity measurements (Curtis et al., 2008). Cell adhesion 

studies using metal electrodes are based on the principal that cells attach and spread on the 

electrode surface, thereby altering the effective area available for current flow causing an 

increase in the impedance of the system (Giaever and Keese, 1991). This technique has been 

used to study locomotion and can thereby generate new insights in processes like tissue 

formation our wound repair. 

In recent years metal electrode based sensors have been used for several applications, 

among them being drug testing using 3-dimensional spheroid cultures (Kloß et al., 2008), 

detection of bacterial cells using interdigitated array microelectrodes (IDAMs, Varshney et 

al., 2009). In the first case interdigitated electrodes have been used as a means to study the 
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behavior of suspended tumor spheroids, which act as a model for tumor tissue in vivo.  

Varshney et al. (2009) or Alexander et al. (2010) indicate a general trend for metal based 

electrodes with an interdigitated design. 

In the scope of this thesis another sensor type for impedance spectroscopy, the field-effect 

transistor is presented and applied to cellular adhesion measurement, cell toxicity analysis 

and oxidative stress response investigation. The presented device has possible applications 

in a variety of research fields such as rapid screening of antineoplastic drugs, analysis of 

oxidative stress response in neurodegenerative diseases and cancer diagnostics and 

histological tumor assessment. 

1.7 Field-effect devices as possible platforms for pharmacological testing 

1.7.1 Field-effect devices in research 

Field-effect devices are a novel tool in biomedical research already in use for a variety of 

different research fields that are connected to cancer research. This includes nucleic acid 

detection (Uslu et al., 2004), nucleotide polymorphism detection (Ingebrandt et al., 2007), 

measurement of electrical cell-substrate impedance sensing (ECIS, Schäfer et al., 2009; Lin et 

al., 2010) or the detection of cancer associated proteins (Kim et al., 2009). 

In regards to cancer diagnosis the detection of tumor associated proteins via field-effect 

devices is another topic of major interest. In 2009 Kim et al. were able to show a discernible 

difference in prostate specific antigen (PSA) levels in human serum using carbon nanotube 

field-effect transistors (CNT-FETs). By using this specific type of sensor the authors were able 

to lower the detection limit of PSA to a protein concentration of 1.0 ng/ml.  

One major research focus lies in the field of cell adhesion studies to monitor the effect of 

pharmacological compounds. Using the ability of cells to attach to various surfaces as an 
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indicator for their general viability, this method can be used as a fast cytotoxicity assay. The 

use of metal electrode systems is already established as a standard method in this particular 

field. Apart from the established ECIS method the use of FETs can improve the lateral 

resolution of impedimetric measurements to analyze cell adhesion on single cell level. Due 

to the intrinsic properties of these FETs binding events of cells or changes in the electrolyte 

composition can be monitored as variations of the drain-source current. In 2007, Ingebrandt 

et al. reported about the use of impedance spectroscopy with FET arrays to characterize the 

coupling of eukaryotic cells to transistors. In their work a 16-channel readout system was 

developed, which is able to provide a simultaneous, lock-in based readout by applying a test 

signal of known amplitude and phase via a reference electrode. The resulting frequency 

spectrum was then used for the investigation of the surface adhesion of individual HEK293 

cells (Human Embryonic Kidney cells). A similar approach using organic electrochemical 

transistors (OECTs), a subtype of organic thin-film transistors (OTFTs) for cell-based 

biosensor applications was published by Lin et al. in 2010. The conductivity of the active 

layer of OECTs can be modulated by the gate voltage induced drift of cations between the 

electrolyte and the organic semiconductor film. The authors were the first to report a cell-

based biosensor based on OECTs using PEDOT:PSS as the active layer. These particular OECTs 

were shown to have a stable performance under cell culture conditions with high 

biocompatibility to cancer cells (human esophageal squamous epithelial cancer cell line 

KYSE30) and fibroblasts. The OECTs proved sensitive to changes in surface charge and 

morphology of adherent cells and is therefore an interesting tool for further research.  

1.7.2 Impedance sensing in cancer research 

As mentioned before the therapy of cancer is a complicated and difficult process with only 

limited success depending on the type of cancer and its stage of development. Therefore the 
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need to develop new treatment approaches is big. Going hand in hand with the need to 

develop new agents and strategies is the need to test these agents and treatment 

approaches in a quick and efficient manner. Electric biosensors using impedance 

measurements to analyze cell reactions to drug treatment are promising tools to help 

further our understanding of chemotherapy and to optimize cancer treatment. Electrical 

impedance is the measure of the opposition that a circuit presents to the passage of a 

current when a voltage is applied. In quantitative terms, it is the complex ratio of the voltage 

to the current in an alternating current (AC) circuit. 

Several systems working with impedance measurements are already commercially available 

(see fig. 12) with the ECIS (Electric cell-substrate impedance sensing) system being the most 

prominent. This system was the first commercial impedance system usable for the 

development of cell-based assays.   

Using special culture dishes outfitted with metal electrodes in the range between 25 to 250 

µm in diameter the system measures the AC impedance of cell-covered electrodes. The cells 

behave like dielectric particles due to the insulating properties of the cell membrane which 

leads to an increase in impedance when the coverage of the electrodes increases. If cell 

shape and electrode coverage change over time, for example due to treatment with 

antineoplastic or cytotoxic compounds, the impedance changes as well. 
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Fig. 12: Commercially available cell impedance measurements systems: 

a) ECIS system by Applied biophysics 

b) 96 well plate with incorporated metal electrodes 

c) CellKey system by Molecular Devices 

d) xCelligence system by Roche 

By recording time-resolved impedance measurements the influence of pharmacological 

compounds can be analyzed (Giaever & Keese, 1991 & 1993). Newer systems, like the 

xCelligence system from Roche or the Cellkey system from Molecular devices work in a 

similar manner by measuring electrode impedance across metal electrodes integrated into 

the culture plate and can be used to analyze the effects of different compounds on cellular 

adhesion (Urcan et al., 2009; Scott & Peters, 2010; Fang, 2011). 

In the specific context of cancer research electrode based biosensors have already been 

tested in the field. In 2010 Alexander et al. described a measurement system using 

interdigitated electrodes to impedimetrically monitor the environment of carcinoma cells.  

Kloß et al. used a sensor platform consisting of microcavities with a width in the range of 200 

to 400 µm (Kloß et al., 2008). During this study the apoptosis inducing effect of 
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Camptothecin was studied using human melanoma spheroids. Tumor spheroids in general 

can be used as a model for tumor behavior in vivo due to their more complex structure 

mimicking the structure of 3-dimensional tissues much closer than in vitro cell cultures.  

Impedimetric measurements can also be done using open gate FETs, which were initially 

developed to record spontaneous electrical activity from electrogenic cells (Offenhäusser et 

al., 1997). This approach has one major advantage over metal electrode setups since the 

transistors can be constructed in much smaller scales and can reach sizes below 20 µm 

making single cell analysis easier.  

1.7.3 Field-effect transistors  

Transistors are semiconductor devices functioning as a variable resistor, which can be used 

to either switch or amplify a signal by controlling the transistor current via an electric 

voltage.  

The FETs in this work were open-gate p-channel-type transistors with source and drain 

regions being p-doped (containing electron holes) on an n-type silicon substrate (Ingebrandt 

et al., 2007; Poghossian et al., 2009, see fig. 13). A conducting channel between these two 

normally separated regions can be established by a controlled electrical field at a third 

contact called the gate. The controlling gate contact is separated from the channel by a 

resistive silicon-dioxide barrier. Instead of the metallization at the gate area used in 

MOSFETs (Metal- Oxide-Semiconductor FET) the ISFET’s (Ion Sensitive FET) gate area is in 

contact with an electrolyte solution (open-gate FET).  

By applying a gate voltage via a reference electrode the concentration and mobility of the 

charge carriers in the channel region are changed forming the conducting channel. Once 

voltage between drain and source (VDS) is applied, a conductive path for the drain-source 
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current (IDS) is created. Field-effect transistors can be operated in depletion or enhancement 

mode. In depletion mode all mobile charge carriers have been forced away leaving a 

depleted carrier free region. In enhancement type FETs charge carriers are attracted to the 

gate region when a negative voltage is applied to form a conducting channel.  

 

Fig. 13: Field-effect transistor platform used during this thesis: 

a) 3D model of a fully encapsulated field-effect transistor chip 

b) Encapsulated FET 

c) Transistor array surface of the used chips 

Depending on the applied voltage, FETs can be operated in cut-off or sub-threshold region, 

linear region or saturation region. In the cut-off region, the gate-source voltage VGS is smaller 

than the intrinsic threshold-voltage Vt, which is the minimum voltage required to open a 

channel, resulting in no gate-source current due to no conduction between the drain and 

source. In the linear region VGS is larger than Vt while VDS is smaller than the difference 

between VGS and Vt. This allows a current to flow between drain and source. The saturation 
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region is characterized by VGS being larger than Vt and VDS being larger than VGS – Vt which 

leads to an asymmetrical shape of the conducting channel. 

FETs are characterized by the following parameters (see fig. 14):  

• Output characteristics: IDS (VDS) measured with constant VGS  

• Transfer characteristics: IDS (VDS) measured with constant VDS  

• Transconductance: gm (VGS) measured with constant VDS 

The transconductance gm describes the change of the drain-source-current IDS in regard to 

the applied gate-source-voltage VGS at constant VDS. 

 

Fig. 14: Transfer characteristics (a) and transconductance (b) of quasi-planar open gate ISFET (graphs taken from 

Susloparova et al., 2015) 
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1.7.4 Impedance spectroscopy and transistor-transfer function measurement using field-

effect transistors 

The normalized transfer function H (see fig. 15b) is the mathematical representation of the 

relation between the output voltage and the input voltage of an electrical system 

comparable to a circuit of passive resistors and capacitors. Cell adhesion properties can be 

monitored by the capacitive changes or impedance changes an adherent cell causes on the 

gate area of an ISFET in the voltage applied to that gate.  

The impedimetric measurement to analyze cell adhesion is based on the fact that attached 

cells act as insulating particles, which constrain the current flow between the reference 

electrode and the electrolyte solution. In this case the cell membrane can be approximated 

as a resistor and capacitor in parallel with the cell creating a cleft between the gate and its 

membrane. This gap is filled with the electrolyte solution surrounding the cell and acts as a 

resistor forcing the current to flow either through the cell or through the cleft. 

Cell adhesion on top of the transistor surface is facilitated via focal contact points. Only at 

these points the cell membrane will be in contact with the underlying transistor surface, 

leaving the rest of the cell membrane free. At these focal points integrin molecules act as the 

mediators of cell adhesion to the surface below. Since the surface of a transistor gate is 

covered by a chemically stable SiO2 layer the surface has to be made hydrophilic, thereby 

allowing the coating of the surface with additional proteins to facilitate cell adhesion. This 

can be done for example by treating the surface with hot sulphuric acid, thereby creating 

silanol groups on the transistor surface on which proteins like poly-D-lysine or fibronectin 

can be layered as contact points for the cell membrane (Yavin and Yavin, 1974; McKeehan 

and Ham, 1976). 
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The coupling of the cell and transistor can be modelled as an electrical circuit of passive 

resistors and capacitors. Modeling of an electrically equivalent circuit (EEC, see fig. 15a) and 

the cell was done by Susloparova et al. in 2014 2in order to find interpretations for the time 

constants, relating them to physical elements which can be described mathematically. 

CM1/RM1 and CM2/RM2 represent the capacitance and resistor of the free and cleft membrane, 

ri represents the resistance inside the cell. For the current passing the cleft, the cleft 

resistance is shown as Rseal. COX stands for the oxide capacitance of the gate. 

 

Fig. 15: Physical description of the cell-transistor contact 

a) electrically equivalent circuit (EEC, Schäfer et al., 2009) 

b) Transistor transfer function equation used for modelling the cell transistor contact (Susloparova et al., 2014) 

                                                           
2
 Published in Lab on a Chip (2014) - Electrical cell-substrate impedance sensing with field-effect transistors is able to unravel cellular 

adhesion and detachment processes on a single cell level - Susloparova, A; Koppenhöfer, D; Law, J K Y; Vu, X T; Ingebrandt, S 
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The cell membrane acts as an efficient insulator, which means the membrane resistances 

RM1 and RM2 can be neglected in a first approximation. The inner cell resistance ri is also very 

small and therefore can also be neglected. This reduces the gate input to the oxide 

capacitance and the seal resistance in parallel with the membrane capacitance. The various 

elements of the electrically equivalent circuit have different effects on the transfer function. 

The gate capacitance COX has a big influence on the transfer function. By increasing the size 

of the transistor gate or decreasing the thickness of the gate oxide the transfer function gets 

shifted towards lower frequencies, which leads to a steeper curve. The conducting line 

capacitance CL affects the transfer function curve opposite to the gate capacitance. If the 

seal resistance is increased, it will lead to a shift of the low pass cut-off point towards lower 

frequencies and a decreased membrane capacitance CM will result in a steeper curve shape 

in the transfer function (Susloparova et al., 2015).   

1.7.5 Possible applications in pharmacology, cancer research and diagnostics 

Because of their promising characteristics, FETs can be considered as a promising tool for 

future pharmacological research. Being able to be downscaled to a size clearly below 20 µm, 

FETs can be used for high resolution studies of cellular adhesion to analyze the effects of 

chemical and physiological stimuli on single cell level while simultaneously analyzing 

potential pH changes in the surrounding medium.  

In addition to the high lateral resolution provided by FETs, their flexibility and ability to be 

operated in real-time under cell culture conditions allow for possible applications as a 

versatile tool for high-throughput studies concerning the analysis of new pharmacological 

compounds. 
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The possible applications for field-effect devices in cancer research are focused on rapid 

screening (Kim et al., 2009; Huang et al., 2013) and diagnostics (Mohanty et al., 2014). 

One topic of current research is the detection of Prostate Specific Antigen (PSA) as a method 

for early detection of developing malignancy of the prostate. Field-effect transistors are one 

promising tool for rapid detection by immobilized PSA antibodies. Huang et al. proposed an 

approach using polycrystalline silicon nanowire field-effect transistor (poly-Si NWFET) as a 

biosensor (Huang et al., 2013). A similar approach was used by Mohanty et al. in 2014, 

where a breast cancer marker was detected by immobilized CA15.3 antibodies. Nanowire 

transistors have also been used for the analysis of electrical charge variations of cancer cell 

membranes, which act as a measure of their grade of invasion (Abdolahad et al., 2014). In 

this particular study the nanowires were grown in a skein structure thereby creating a large 

and highly sensitive surface for measurements thus enabling the measurement of negative 

charges of the cell membrane of different metastatic grades of colon cancer. 

Immune modulation has already been described as one approach for modern cancer 

treatment. Connected to this concept is the targeted migration and activation of T cells  to 

stimulate the immune system to actively recognize and remove malign cells from the 

organism. The presented system has been used in research projects in our group to analyze 

the movement of cytotoxic T lymphocytes (CTS) on top of pre-coated surfaces (Law et al., 

2014). Via impedance spectroscopy the adhesion strength of individual CTS to different 

target proteins could be measured and compared providing a possibility for fast analysis of T 

cell interaction and migration on single cell level. 
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1.8 Scope of this work 

In the scope of the present thesis possible applications of a novel FET-based measurement 

system in pharmacological research was analyzed. For this purpose on-chip cell culture 

protocols for various histologically and morphologically different cell lines and primary 

tissues were to be established for impedimetric studies using the proposed FET system for 

ECIS measurements (FETCIS). Since this thesis exploring possible applications for the 

proposed system in future research, it is also meant to reveal its possible short comings. To 

this end the following three subprojects were conducted. 

1.8.1 Impedimetric detection of cell adhesion of confluent and low density cell cultures on 

ISFET surfaces 

The first subproject of this thesis is aimed at analyzing the cellular adhesion of 

morphologically and histologically different cell lines to compare their respective impedance 

spectra and identify possible unique characteristics between the individual cell types. This 

experimental concept will demonstrate the general applicability of the proposed system to 

differentiate between individual cells of heterogeneous tumor samples. 

Additionally low density cultures were used to further analyze the cell culture requirements 

for the detection of the adhesion of individual cells using field-effect transistors. This was 

done to determine if the proposed system is able to measure the adhesion of individual cells 

in an efficient manner and thereby can be used to monitor the adhesion of cell types not 

normally growing in confluent cell layers such as neuronal tissues or leukocytes. 
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1.8.2 Impedimetric analysis of the nanotoxicity of the industrial nanoparticle NexSil20 

During the second subproject the toxicity of an industrial silica nanoparticle with a diameter 

of 20 nm was assessed using the proposed FET system to monitor toxic effects in real time 

under cell culture conditions. The toxicity of the used particle was already described by Prof. 

Dr. Roland Stauber of the department of Molecular and Cellular Oncology of the University 

Medical Center, Mainz (Germany), who also provided the particles used  in this study.  

By analyzing the toxicity of an already described particle type using real-time impedance 

monitoring, the applicability of the proposed system in pharmacological research was to be 

substantiated further in addition to the first subproject. 

1.8.3 Impedimetric analysis of neurodegeneration caused by oxidative stress in primary 

neuronal tissues 

The third and final subproject is supposed to show the applicability of the proposed 

measurement technique in conjunction with a specially designed parallel-culture setup to 

simultaneously monitor the reaction of primary neuronal tissue to external stimuli. In this 

case the primary cells obtained from the subventricular zone of postnatal BALB/c mice were 

exposed to hydrogen peroxide to induce oxidative stress and thereby apoptosis. Analyzing 

the effects of hydrogen peroxide toxicity in neuronal tissues is supposed to verify if the 

proposed system is capable of monitoring toxic effects in such delicate tissues as neurons 

and glia cells opening up research applications in Alzheimer’s and Parkinson’s disease.
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2. MATERIALS AND METHODS 

2.1 Used Chemicals and Devices 

A complete list of all used chemicals, cell culture media, supplements and devices used in 

this work can be found in the appendix. 

2.2 Cell Culture Protocols 

2.2.1 Cell Culturing 

All used cell lines were grown in their respective standard culture mediums with 

supplements adjusted to their respective standard protocols. Incubation was done at 37°C 

and 5 % CO2.  

Primary subventricular zone (SVZ) cells used in this work were obtained via dissection from 

1-4 days old BALB/c mice, which was done by Felix Kettenbaum (Enteric Nervous System 

Working Group, University of Applied Science, Kaiserslautern). 

2.2.2 Passaging and Subculturing 

Subculturing for all cell lines followed the same basic protocol with derivations explained in 

the respective paragraphs describing the used cell lines. All cells were grown till they 

reached between 90 and 95 % of confluence and were then split via trypsinisation in a ratio 

of 1:10. Before trypsinisation the cell culture medium was removed and the cells were rinsed 

with phosphate buffered saline (PBS, pH 7.4). After rinsing the PBS was discarded and the 

cells were removed from the cell culture flask surface via trypsinisation using 2 ml of 0.5 % 

Trypsin/EDTA and incubation at 37°C at 5 % CO2. Cellular detachment was monitored 

microscopically and did not exceed 5 minutes. Trypsinisation was stopped by the application 

of 4 ml of fresh medium to inhibit the Trypsin and the cell suspension was transferred to a 
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15 ml falcon (Greiner Bio-One, Germany) for centrifugation (5 min. at 1000 rpm). Afterwards 

the supernatant was discarded, cells were resuspended in fresh medium, adjusted to the 

desired concentration and placed into a fresh cell culture flask. 

2.2.3 Used Cell Lines 

During this thesis work five different cell types were used (see fig. 16 & tab. 2). 

 

Fig. 16: Used cell types 

a) H441 

b) SkMel28 

c) RBL-2H3 

d) EG463 

e) Neuro2A 

f) Primary cells from the subventricular zone of postnatal BALB/c Mice 
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Table 2: Used cell lines and primary cell cultures 

Cell Type Description Usage 

H441 human papillary adenocarcinoma, 

epithelial morphology when grown in 

monolayers 

 Impedimetric detection of cell adhesion of 

confluent cell cultures on ISFET surfaces 

 Impedimetric analysis of the nanotoxicity of the 

industrial nanoparticles NexSil20 

SkMel28 human malign melanoma, polygonal 

morphology when grown in monolayers 

 Impedimetric detection of cell adhesion of 

confluent cell cultures on ISFET surfaces 

 Impedimetric detection of cell adhesion of low 

density cell cultures on ISFET surfaces 

 Impedimetric analysis of the nanotoxicity of the 

industrial nanoparticles NexSil20 

RBL-2H3 murine leukemia, fibroblast like 

morphology when grown in monolayers 

 Impedimetric detection of cell adhesion of 

confluent cell cultures on ISFET surfaces 

EG463 human malign melanoma, fibroblast like 

morphology when grown in monolayers 

 Impedimetric analysis of the nanotoxicity of the 

industrial nanoparticles NexSil20 

Neuro2A established from a spontaneous tumor of 

a strain of an albino mouse, neuronal and 

amoeboid stem cell morphology 

 Impedimetric detection of cell adhesion of 

primary neuronal tissues on ISFET surfaces 

 Impedimetric analysis of neurodegeneration 

caused by oxidative stress in primary neuronal 

tissues 

Primary SVZ cells primary cells obtained from the 

subventricular zone (SVZ) of 1 to 4 days 

old BALB/c mice 

 Impedimetric detection of cell adhesion of 

primary neuronal tissues on ISFET surfaces 

 Impedimetric analysis of neurodegeneration 

caused by oxidative stress in primary neuronal 

tissues 

H441 Cells 

The cell line H441 is an epithelial cell line derived from human papillary adenocarcinoma 

(Kasper et al., 2011). The method of culturing these cells followed the above description. The 

cells were provided by Prof. Dr. Roland Stauber from the Molecular and Cellular Oncology 

Department of the University Medical Center in Mainz, Germany. H441 cells are an already 

established model for the alveolar-capillary barrier in vivo and were used in this thesis work 

to demonstrate the applicability of the presented system in cytotoxicity studies since this cell 

line has already been used for comparable experiments by Kasper et al. in 2011.  
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Cells were cultivated in Roswell Park Memorial Institute medium (RPMI) containing 10% fetal 

calf serum (FCS), 1% L-Glutamine (200 mM) and 1% Penicillin/Streptomycin (10 000 u 

Penicillin, 10mg/ml Streptomycin) at 37°C and 5 % CO2 with medium changes every 3 days. 

After reaching 95 % confluence cells were split for subculturing in a ratio of 1:10. 

Subculturing was done according to the protocol described above. 

SkMel28 Cells 

The cell line SkMel28 (Fogh et al., 1977) is a cell line with polygonal morphology obtained 

from human malign melanoma and was provided by the project partner SymbioTec GmbH, 

Germany. Culturing was done following the protocol described in paragraph 2.2. 

Cells were cultivated in Dulbecco’s Modified Eagle’s Medium (DMEM) containing 10% FCS, 

1% L-Glutamine (200 mM), 1% Penicillin/Streptomycin (10 000 u Penicillin, 10mg/ml 

Streptomycin) and 1% of non-essential amino acids (NEAA). Medium changes and 

subculturing were done according to the described protocol. 

EG463 cells 

The cell line EG463 (Zeppezauer and Leinenbach, 1996) is a cell line obtained from human 

malign melanoma and was provided by SymbioTec GmbH, Germany. Culturing was done 

following the protocol described in paragraph 2.2. 

Cells were cultivated in Dulbecco’s Modified Eagle’s Medium (DMEM) containing 10% FCS, 

1% L-Glutamine (200 mM), 1% Penicillin/Streptomycin (10 000 u Penicillin, 10mg/ml 

Streptomycin) and 1% of non-essential amino acids (NEAA). Medium changes and 

subculturing were done according to the described protocol. 
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Neuro2A Cells 

The cell line Neuro2A (Windl et al., 1999) is a neuroblastoma cell line derived from the brain 

of Mus muscus. The cell line was provided by the Enteric Nervous System Working Group of 

the University of Applied Science Kaiserslautern under the administration of Prof. Dr. Karl-

Herbert Schäfer of the University of Applied Sciences Kaiserslautern, showing amoeboid 

stem cell like morphology. Culturing was done following the protocol described in paragraph 

2.2.  

Cells were cultivated in Dulbecco’s Modified Eagle’s Medium (DMEM) containing 10% FCS, 

1% L-Glutamine (200 mM), 1% Penicillin/Streptomycin (10 000 u Penicillin, 10mg/ml 

Streptomycin) and 1% of non-essential amino acids (NEAA). Medium changes and 

subculturing were done according to the protocol described above. 

RBL-2H3 Cells 

RBL-2H3 (Eccleston et al., 1973; Kulczycki et al., 1974) is a basophilic leukemia cell line 

derived from Rattus norwegicus showing a fibroblast-like morphology. 

Cells were cultivated in Alpha Medium containing 15 % FCS, 1% L-Glutamine (200 mM) and 

1% Penicillin/Streptomycin (10 000 u Penicillin, 10mg/ml Streptomycin) at 37°C and 5 % CO2 

with medium changes every 2 days. After reaching 90 % confluence cells were split for 

subculturing in a ratio of 1:10. Subculturing was done according to the protocol described 

above. 
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Primary SVZ Cells obtained from postnatal BALB/c Mice 

The primary cells used in this work were obtained from the subventricular zone (SVZ) of 1 to 

4 days old BALB/c mice. The dissection of animals and the isolation of cells were done by 

Felix Kettenbaum. Required animals were sacrificed via decapitation with following removal 

of the whole brain from the skull. The obtained brains were transferred to a petri dish 

containing cold Minimum Essential Medium (MEM) to isolate the subventricular zone from 

both hemispheres. An overview over the dissection can be found in figure 17. 

 

Fig. 174: Isolation and cultivation of primary cells from the subventricular zone of postnatal BALB/c mice 

a) Brain of 3 days old BALB/c mouse after isolation from a sacrificed animal 

b) Right hemisphere cut open 

c) Neurospheres grown from isolated cells after 3 days in culture 

Isolated SVZs underwent 20 minutes of digestion with Accutase (PAA, Germany) at 37°C 

before dissociation using hollow needles (sizes 23 Gauge and 27 Gauge). Dissociated cells 
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were centrifugated at 500 rpm for 5 minutes before being resuspended and cultivated in 

proliferation medium consisting of DMEM F12 containing 1 % bovine serum albumin (BSA, 

35 % in PBS), 1 % L-Glutamine (200 mM) , 0.1 % β-mercaptoethanol (50 mM), 1 % 

Penicillin/Streptomycin (10 000 u Penicillin, 10mg/ml Streptomycin), 2 % B27 (without 

retinoic acid), 0.2 % recombinant human fibroblast growth factor (rhßFGF, 10µg/ml), 0.1 % 

recombinant human epidermal growth Factor (rhEGF , 10µg/ml). The obtained stem cells 

were cultivated in proliferation medium for 5 days and formed neurospheres.  

These neurospheres were digested using AccuMax (PAA) and subsequently dissociated using 

a pipette tip. Digestion was done for 10 minutes at 37°C with the process being repeated 

once. 

The obtained cells were then adjusted to a concentration of 1.5 x 105 cells/ml with 50 µl of 

cell suspension being seeded on the prepared chip surface or 96-well plate (equaling 7500 

cells per well or chip respectively). Cells were then cultivated in differential medium 

consisting of DMEM F12 containing 1 % bovine serum albumin (BSA, 35 % in PBS), 1 % L-

Glutamine (200 mM), 0.1 % β-mercaptoethanol (50 mM), 1 % Penicillin/Streptomycin (10 

000 u Penicillin, 10mg/ml Streptomycin), 2 % B27 (with retinoic acid) for 7 days to facilitate 

differentiation before measurements were conducted. 

2.2.4 MTT Assay 

The MTT assay is a caloric assay using the yellow insoluble tetrazolium dye 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and its reduction to a soluble 

purple formazan by metabolically active cells (Mosmann, 1983). In this work the MTT assay 

was used in two separate projects to assess the viability of the tested cells as a standard 

control. 
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All MTT assays were conducted according to the following protocol. Cells were seeded in 96-

well plates (Greiner Bio-One, Germany) in a density of 5000 to 10 000 cells per well and 

incubated at 37°C and 5% CO2 overnight. After incubation the cells were treated with their 

respective testing compound for different durations.  Afterwards 20 µl of MTT solution (5 

mg/ml in PBS) were added to each well and incubated under cell culture conditions for 2 

hours. The supernatant was then sucked of and replaced with 125 µl of undiluted dimethyl 

sulfoxide (DMSO) to dissolve the formed formazan dye. The well plates were incubated 

under a chemical hood on a shaker for 15 minutes and examined photometrically (Genios 

microplate reader, Tecan, USA). Each experiment was accompanied by empty control wells 

which were treated exactly like the cell containing wells to act as a blank 

measurement/control. 

Cytotoxicity of NexSil 20 Nano Particles 

H441 cells were seeded in 96-well plates in a density of between 5000 and 10 000 cells per 

well and incubated according to the protocol mentioned in paragraph 2.2.2. After cultivation 

for 24 hours the cells were treated with 60 µg/ml (4.4 x 1012 particles/ml) and 600 µg/ml (4.4 

x 1013 particles/ml) of silica NexSil 20 particles. The used particles, provided by Prof. Dr. 

Roland Stauber from the Molecular and Cellular Oncology Department of the University 

Medical Center in Mainz, Germany, had an average diameter of 20 nm and were 

administered in serum free Roswell Park Memorial Institute medium (RPMI). The same was 

done for SkMel28 cells and EG463 cells. 

For long term studies cells were incubated with particles for 36 hours with consequent MTT 

testing every 4 hours as described above. Short term effects of particle treatment were 
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analyzed by the same method using particle exposure for an overall duration of 6 hours with 

consequent testing every hour after particle administration. 

Cytotoxicity of Hydrogen Peroxide in SVZ and Neuro2A Cells in Medium 

5000 to 10 000 cells of both cell types were seeded in 96- well plates and cultured for 7 days 

(primary SVZ cells) and 24 hours (Neuro2A), respectively. Well plates containing primary SVZ 

cells had to be coated with PDL (100 µg/ml) and laminin (20 µg/ml). Cells were treated with 

medium containing various concentrations of hydrogen peroxide (50 mM, 10 mM, 1 mM, 

100 µM, 10 µM), incubated under cell culture conditions overnight and subsequently tested 

following the protocol described above. 

Cytotoxicity of Hydrogen Peroxide in SVZ and Neuro2A Cells in Hank’s Balanced Salt Solution 

(HBSS)  

5000 to 10 000 cells per well of both cell types were seeded in 96- well plates and cultured 

as already mentioned in the paragraph before and were afterwards treated with Hank’s 

Balanced Salt Solution (HBSS) containing various concentrations of hydrogen peroxide (50 

mM, 10 mM, 1 mM, 100 µM, 10 µM). Cells were then incubated under cell culture 

conditions for 6 hours and tested following the protocol described in 2.2.2. 

2.3 Chip Fabrication and Assembly  

During this work two types of ion sensitive p-type open-gate field-effect transistors (ISFETs) 

were used: 

a. 16 channel quasi-planar ISFETs 

b. 8 channel dip-chip ISFETS 
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The 16 channel quasi-planar ISFET chips used in this study were produced in our research 

group by Dr. Xuan Thang Vu in our research group at the facilities of the University of 

Applied Sciences Kaiserslautern in Zweibrücken. The process flow of chip fabrication can be 

found in figure 18.  

The 8 channel dip-chip ISFETs were produced at the Institut für Mikrotechnik, Mainz during a 

former project at the Max-Planck Institute for Polymer Research Mainz, Germany 

(Offenhäusser et al., 1997). These ISFET devices were fabricated on n-doped silicon wafers 

with boron doped contact lines for in order to obtain robust, reusable devices, usable in cell 

culture experiments. 

2.3.1 Fabrication of Quasi-Planar ISFETs 

The devices were fabricated on 4 inch n-type silicon wafers with a resistivity of 2 to 10 Ohm 

cm (Simat, Germany). As a first step a silicon oxide layer (thickness 1 µm) was thermally 

grown on top of the wafer via wet oxidation (1000°C, 5 hours) to act as masking layer for 

following ion implantation.  

Photolithography and following wet etching with buffered hydrofluoric acid (BHF) were used 

to define the contact lines. The resistance of the contact lines was lowered via boron ion 

implantation by an external supplier (IPS, France) using a high dose and energy of 1·1016 

ions/cm2 and 150 keV. Afterwards the wafers had to be cleaned in piranha solution (1% 

hydrofluoric acid) and annealed (1050°C, 2 hours). In the next step the quasi planar 

topography was established by complete removal of all silicon oxide layers using wet etching 

in BHF with subsequent cleaning following a standard RCA protocol. This second wet etching 

step was followed by 10 minutes of annealing in N2 at 900°C to activate the dopants. 
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Afterwards a wet oxidation process (30 minutes) was done to achieve a uniform SiO2 

passivation layer with a thickness of 220 nm.  

 

Fig. 18: Process flow of quasi-planar ISFET fabrication 

The devices used during this work were produced in our research group at the University of Applied Sciences (campus 

Zweibrücken) and were fabricated by Dr. Xuan Thang Vu. The individual steps are described in paragraph 2.3. 

The actual gate area and outer source and drain contacts were defined in an additional 

lithography step. There the passivation layer was opened via wet etching in BHF (3 minutes) 

and subsequently in HF (hydrofluoric acid, 1%) until the silicon oxide was opened 

completely. After the removal of the resist using acetone, the gate oxide layer was thermally 

grown to a thickness of 6 nm to act as dielectrics for the devices using dry oxidation (4 

minutes at 820°C). As a final step during the production of our FET chips the outer source 

and drain contact lines were metallized. This was done by etching of the silicon oxide 
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covering the source and drain contact by 1% HF and by deposition of 200 nm of aluminium, 

20 nm of titanium and 100 nm of gold via electron beam evaporation. The newly created 

metal contacts were then annealed for 10 min at 400°C in a N2 atmosphere in order to form 

good ohmic contacts. 

The used design for this work had individual transistor gates with a gate size of 12 x 5 µm 

(effective gate length of about 1.3 µm due to under-diffusion in the above described 

process) arranged in a 4 x 4 grid located at the center of a 7 x 7 mm² chip. The individual 

gates were arranged with a distance of 200 nm between them (fig. 19). 

2.3.2 Encapsulation of Quasi-Planar ISFETs 

Selected chips were put in a beaker and cleaned of photoresist via ultrasonication in acetone 

for 5 minutes. Afterwards the used acetone was replaced with fresh acetone and the process 

was repeated. The acetone was then replaced with 70 % isopropanol and sonicated for 

another 5 minutes. 

Chips were clued to 68-pin Leaded chip carriers (LCC) using a two components epoxy 

adhesive (Epoxy Technology, USA) which components were mixed in a ratio of 1:1 and 

applied to the surface of the chip carrier. The chip was then placed in the center of the 

carrier and slightly pressed onto the carrier surface. Afterwards the carrier and chip were 

baked for 1 hour at 150°C.  

After baking the chips were connected to the contact pads on the carrier via wire bonding 

using an Al (1% Si) wire following the bond plan shown in fig. 20.  

The bonded chips were encapsulated in biocompatible Polydimethylsiloxane (PDMS, Sylgard 

96-083, Dow Corning, Germany) to insulate the metal contacts and bonds and to form a 
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miniature cell culture receptacle. The mentioned cell culture receptacle was created by 

gluing a silicon hopper (formed out of Sylgard 184 silicone) and outer glass ring onto the chip 

surface and the chip carrier surface respectively using PDMS (Sylgard 96-083). 

 

Fig. 19:  Components used in chip encapsulation for both quasi-planar ISFETs and parallel-culture ISFETs 

a) Quasi-planar ISFETs 

b) Parallel-culture ISFETs 
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Fig. 20: Bondplan for quasi-planar ISFETs (a) and parallel-culture ISFET (b) 

Wire bonds are visualized as black lines with each black line representing two bonds. 

Following the attachment of the glass ring and the silicon hopper the chips were baked at 

150°C for 1 hour. Afterwards the gap between the silicon hopper and the outer glass ring 

was filled with PDMS, degassed in a desiccator and again baked for 1 hour at 150°C.  

2.3.3 Encapsulation of Dip-Chip ISFETs for Parallel Cell Culture 

The encapsulation of the used dip chips to create a chip system allowing for parallel cell 

culture followed the same protocol like the encapsulation of quasi-planar ISFETs. Before 

encapsulation the chips were clued to a PCB (printed circuitry board, LeitOn GmbH, 

Germany) carrier. Two such chip-carrier complexes were then glued to a microscope slide 

accompanied by two pieces of PCB to act as a base for the glass rings used to create the cell 

culture receptacle. After gluing the chips were baked for 1 hour at 150°C. 

The chips were connected to the contact pads of the carrier via wire bonding. The bond plan 

for this particular setup can be seen in figure 20. Wire bonding was followed by the 

application of the silicon hoppers and outer glass rings using PDMS as it was described for 
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quasi-planar ISFETs. Encapsulation with PDMS and baking were also done according to the 

aforementioned protocol. A schematic drawing of the encapsulation process can be found in 

figure 21. 

 

Fig. 21: Encapsulation procedure for quasi-planar ISFETs and parallel-culture ISFETs 

Encapsulation of both chips followed the same basic protocol with the individual steps being described on the left side of 

the schematic drawing. 

2.4 Measurement Setup 

The measurement setup (fig. 22) used in this work is called a transistor-transfer-function-box 

(TTF-box for short, fig. 22b) and is used as a portable 16 channel amplifier system 

(Ingebrandt et al., 2005, Schäfer et al. 2009). Chips can be connected to the amplifier system 

either via a square contact port on the top side of the device (quasi-planar ISFETs) or via 
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cable connection to two contact ports on the left and right side of the device (parallel 

culture chips). 

 

Fig. 22: Measurement setup 

a) Schematic drawing of the measurement setup on the level of an individual transistor gate 

b) Transistor-transfer function box (TTF box) 

c) Top view of the chip adapter to connect quasi planar ISFETs to the TTF box 

d) Top view of parallel-culture ISFET connected to the TTF box 

 

The system is operated via custom made software called Biomol, which was developed at 

the Research Center Jülich (FZ Jülich, Germany). 

2.4.1  Chip Characterization 

During this work an assessment of the transfer characteristics of each chip was done before 

measurements were conducted (fig. 23). After assessing the transfer characteristics for each 

individual transistor the transistors were set to a common working point of maximum 

transconductance. This was achieved by adjusting VGS and VDS to the highest point in the 
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plotted transconductance curves (showing the drain-source current IDS correlated to 

constant VDS values) corresponding to the transfer characteristics for four defined steps of 

VDS (0 V, -1 V, -2 V, -3 V). Since the sensor chip was fabricated in a common-source layout, all 

channels need to be set to the same working point, which resulted in small variations in IDS 

from channel to channel. 

 

Fig. 23: Chip characterization and working point adjustment 

a) Measurement setup showing the BioMol software graphied user interface 

b) Characterization lines before working point adjustment 

c) Adjustment of the working point 

d) Characterization lines with included working point  
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Fig. 24: Typical transfer characteristics of 8 channel dip-chip ISFETs devices and 16 channel quasi-planar ISFET devices 

(pictures taken from Susloparova et al., 2015) 

a) Transfer characteristics of 8 channel dip-chip ISFETs devices 

b) Transconductance of 8 channel dip-chip ISFETs devices 

c) Transfer characteristics of 16 channel quasi-planar ISFET devices 

d) Transconductance of 16 channel quasi-planar ISFET devices 

The transfer characteristics of both used devices were measured in a voltage range (0 to -3 V 

for VGS and VDS, see fig. 24 a & c). Fig 24 b & d show the transconductance of both the 8 

channel dip-chip ISFET devices and the 16 channel semi-planar ISFET devices. A maximum 

transconductance of 0.45 mS and 0.5 mS was achieved for the 8 channel dip-chip ISFET 

devices and the 16 channel semi-planar ISFET devices, respectively (Susloparova et al., 

2015). 
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2.4.2 Analysis of Chip Deterioration 

In general FET sensors could be repeatedly used. However, extended usage times lead to 

deterioration of the sensor performance. To assess the deterioration of the used quasi-

planar FET chips gm-values obtained via repeated characterization (13 times) of nine chips 

were analyzed. For this the following definitions were set up: 

 Channels with gm-values above 0.3 mS are best suited for impedance spectroscopy. 

 Channels with gm-values below 0.2 mS are considered as failing. 

 Channels with gm-values below 0.1 mS are considered as insensitive and therefore 

broken. 

Channels which were considered as broken from the beginning were excluded from the 

analysis. 

2.4.3  Impedance Spectroscopy 

Characterization was followed by the measurement of the transistor-transfer function (TTF). 

This was done by applying a signal of 10 mV with varying frequency in the range from 1 Hz to 

1 MHz to an Ag/AgCl wire used as a pseudo-reference electrode. The typical behavior of the 

used devices is shown in fig. 25.  

The method of our analysis is based on the recording of the transistor-transfer function 

(Schasfoort et al., 1989; Antonisse et al., 2000; Kharitonov et al., 2001), representing the 

combination of the bandwidth-affecting effects of the used reference electrode, 

measurement solutions (in this work the cell culture media), attached biological samples (in 

our case cells), the actual transistor and the first amplifier stage inherent in our 
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measurement setup. The resulting response of an attached sample to an applied AC voltage 

forms the basis for deducing the properties and the behavior of attached cell samples.  

 

Fig. 25: Cellular adhesion on FET surface: 

a) Schematic drawing of an adherent cell on top of a FET surface 

b) Typical behavior of an open gate ISFET with and without attached cells 

Alternatively to scans of a whole spectrum in the frequency range of 1 Hz to 1 MHz, the 

measurement setup can be used to conduct measurements to analyze time dependent 

responses of attached cell samples in real time. To do so, the amplifier was set to a defined 

frequency and variations in the transistor-transfer function were monitored over time. 
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2.4.4  Real-Time Observation of Transfer Function Changes 

For the observation of transfer function changes in real time, the measurement setup was 

set to a defined frequency of 200 kHz and measurements were typically taken for 2 hours. 

With our TTF system these measurements can be done inside or outside of the cell culture 

incubator. The frequency of 200 kHz was chosen after conducting the chip characterization 

and a first impedance scan as described above using chips with a confluent layer of cells 

attached to the transistor surface, which was also checked microscopically. With our TTF 

system we were able to perform these measurements under cell culture conditions inside or 

outside of the incubator. 

2.5  On Chip Cell Culture Protocols 

2.5.1 Chip Cleaning 

Before use all chips were thoroughly cleaned according to the following standard procedure 

(Wrobel et al., 2005). The chip surface was cleaned using a cotton bud soaked with 70 % 

ethanol and subsequently ultrasonicated for 5 minutes in distilled water. The water was 

removed afterwards and replaced with a 2 % Hellmanex III solution (Hellma Analytics, 

Germany) followed by another round of ultrasonication for 5 minutes. Afterwards the 

Hellmanex solution was discarded and replaced with distilled water for a third 

ultrasonication step. The chips were subsequently dried and prepared for coating. 

2.5.2 Chip Coating 

Chips used during this work were coated with either fibronectin (100 µg/ml; for H441, RBL-

2H3, SkMel28, EG463 and Neuro2A, adapted from Lindl, Cell- and Tissue culture, 5th edition, 

2002) or PDL (100 µg/ml) and laminin (20 µg/ml; for primary SVZ cells), respectively 

(following a protocol for primary neurons described by Medert et al., 2013). Before the 
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coating was administered, the chip surface was activated via incubation at 80°C for 30 

minutes with 20 % sulfuric acid applied to the center of the chip surface. After surface 

activation the chips were again ultrasonicated in distilled water for 5 minutes and dried 

afterwards. The activated dry chip surface was then sterilized using 70 % ethanol (5 min) and 

rinsed with distilled water before the coating was applied.  

Fibronectin (100 µg/ml) was administered to the chip surface in 50 µl droplets and incubated 

at 37°C and 5 % CO2 for 3 hours before removal of the fibronectin and subsequent washing 

with distilled water took place. This was done for the cell lines H441, RBL-2H3, SkMel28 and 

Neuro2A. 

For cultivating primary SVZ cells the chips were coated with PDL (100 µg/ml) for 24 hours 

(37°C, 5 % CO2) before the PDL was replaced with laminin (20 µg/ml) and incubated for 1 

hour (37°C, 5 % CO2). Afterwards the chips were again washed with distilled water. 

2.5.3 On-Chip Cell Culture 

Cells were cultivated on the surface of FET chips according to their respective protocols 

mentioned above. Cell culture receptacles on chip have a capacity of between 500 and 600 

µl of cell culture medium. 

Confluent cell cultures were used to observe the cytotoxic effects of NexSil 20 nanoparticles 

in H441 cells, SkMel28 cells and EG463 cells and the cytotoxic effect of hydrogen peroxide in 

Neuro2A cells. Cellular adhesion was also analyzed using confluent on chip cultures of 

SkMel28 cells, H441 cells and RBL-2H3 cells. To establish confluent cell cultures on top of the 

chip surface, cell suspensions obtained through subculturing were adjusted to a 

concentration of 2 x 105 cells/ml and were seeded on top of the chip surface in 50 µl 

droplets (equaling 10 000 cells per chip). The chips were then incubated for 30 minutes at 
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37°C and 5 % CO2 so the cells could sink down to the chip surface and adhere to it. 

Afterwards the cell culture receptacle was filled up with 500 µl of the respective cell culture 

medium. 

Low density cell cultures of SkMel28 cells were used to further analyze cell adhesion and 

possible differences between adhesions of individual cells compared to larger cell 

populations. Therefore 1.5 x 104 cells/ml to 2 x 104 cells/ml were seeded on top of the chip 

surface in 50 µl droplets (equaling 750 to 1000 cells per chip). Further proceedings were 

identical to confluent cell cultures. 

2.5.4 Primary Cell Cultures 

On chip cultivation of primary cells from the subventricular zone was done according to the 

protocol described in paragraph 2.2.1. It is important to note that the dissociation and 

digestion needed to obtain individual stem cells which will differentiate on top of the chip 

surface is inducing a varying degree of physical stress for the cells. Therefore the amount of 

viable cells cannot be adjusted to a specific concentration with the same amount of accuracy 

given for established cell lines. 

2.6  Impedimetric Analysis of Cell Attachment 

2.6.1  Impedimetric Analysis of Cell Adhesion in Confluent Cultures 

Cells were grown on top of fibronectin-coated chip surfaces according to their respective 

protocols described in 2.2 and were cultivated for 24 hours under standard conditions (37°C, 

5 % CO2) before measurements were started. To verify the confluent cell layer on top of the 

chip microscopic photographs were taken using Axiotech vario 100 HD (Carl Zeiss AG, 

Germany) utilizing a Zeiss epiplanar 10x objective and a Zeiss AxioCam color (type 412-312). 

Photographs were taken before and after measurements.  
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Chips were characterized as described above and set to a working point of maximum 

transconductance for impedance spectroscopy. After impedance spectroscopy the cells were 

removed from the transistor surface via Trypsin treatment (30 minutes, 37°C). Afterwards 

the Trypsin was removed and fresh cell culture medium was applied to the chips for further 

measurement. The chips were set to the exact same working point as before Trypsin 

treatment and the measurement was repeated. 

2.6.2  Impedimetric Analysis of Cell Adhesion in Low Density Cultures 

Measurements done with low density cultures of SkMel28 cells were done in exactly the 

same manner like with confluent cell cultures. Transistor gates with attached cells were 

categorized into groups with 25 – 50 %, 50 – 75 % and 75 – 100 % gate coverage according to 

their respective area of coverage. This was done using microscopic pictures of individual cell-

covered gates taken with the Axiotech vario 100 HD microscope. 

2.6.3 Data Fitting 

The fitting procedure followed a protocol established in our group (Susloparova et al., 2015). 

By using an equivalent-electrical circuit model (EEC, fig. 26 a) the behavior of a functional 

FET with an adherent cell can be simulated using the equation shown in figure 26 b. Using 

this approach makes it possible to extract the cell-related parameters CM and Rseal from the 

measurements. The following parameters presented in table 3 are relevant for the fitting 

procedure with the first three being chip-related. 
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Table 3: Chip- and cell-related parameters relevant for data fitting 

Chip related parameters 

CL [pF] Contact line capacitance; parallel combination of Cdrain & Csource 

COx [pF]    Gate oxide capacitance 

gm [mS] Transistor transconductance; measured during chip characterization 

Transimpedance circuit parameters 

Rel [kΩ] Series resistance of electrolyte and reference electrode 

Rfeedback [kΩ] Feedback resistance 

fg [kΩ]  Cutoff frequency of the operational amplifier 

Cell-related parameters 

CM [pF]  Combined membrane capacitance 

Rseal [MΩ] Seal resistance 

 

 

Fig. 26: Equivalent-electrical circuit model 

a) EEC model of a cell-covered field-effect transistor 

b) Fitting equation 

The combined membrane capacitance CM should not be confused with the total membrane 

capacitance typically measured by patch-clamp pipettes. Due to the serial combination of 

both free membrane parts and parts in the cellular junction this projected membrane 
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capacitance CM is generally smaller than the typical whole-cell membrane capacitances of 

cells, which is measured from the cells interior to the surrounding bath. 

The equation was fitted to the measured data and the obtained values for CM and Rseal were 

extracted from the fittings of averaged impedance signals. Fitting was done using the 

software Origin (OriginPro 9.0, OriginLab Corporation, Germany). 

2.7  Real Time Analysis of Cytoxicity of NexSil 20 Particles 

H441 cells were grown as a confluent cell layer on top of the transistor surface according to 

the protocol described in paragraph 2.2. After cultivation for 24 hours the chips were 

characterized and an impedance spectroscopy was done as described in 2.4. Afterwards the 

cells were treated with 60 µg/ml (4.4 x 1012 particles/ml) and 600 µg/ml (4.4 x 1013 

particles/ml) of NexSil 20 particles (in serum free RPMI medium) and their effect was 

analyzed by monitoring the transistor-transfer function time-dependently for 2 hours at a 

frequency of 200 kHz under cell culture conditions.  

2.8 Apoptosis Induction via Hydrogen Peroxide 

Primary cells from the subventricular zone and Neuro2A cells were grown on top of coated 

chip surfaces according to their respective protocols detailed in paragraph 2.2. 

Cells were treated with medium and HBSS containing hydrogen peroxide (SVZ: differential 

medium with 50 mM H2O2, HBSS with 1 mM H2O2; Neuro2A: DMEM with 10 mM H2O2, HBSS 

with 1 mM H2O2) and incubated for a specific amount of time (24 hours in medium and 6 

hours in HBSS). Impedance spectroscopy in the respective standard media containing no 

hydrogen peroxide was done for before and after incubation with hydrogen peroxide. 
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2.9 Scanning Electron Microscopy (SEM) Documentation  

Samples of cells attached to a transistor gates were prepared from low density cell cultures 

of all used cell lines. Cells were cultivated on the chip surface according to their respective 

protocols described earlier for 24 hours to achieve proper cell adhesion. Afterwards the 

samples were rinsed with 1xPBS twice and then fixated (see fig. 27). 

Fixation 

Cells samples were fixated on top of the chip surface using a Glutaraldehyde solution (3 % in 

HEPES buffer, pH 7.3). The used samples were incubated in the Glutaraldehyde solution 

under a chemical hood for 24 hours. After Fixation the samples were rinsed with distilled 

water twice and prepared for drying. 

Drying 

The samples were incubated in several concentrations of Isopropanol in ascending order 

starting with 30 % Isopropanol and ending at 100 % Isopropanol. The details are shown in 

figure 27. After finishing the incubation in 100 % Isopropanol the samples were examined 

microscopically and air dried in the clean bench.  

Documentation 

Cell samples were analyzed using a Supra40 scanning electron microscope (Carl Zeiss AG, 

Germany). The dry samples were glued to a SEM sample holder and sputtered with a 10 to 

20 nm thick layer of gold. Afterwards the sample was inserted into the SEM and scanned 

with an acceleration voltage of 3 kV and an aperture size of 20 µm. 
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Fig. 27: Fixation and drying steps 

a) Schematic drawing of fixation and drying steps used during this work 

b) Microscopic picture of a dry sample of fixated SkMel28 cells on chip surface 
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3. RESULTS 

The following chapter is meant to show the results of the conducted experiments including a 

short summary of said experiments. A detailed discussion of the data can be found in 

chapter 4. 

3.1 Deterioration of individual transistor gates used in cell culture  

Over the course of this thesis the used chips showed a sharp decline in their performance 

resulting in low sensitivity to cellular attachment. The gm-values of individual transistor gates 

were analyzed as described in chapter 2.4.4 with a total amount of 144 channels being 

considered for analysis.  

Out of these 144 channels 88 channels showed gm-values above 0.1 mS for all 13 

measurements and were therefore considered working while 38 channels broke down over 

time (gm-value dropped below 0.1 mS) and 18 channels not working from the beginning (fig. 

28 a). Working channels which did not break down over time (n = 88) were used to analyze 

the decline of the gm-value to provide a simple measure of chip quality over time (fig. 28 b). 

At their first use an average gm-value of 0.47 mS was observed. At the fourth use of the 

tested chips the average gm-value dropped to 0.36 mS, at the seventh use it dropped to 0.3 

mS, at the tenth to 0.25 mS and after thirteen uses to 0.21 mS. Over thirteen individual uses 

of the tested channels the average gm-value showed a decline of 55 % compared to the first 

use. To test the functionality of the used chips the gm-values were monitored during the 

performed experiments.  
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Fig. 28: Deterioration of FET channels used for impedance spectroscopy 

a) Functionality of channels used for FETCIS measurements: From a total amount of 144 channels 88 channels 

showed gm-values above 0.1 mS for all 13 measurements while 38 channels broke down over time (gm-value 

dropped below 0.1 mS) and 18 channels were not working from the beginning. 

b) Transconductance deterioration in working channels (n = 88): over 13 measurement cycles the gm-value of the 

used channels dropped 55 % to a gm-value of 0.21 mS. 

* = P < 0.05; ** = P < 0.01; *** = P < 0.001; **** = P < 0.0001 
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3.2 Impedimetric detection of cell adhesion of confluent cell cultures on ISFET surfaces
3
 

One of the major topics in this thesis was the analysis of cell adhesion of several 

morphologically different cell lines in confluent cell layers with the in-house developed FET 

sensor setup.  

 

Fig. 29: Close-up images of the planar field-effect transistor surfaces 

a) Zoom in to an individual gate contact opening (scanning electron microscopy (SEM), colored).  

b) Only the 220 nm thick opening in the passivation layer at each of the 16 gate contacts is visible in SEM. FO is 

the field oxide area, CL the contact line area and G the gate area. 

                                                           
3 Results partially published in Sensors and Actuators, B: Chemical (2015) - Electronic monitoring of single cell-substrate adhesion events 
with quasi-planar field-effect transistors - Koppenhöfer, D; Susloparova, A; Law, J K Y; Vu, X T; Ingebrandt, S 
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Therefore the cell lines H441 (human 

papillary adenocarcinoma), SkMel28 

(human malign melanoma) and RBL2H3 

(murine leukemia) were cultivated in 

high density cultures on pre-coated 

ISFET surfaces (protocols provided in 

chapter 2). All tested cell lines were 

seeded in a density of 7 500 to 10 000 

cells in 50 µl droplets per chip and 

incubated for 24 hours (37°C, 5 % CO2) 

to achieve full coverage of the 

transistor surface. Microscopic 

examination of all three used cell lines 

shows their distinctly different cell 

morphologies on the ISFET sensor 

chips, which were all as described in 

literature. H441 cells were showing an 

epithelial morphology with relatively 

small cell bodies while SkMel28 and 

RBL-2H3 cells showed polygonal and 

fibroblast like morphology, respectively.  

 

 

Fig. 30: Confluent cell cultures on fibronectin-coated FET surfaces 

All three tested cell lines are covering the 4×4 transistor array in a 

confluent layer. The different morphologies can be identified 

from the pictures below:  

a) H441 – epithelial morphology,  

b) SkMel28 – polygonal morphology,  

c) RBL-2H3 – small fibroblast like, elongated cells. 
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The SkMel28 cells seem to possess the largest cell body of all tested cell lines while the RBL-

2H3 cells where developing small and elongated cell bodies.  

After incubation the cell-covered chips were characterized according to the protocol 

described above and set to a working point of maximum transconductance as described in 

paragraph 2.4.1. All used chips showed a gm-value of above 0.3 mS (fig. 31). 

 

Fig. 31: Average gm-values (obtained from chip characterization) for cell-covered transistor gates in confluent cell cultures 

(n = 20) 

Statistical analysis of the mean gm-values of transistor gates covered by different confluent cell cultures did not show any 

significant difference between the gates used for the individual cell lines. Statistical analysis was done using paired t-test 

with error bars representing the standard deviation. 

Chip characterization was followed by impedance spectroscopy in the frequency range of 1 

Hz to 1 MHz as described in the materials and methods section. After trypsinisation 

impedance spectra were again measured as described in paragraph 2.6. 
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3.2.1 Impedance spectra of confluent cell layers 

All cell lines showed a similar behavior for cell-covered transistor gates, showing a 

suppression of the transistor-transfer function in a frequency range of 100 kHz to 1 MHz 

with individual frequency ranges with significant difference in transfer function amplitude 

for cell-covered and cell-free transistor gates.  

 

Fig. 32: Average impedance spectra for cell-covered and cell-free transistor gates: Cell-covered chips were used to 

perform impedance measurements (n =20 individual channels) 

a) H441 

b) SkMel28 

c) RBL-2H3  

All cells showed a significant difference between cell-covered and cell-free transistor gates in a frequency range of 150 to 

850 kHz (H441), 200 to 800 kHz (SkMel28), and 150 to 700 kHz (RBL-2H3; d). Dotted lines represent fitted data. Statistical 

analysis was done using two-way ANOVA with error bars representing the standard error. * = P < 0.05; ** = P < 0.01; *** 

= P < 0.001 
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Transistor gates without cells show an ascent of the transfer function amplitude starting at 

around 100 to 150 kHz and becoming steeper till reaching the maximum height at around 

800 kHz (fig. 32). Cell-covered transistor gates showed a distinct suppression of the transfer 

function. This suppression starts between 10 and 20 kHz for confluent cultures of H441 cells 

and becomes steeper till the amplitude reaches its lowest point between 200 and 300 kHz 

(fig. 32 a). Transistor gates covered by SkMel28 and cells RBL-2H3 cells showed a comparable 

behavior with the suppression of the transfer function starting at 20 kHz and reaching its 

lowest point between 200 and 300 kHz, respectively (fig. 32 b & c). Each tested cell line 

showed a significant difference between cell-covered and cell free transistor gates (P < 

0.001) in an individual frequency range. H441 cells showed a significant difference between 

cell-covered and cell-free transistor gates in the frequency range of 150 to 850 kHz while 

SkMel28 cells and RBL-2H3 cells showed a significant difference in the frequency range of 

200 to 800 kHz and 150 to 700 kHz, respectively (fig. 32 d). 

3.2.2 Analysis of membrane capacity and seal resistance in confluent cell layers 

Using the fitting procedure described in chapter 2.6.3 the membrane capacitance CM and the 

seal resistance Rseal were obtained from the averaged impedance spectra. H441 cells showed 

the highest value for both Rseal and CM with values of 0.78 pF for CM and 2.8 MΩ for Rseal. 

SkMel28 and RBL-2H3 cells showed lower values of 0.25 pF and 0.33 pF for CM and 0.93 MΩ 

and 0.97 MΩ for Rseal, respectively (fig. 33).  
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3.3 Impedimetric detection of cell adhesion of low density cell cultures on ISFET surfaces
4
 

Analysis of individual cellular binding events was conducted using the same technique of 

measuring the impedance spectra of individual cells to a transistor gate. Therefore SkMel28 

cells were cultivated in low density culture on pre-coated ISFET surfaces. Cells were seeded 

in a density of 750 to 1 000 cells per chip and incubated for 24 hours at 37°C and 5 % CO2.  

 

Fig. 33: CM- and Rseal-values for transistor gates covered by confluent cell cultures 

CM- and Rseal-values of transistor gates covered by confluent H441, RBL-2H3 and SkMel28 cell cultures were extracted 

from averaged impedance spectra using the fitting procedure described under 2.9. The lowest membrane capacitance 

and seal resistance was observable in SkMel28 cells. 

                                                           
4
 Results partially published in Sensors and Actuators, B: Chemical (2015) - Electronic monitoring of single cell-substrate adhesion events 

with quasi-planar field-effect transistors - Koppenhöfer, D; Susloparova, A; Law, J K Y; Vu, X T; Ingebrandt, S 
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Fig. 34: Low density culture of SkMel28 covering transistor gates:  

a) Lowering the density of seeded cells to 1 000 cells per chip leads to individual cells binding on transistor gates;  

b) - d) show exemplary pictures of cell-covered transistor gates with different amounts of covered gate area:  

b) 25 – 50 % gate coverage  

c) 50 – 75 % gate coverage 

d) 75 – 100 % gate coverage 

After 24 hours cells attached to transistor gates were categorized in three groups according 

to their area of gate coverage: 25 to 50 % gate coverage, 50 to 75 % gate coverage and 75 to 

100 % gate coverage. This was done using a simple grid of four equal rectangles 

superimposed on top of microscopic pictures of low density cultures of SkMel28 cells (fig. 

34). 
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Chips were characterized according to chapter 2.4.1 followed by impedance spectra 

measurements for cell-covered and cell-free transistor gates as described in chapter 2.4.2. 

All used channels showed gm-values around 0.3 mS (fig. 35). 

 

Fig. 35: Average gm-values (obtained from chip characterization) for cell-covered transistor gates with different 

percentage of covered gate area (n = 10) 

Statistical analysis of the mean gm-values of transistor gates covered by SkMel28 cells covering different amounts of the 

transistor’s surface did not show any significant difference. Statistical analysis was done using paired t-test with error 

bars representing the standard deviation. 

3.3.1 Impedance spectra of low density cell cultures of SkMel28 cells 

Cell-free transistor gates showed an ascent of the transfer function amplitude comparable to 

confluent cell cultures starting at around 100 kHz and becoming steeper till reaching the 

maximum height at around 800 kHz (fig. 36).  
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Fig. 36: Average impedance spectra for cell-covered transistor gates with different percentage of covered gate area (n = 

10 individual channels) 

a) 25 to 50 % gate coverage 

b) 50 to 75 % gate coverage 

c) 75 to 100 % gate coverage 

Different percentage of covered gate area affects the TTF spectra of the respective gates. Tested transistor gates with 

covered gate area below 75 % did not show discernible differences between cell-covered and cell-free state a) and b). 

Fully covered transistor gates (75 – 100 %) show a significant difference in the frequency range of 500 to 750 kHz (p < 

0.05). Dotted lines represent fitted data. Statistical analysis was done using two-way ANOVA with error bars 

representing the standard error. 

 

Transistor gates with 25 to 50 % of their respective surface covered by an adhering cell 

showed no significant suppression of the transfer function. The same observation could be 

made for 50 to 75 % covered transistor gates with no significance difference between cell-

covered and cell-free transistor gates (fig. 36 a & b). 
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Coverage of transistor gates exceeding 75 % led to a behavior comparable to the behavior of 

transistor gates covered by confluent cell layers with a significant suppression of the transfer 

function (P < 0.05) in the frequency range of 500 to 750 kHz (fig. 36 c). 

Analysis of the differences between cell-covered transistor gates for the individual 

categories of transistor gate coverage showed significant differences between 25 – 50 % 

coverage and 50 – 75 % coverage only at four individual frequencies : 500 kHz (P < 0.05), 800 

kHz (P < 0.001), 850 and 900 kHz (P < 0.05). Comparison of the categories of 25 – 50 % and 

75 – 100 % showed significant differences (P < 0.01) for 500 and 550 kHz, in the frequency 

range of 600 to 900 kHz (P < 0.001) and at 1 MHz (P < 0.05). Comparison of the categories 50 

– 75 % and 75 – 100 % showed no significant differences. 

 

Fig. 37: CM- and Rseal-values for cell-covered transistor gates covered by low density cultures of SkMel28 cells:   

CM- and Rseal-values of transistor gates covered by low density cultures of SkMel28 cells were extracted from averaged 

impedance spectra using the fitting procedure described under 2.9. The lowest membrane capacitance and seal 

resistance was observable for transistor gates with a gate coverage of 25 – 50 %. 
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Fig. 37 shows the membrane capacitance and seal resistance values for the three tested 

categories of gate coverage obtained from the data fitting of their respective impedance 

spectra. The membrane capacitance CM was lowest for the category of 25 – 50 % as was the 

seal resistance Rseal with 0.186 pF and 0.78 MΩ, respectively.  50 – 75 % gate coverage lead 

to CM and Rseal values of 2.85 pF and 1.43 MΩ while 75 – 100 % gate coverage showed CM 

and Rseal values of 1.58 pF and 1.00 MΩ. 

3.4 Impedimetric analysis of the nanotoxicity of the industrial nanoparticles NexSil20
5
 

3.4.1 Analyzing the cytotoxicity of Nexsil20 nanoparticles using MTT-Assays  

With the help of the FET system the cytotoxic effects of NexSil20 nanoparticles was analyzed 

using impedimetric analysis of cell adhesion as a marker of cell viability. Before impedimetric 

measurements were done the toxicity of the tested particle was assessed using MTT assays. 

For this purpose H441 cells, SkMel28 cells and EG 463 cells were seeded as described in the 

materials and methods section. 

After incubation MTT assays were conducted using two different particle concentrations. A 

high concentration of 600 µg/ml (4.4 * 1013 particles/ml) and a low concentration 60 µg/ml 

(4.4 * 1012 particles/ml) were chosen according to a previous publication of Prof. Dr. 

Stauber’s group (Kasper et al., 2011).  Both tested concentrations were already reported to 

cause a reduction of cell viability for the high concentration and to cause no significant loss 

of cell viability of for the lower concentration (Kasper et al., 2011). 

Treatment with the used nanoparticles caused drastic changes of the cell morphology. 

Treatment with the high particle concentration (600 µg/ml) led to cellular detachment and a 

generally round cell shape. Figure 37 shows the effect of the nanoparticle treatment on 
                                                           
5
 Results partially published in Results partially published in Biosensors & bioelectronics (2012) - Monitoring nanoparticle induced cell death 

in H441 cells using field-effect transistors. - Koppenhöfer, D; Susloparova, A; Docter, D; Stauber, R H; Ingebrandt, S 
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H441 cells. Before nanoparticle exposure, the cells grew in a dense and confluent culture 

and showed epithelial morphology. After 30 minutes of exposure, however the cells started 

to swell and turn round. These morphological changes indicated beginning cell damage.  

 

Fig. 38: Morphological changes in H441 cells induced by nanoparticle exposure 

Treatment of H441 cells with NexSil20 particles causes concentration dependent cell damage. A dose of 600 µg/ml of 

nanoparticles caused swelling and partial detachment from the substrate. A lower dose of 60 µg/ml caused no effect. 
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Over the next hour of exposure all cells in the culture turned round and partially detached 

from the surface. After 90 minutes the cells were completely detached from the well surface 

and showed round and swollen cell morphology. Cellular debris is clearly visible (fig. 37). 

To avoid particle aggregation and the formation of a protein corona, MTT assays were 

conducted for 6 hours in serum free medium with measurement points every hour. MTT-

assays were conducted for 6 hours in serum free medium to avoid particle aggregation with 

measurement points every hour. For every experiment the number of independent cell 

cultures n = 4, while each n consists of 6 repeats and one blank measurement.  

 

Fig. 39: Cytotoxicity of NexSil20 particles in H441 cells (n = 3 independent MTT assays) 

A dose of 600 µg/ml of nanoparticles caused reduction of viable cells/well from 100 % before particle administration to 

27.6 % after 1 hour, 25.6 % after 3 hours and 26.2 % after 6 hours. * = P < 0.05; ** = P < 0.01; *** = P < 0.001 

Treatment with a particle concentration of 600 µg/ml showed a significant reduction of 

viable cells/well in H441 cells from 100% before particle administration (0 hours) to 27.6 % 

after 1 hour, 25.6 % after 3 hours and 26.2 % after 6 hours. Both the untreated control and 

cells treated with the lower particle concentration showed no significant reduction in cell 
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viability over time. Comparison of particle treatment with 60 µg/ml and 600 µg/ml showed 

significant differences (P < 0.01) for all measured time points (fig. 39). EG463 cells treated 

with the same particle concentration (600 µg/ml) showed a similar drop of cell viability from 

100 % (0 hours) to 36.4 % after 1 hour, 19.2 % after 3 hours and 23.3 % after 6 hours. 

Treatment with the low particle concentration again did not lead to a significant reduction of 

cell viability. Additionally, there was no significant difference between treatment with 60 

and 600 µg/ml in EG463 cells (fig. 40). 

 

Fig. 40: Cytotoxicity of NexSil20 particles in EG463 cells (n = 3 independent MTT assays) 

A dose of 600 µg/ml of nanoparticles caused reduction of viable cells/well from 100 % before particle administration to 

36.4 % after 1 hour, 19.2 % after 3 hours and 23.3 % after 6 hours. * = P < 0.05; ** = P < 0.01; *** = P < 0.001 

SkMel28 cells showed a much weaker effect of particle treatment for the high concentration 

of 600µg/ml with a reduction of cell viability from 100 % (0 hours) to 92.6 % after 1 hour, 

84.8 % after 3 hours and 70 % after 6 hours. Treatment with the low particle concentration 

again did not lead to a significant reduction of cell viability. Additionally there was no 

significant difference between treatment with 60 and 600 µg/ml in SkMEl28 cells (fig. 41).  
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Fig. 41: Cytotoxicity of NexSil20 particles in SkMEl28 cells (n = 3) 

A dose of 600 µg/ml of nanoparticles caused reduction of viable cells/well from 100 % before particle administration to 

92.6 % after 1 hour, 84.8 % after 3 hours and 70 % after 6 hours. * = P < 0.05; ** = P < 0.01; *** = P < 0.001 

 

 

Fig. 42: Influence of NexSil20 particles on MTT assays (n = 3) 

Presence of the NexSil20 particle did not lead to any significant impairment of the MTT assay. 
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To guarantee that the experiments have not been compromised by any possible interaction 

between the nanoparticles and the MTT reagent, control experiments using the same 

procedures and particle concentrations as mentioned for the cytotoxicity assays but without 

cells were conducted.  

Presence of MTT reagent did not affect the applicability of the MTT assay as there were no 

discernable difference between the tested particle concentrations and the untreated control 

(n = 3, each n consisting of 12 repeats, Fig. 42).  

Because of the severe effect of the tested particles after 1 hour of exposure, the effects of 

NexSil20 were analyzed impedimetrically with the ISFET sensors using real-time 

measurements under culture conditions (37°C, 5% CO2). The main advantage is that a much 

higher time-resolution can be obtained in these experiments 

3.4.2 Time series measurements of nanoparticle toxicity using ISFETs 

H441 cells, SkMel28 cells and EG463 cells were used for the impedimetric assessment of 

nanoparticle toxicity. Therefore confluent cell cultures of these three cell lines were created 

on pre-coated transistor chips and cultivated for 24 hours (36° C, 5 % CO2) until they reached 

full confluency (fig. 43). 

After cultivating the cells for 24 hours, chips with attached cells were set to a working point 

of maximum transconductance. Following chip characterization, impedance spectra were 

measured to pick an optimal frequency for real-time measurements. Such real-time transfer 

function measurements were performed inside of the incubator under cell culture 

conditions (37°C, 5% CO2) with each chip being measured for 2 hours. A constant frequency 

of 200 kHz was selected for measurements based on the impedance spectra analysis of H441 

cells.  
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Measurements were performed using both high (600 µg/ml) and low (60 µg/ml) 

nanoparticle concentrations for cell-covered chips, cell-free chips with and without particle 

containing medium (600 µg/ml) and for cell-covered chips without nanoparticle exposure 

with n being 3 for all measurements presented in figure 44.  

 

Fig. 43: FET surface covered by confluent cell cultures 

a) H441 cells 

b) EG-463 cells 

c) SkMEL28 cells 

Cells were seeded in a density of 5 000 to 10 000 cells per chip and cultivated for 24 hours (37°C, 5 % CO2). 

Cell-free chips treated with both particle concentrations (60 µg/ml and 600 µg/ml) showed 

almost no effect in their respective spectra (fig. 44 a).  
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The presence of the nanoparticle itself does not seem to affect the transfer function of the 

transistor gates as the real-time measurements showed a straight course for all tested 

channels with and without particles for the whole duration of 2 hours (fig. 44 a). Untreated 

cell cultures were used as negative control. Over the course of the measurement the 

negative control showed fluctuations of the transfer function signal (Fig. 44 b) with H441 

cells showing the strongest fluctuations. It should be noted that the time courses contain 

fast spike artefacts due to a failure in the readout electronics. To analyze the data one 

should focus on the baseline variations only. 

Figure 44 c shows the effects of low dose nanoparticle exposure in all three tested cell lines. 

A slight increase of the signal amplitude was observable for SkMel28 cells but not for H441 

and EG463 cells. Treatment with the high dose of nanoparticles (600 µg/ml) resulted in an 

increase of the signal amplitude in the first 30 minutes of nanoparticle exposure for H441 

cells and EG463 cells (fig. 44 d). As seen in figure 44 e the signal increase is not smooth but 

characterized by a fluctuating shape. After the increase of the transfer function amplitude all 

three cell lines showed a nearly straight course for the rest of the measurement (with 

observable fast spike artefacts in SkMel28 cells).  
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Fig. 44: Real-time transistor-transfer function measurements of cell-covered FET chips 

a) Cell-free transistor gates with and without nanoparticles (600 µg/ml; negative control) 

b) Cell-covered transistor gates without nanoparticle exposure in all 3 tested cell lines (positive control for viable 

cells) 

c) Particle treatment (60 µg/ml) of H441, EG463 and SkMel28 cells (2 hours) 

d) Particle treatment (600 µg/ml) of H441, EG463 and SkMel28 cells (2 hours) 

e) Particle treatment (600 µg/ml) of H441, EG463 and SkMel28 cells (30 minutes, close up of d) 

Each shown impedance profile represents an average of 3 individual cell covered channels. Standard errors were in the 

range of 0.16and 0.02 for measurements with and without particles (a); 0.2, 0.04 and 0.09 for untreated cells (b); 0.07, 

0.12 and 0.03 for 60 µg/ml (c); 0.06, 0.09 and 0.13 for 600 µg/ml (d & e) in H441, EG463 and SkMel28 cells, respectively. 
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3.5 Impedimetric detection of cell adhesion of primary neuronal tissues on ISFET 

surfaces
6
 

 

Fig. 45: Microscopic documentation of Neuro2A and primary SVZ cells on coated FET surfaces 

a) Neuro2A cells on fibronectin coated FET surface (reflected-light microscope) 

b) Primary SVZ cells on PDL/laminin coated FET surface (reflected-light microscope) 

c) Neuro2A cell on fibronectin coated transistor gate (SEM) 

d) Primary SVZ cell on PDL/laminin coated transistor gate (SEM) 

The general applicability of the presented method and the associated system for studying 

pharmacological concepts for primary neuronal tissue was tested as a part of this thesis. To 

do so primary cells from the subventricular zone of 3 days old BALB/c mice and the 

established cell line Neuro2A were used for impedimetric analysis of cell adhesion. So far 

comparable metal electrode based systems are not able to provide a fast way of analyzing 

the adhesion (and thereby viability) of individual neuronal cells. 

                                                           
6
 Results published in Biosensors & bioelectronics (2014) - Neurodegeneration through oxidative stress: Monitoring 

hydrogen peroxide induced apoptosis in primary cells from the subventricular zone of BALB/c mice using field-effect 
transistors. - Koppenhöfer, D; Kettenbaum, F; Susloparova, A; Law, J K Y; Vu, X T; Schwab, T; Schäfer, K H; Ingebrandt, S 
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Neuro2A cells and primary SVZ cells were cultivated on fibronectin and PDL/laminin pre-

coated FET chips, respectively (fig. 45 c & d). Primary SVZ cells were cultivated on chip for 7 

days to allow for full cell differentiation before measurements were conducted, Neuro2A 

cells acted as a control. 

 

Fig. 46: Average impedance spectra of Neuro2A and primary SVZ cells (n = 20) 

Impedance spectra measurements showed a significant difference between cell-covered and cell-free transistor gates for 

Neuro2A cells and primary SVZ cells within a frequency range 350 to 800 kHz (P < 0.001) and 400 to 700 kHz (P < 0.01), 

respectively. * = P < 0.05; ** = P < 0.01; *** = P < 0.001 

 

Impedance spectroscopy of both cell types showed the already described ascent of the 

transistor-transfer function for cell-free transistor gates. Both cell types showed a 

characteristic suppression of the transfer function for cell-covered transistor gates (fig. 46 a 

& b). All used chips showed a gm-value of around 0.3 mS (fig. 47), guaranteeing their correct 

operation. 
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Fig. 47: Average gm-values (obtained from chip characterization) for cell-covered transistor gates with (n = 20) 

Statistical analysis of the mean gm-values of transistor gates covered by Neuro2A and primary SVZ cells did not show any 

significant difference. Statistical analysis was done using paired t-test with error bars representing the standard 

deviation. 

The transfer function of cell-covered transistor gates started to drop at around 50 kHz for 

Neuro2A cells and at 10 kHz for primary SVZ cells reaching the lowest level between 200 and 

300 kHz for both tested cell types. Both impedance spectra showed a characteristic decrease 

in their amplitude for cell-covered transistor gates with a more prominent decrease visible 

for primary SVZ cells. In the frequency range of 350 to 800 kHz and 400 to 700 kHz a 

significant difference (P < 0.001) was observable for both Neuro2A and primary SVZ cells 

respectively (fig. 46).  

Data fitting of the impedance spectra of Neuro2A and primary SVZ cells yielded information 

concerning the seal resistance Rseal and the membrane capacitance CM. Primary SVZ cells and 

Neuro2A cells showed a membrane capacitance CM of 0.22 pF and 0.54 pF and a seal 

resistance Rseal of 1.62 MΩ and 0.56 MΩ, respectively (fig. 48). 
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Fig. 48: CM- and Rseal-values for transistor gates covered by Neuro2A and primary SVZ cells 

CM- and Rseal-values of transistor gates covered by Neuro2A and primary SVZ cells were extracted from averaged 

impedance spectra using the fitting procedure described under 2.9. Neuro2A cells showed a lower seal resistance (with 

0.56 MΩ and 1.62 MΩ, respectively) and higher membrane capacitance compared to primary SVZ cells (with 0.54 pF and 

0.22 pF, respectively). 

3.6 Impedimetric analysis of neurodegeneration caused by oxidative stress in primary 

neuronal tissues 

3.6.1 Hydrogen peroxide toxicity in cell culture medium and in HBSS 

After first impedimetric measurements with primary neuronal tissue (SVZ) and Neuro2A cells 

were done analyzing the adhesion of these cell types, the toxicity of hydrogen peroxide 

(H2O2) was analyzed impedimetrically. As a control MTT assays were conducted using both 

cell types to assess the cytotoxicity of H2O2 and find the minimal cytotoxic concentration of 

H2O2 to be used for impedimetric measurements with the FET sensors. 

MTT assays were conducted for both cell types in medium according to the protocol 

mentioned in chapter 2.2.2. Cells were then treated with culture medium containing various 

concentrations of hydrogen peroxide ranging from 50 mM to 10 µM, incubated under cell 
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culture conditions overnight and subsequently tested following the protocol for MTT assays 

described in chapter 2.2.2.  

Neuro2A cells showed a significant drop of cell viability to around 65 % (P < 0.001) when 

treated with 1 mM H2O2 and to below 10 % compared to an untreated control only if treated 

with H2O2 concentrations above 10 mM (P < 0.001, fig. 49). Primary SVZ cells showed a 

similar behavior with a significant reduction of cell viability to 79.9 % for 10 mM H2O2 

solution (P < 0.001) and to -2.7 % for 50 mM H2O2 solution (P < 0.001, fig. 49).  

 

Fig. 49: Hydrogen peroxide toxicity (in cell culture medium) in Neuro2A and primary SVZ cells (n = 3) 

H2O2 treatment led to a significant loss of cell viability in both Neuro2A and primary SVZ cells over 24 hours 

of exposition if treated with 10 mM and 50 mM H2O2, respectively, with both cell types dropping to below 10 

%. Each n consists of 6 individual wells. * = P < 0.05; ** = P < 0.01; *** = P < 0.001 

Since the cytotoxic effect of hydrogen peroxide was only observable for very high 

concentrations -much higher than what was expected- the cell culture media were replaced 

by HBSS to minimize possible interfering influences by serum or other components of the 
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used media. Therefor the viability of both cell types in HBSS was assessed using MTT assays 

under the same conditions as for the cytotoxicity assays. 

Cell culture medium was replaced with HBSS (controls were kept in cell culture medium) and 

the cells were incubated for 3 hours, 6 hours and 9 hours and their viability assessed. Both 

cell types showed reduced viability in HBSS compared to their respective cell culture 

medium (fig. 50). After 3 hours viability of Neuro2A and primary SVZ cells was reduced to 

49.3 % and 71.5 %, after 6 hours to 54.8 % and 58.6 % and after 9 hours to 31.2 % and 51.2 

%, respectively. According to these results a 6 hour exposition to hydrogen peroxide 

containing HBSS was chosen for further cytotoxicity tests. 

 

Fig. 50: Viability of Neuro2A cells and primary SVZ cells in HBSS (n = 3) 

Both tested cell types showed reduced viability in HBSS compared to their respective cell culture medium with Neuro2A 

and SVZ cells dropping to 54.8 % and 58.6 % viability, respectively after 6 hours of incubation in HBSS under cell culture 

conditions (37°C, 5 % CO2). Each n consists of 4 individual wells. * = P < 0.05; ** = P < 0.01; *** = P < 0.001 

Reduction of cell viability comparable to what was observed in medium could be seen at a 

concentration of 1 mM H2O2 in HBSS (P < 0.01, Neuro2A; P < 0.001, SVZ cells) with cell 
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viability dropping to 18.3 % and 2.4 % compared to an untreated control for Neuro2A cells 

and primary SVZ cells, respectively (fig. 51). 

 

Fig. 51: Hydrogen peroxide toxicity (in HBSS) in Neuro2A and primary SVZ cells (n = 3) 

H2O2 treatment led to a significant loss of cell viability in both Neuro2A and primary SVZ cells over 6 hours of exposition 

if treated with 1 mM H2O2, with Neuro2A cells dropping to below 20 %. Each n consists of 6 individual wells. * = P < 0.05; 

** = P < 0.01; *** = P < 0.001 

3.6.2 Impedimetric analysis of H2O2 toxicity in Neuo2A and primary SVZ cells 

To analyze the cytotoxic effects of H2O2 in Neuro2A and primary neuronal cells obtained 

from the subventricular zone of postnatal BALB/c mice cells were seeded in a density of 7 

500 cells on pre-coated parallel culture chips according to the protocol described in chapter 

2.5. The cytotoxic effect of H2O2 on both cell types was analyzed in cell culture medium and 

HBSS.  

Neuro2A cells and primary SVZ cells in cell culture medium were treated with concentrations 

of 10 mM and 50 mM H2O2, respectively and incubated under cell culture conditions (37°C, 5 

% CO2) for 24 hours. Microscopic examination of both cell types (fig. 52) showed shrinking of 
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the cell body and observable detachment from the transistor surface. In case of the SVZ cells 

a collapse of neuronal outgrowths was observable (fig. 52 d). 

Impedance spectra were measured in cell culture medium without H2O2. Afterwards the cell 

culture medium was replaced with medium containing H2O2 (in case of the control cell 

culture medium without H2O2), incubated for 24 hours and another impedance spectrum in 

fresh cell culture medium was recorded. Chips were treated with 10 mM H2O2 and 50 mM 

H2O2 for Neuro2A and primary SVZ cells, respectively. Impedance spectra of both cell lines 

showed a suppression of their respective transfer functions (fig. 52) with stronger 

suppression for primary SVZ cells. After treatment with H2O2 the impedance spectra of both 

cell lines showed a transfer function comparable to cell-free transistor gates.  

Comparison of the impedance spectra before and after hydrogen peroxide treatment 

revealed significant differences (P < 0.001) in Neuro2A cells and primary SVZ cells in the 

frequency ranges of 650 kHz to 1 MHz and 150 to 900 kHz, respectively (fig. 53 b & d). The 

impedimetric assessment of H2O2 toxicity in Neuro2A and primary SVZ cells was repeated in 

HBSS instead of in cell culture medium. Cells were cultivated under the same conditions as 

for the measurements in cell culture medium with the medium being replaced by HBSS free 

of H2O2 for untreated measurements. Afterwards the buffer was replaced by HBSS 

containing 1 mM H2O2 (normal HBSS in case of the untreated control) and the chips were 

again incubated for 6 hours. Incubation was followed by the careful exchange of the HBSS 

containing H2O2 against H2O2-free HBSS for final impedance spectroscopy. 



3. RESULTS 

98 
 

 

Fig. 52: Microscopic documentation of hydrogen peroxide toxicity in Neuro2A and primary SVZ cells (in medium) 

a) Neuro2A cells (control) in medium on fibronectin coated FET surface 

b) Primary SVZ cells (control) in medium on PDL/laminin coated FET surface 

c) Neuro2A cells after 24 hours of H2O2 (10 mM) exposition 

d) Primary SVZ cells after 24 hours of H2O2 (50 mM) exposition 

H2O2 exposition led to severe morphological changes in both cell types ranging from shape changes to a round cell shape, 

collapse of outgrowths in SVZ cells and detachment from the transistor surface. 

Microscopic examination of H2O2 treated on-chip cultures revealed similar changes to their 

respective cell morphology like in medium. Changes included breakdown of outgrowths in 

primary SVZ cells, shrinking cell bodies in both cell types and detachment from the transistor 

surface (fig. 54 c & d). Impedance spectroscopy in HBSS yielded unexpected results. 

 In both cell types no significant differences between before and after H2O2 treatment were 

observable. Suppression of the transistor-transfer function was very low in general, being 

stronger in primary SVZ cells (fig. 55). 
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Fig. 53: Impedimetric analysis of H2O2 toxicity (in medium) in Neuro2A and primary SVZ cells (n = 20) 

Impedimetric measurements of H2O2 toxicity showed a significant difference for treated cell cultures (650 – 1000 kHz, 

Neuro2A; 150 – 900 kHz; b & d) and showed no significant difference for untreated controls (a & c). * = P < 0.05; ** = P < 

0.01; *** = P < 0.001 
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Fig. 54: Microscopic documentation of hydrogen peroxide toxicity in Neuro2A and primary SVZ cells (in HBSS) 

a) Neuro2A cells (control) in medium on fibronectin coated FET surface 

b) Primary SVZ cells (control) in medium on PDL/laminin coated FET surface 

c) Neuro2A cells after 6 hours of H2O2 (1 mM) exposition 

d) Primary SVZ cells after 6 hours of H2O2 (1 mM) exposition 

H2O2 exposition led to severe morphological changes in both cell types ranging from shape changes to a round cell shape, 

collapse of appendages in SVZ cells and detachment from the transistor surface. 
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Fig. 55: Impedimetric analysis of H2O2 toxicity (in HBSS) in Neuro2A and primary SVZ cells (n = 5) 

Impedimetric measurements of H2O2 toxicity showed no  significant differences for treated cell cultures (b & d) and 

showed no significant difference for untreated controls (a & c). * = P < 0.05; ** = P < 0.01; *** = P < 0.001 
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4. DISCUSSION  

4.1 Performance deterioration of individual transistor gates used in cell culture 

For impedimetric measurements done in this thesis work (except measurements concerning 

hydrogen peroxide toxicity) field-effect transistors with an almost completely flat 

topography were used. For these optimized chips the transistor transconductance gm was 

analyzed to verify the chip performance compared to older chips used in our group and their 

life span. 

The gm-values of the quasi-planar chips used for the impedimetric measurements were 

obtained during the chip characterization process conducted during the preparation of the 

individual measurements. A total amount of 144 individual gm-values were analyzed over a 

course of 13 measurements, as described in chapter 2.4.4. Channels were considered 

working channels if they showed a gm-value over 0.1 mS. 88 channels showed a gm-value of 

above 0.1 mS for all 13 measurements and were used to analyze the decline of the gm-values 

over time, while 38 channels broke down over time and 18 channels were not working at all. 

Working channels showed a decline of the gm-value of 55 % starting at 0.47 mS and ending at 

0.21 mS.  

Older devices previously used showed an average gm-value of 0.2 mS (Koppenhöfer et al., 

2013; Susloparova et al., 2013). The generally higher gm-values of the newly developed 

quasi-planar transistors (in the range of 0.3 mS) match the predicted values for these new 

chips (Susloparova et al., 2015), with the gate dimensions and the thinner gate oxide 

compared to older devices (Susloparova et al., 2015) being responsible for these higher gm-

values. Since higher gm-values are beneficial for the sensitivity of the transistor to adhering 
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cells, thereby leading to stronger suppression of the transistor-transfer function, these 

higher values represent a major improvement.  

The reusability of the used FETs, however, is limited by their relatively sharp performance 

decline. This decline might be caused by mechanical stress during the cleaning procedure 

can damage the gate oxide layer and thereby lower the sensitivity or break the chip entirely. 

4.2 Impedimetric detection of cell adhesion of confluent cell cultures on ISFET surfaces 

The experiments conducted during this thesis work using morphologically different cell lines 

for the impedimetric analysis of cellular adhesion on FET surfaces showed a distinct 

difference between cell-covered and cell-free states for SkMel28 cells, RBL-2H3 cells and 

H441 cells. All three tested cell lines showed a significant suppression of their respective 

transistor-transfer function for cell layers fully covering the transistor surface compared to 

the transistor-transfer function of cell-free transistor gates. The TTF suppression was 

strongest in the range of 150 – 850 kHz for H441 cells, 200 – 800 kHz for SkMel28 cells and 

150 – 700 kHz for RBL-2H3 cells respectively. This effect has already been described as 

typical behavior of adherent cell lines covering transistor surfaces in confluent cell layers 

(Schäfer et al., 2009; Susloparova et al., 2013; Koppenhöfer et al., 2013).  

The morphological differences of the three tested cell lines as described in section 2.2.1 led 

to individual combinations of the cells seal resistance Rseal and membrane capacitance CM. 

The CM values shown in this thesis are not identical to the membrane capacitance commonly 

used in patch clamping, instead representing the combined capacitance of free membrane 

parts and parts in contact with the transistor. The observed CM values for the tested cell lines 

indicate a correlation to the height of the measured cell (Susloparova et al., 2015) with the 

highest values having been extracted from measurements using H441 cells while the 
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membrane capacitance for RBL-2H3 cells and SkMel28 cells were smaller. This observation 

can be correlated to the documented height of the tested cell line, with H441 cells being 

documented with a height of 29 µm, while the height of RBL-2H3 cells was documented at 

11 µm (Donnellan et al., 1997; Woolhead et al., 2006). Since CM and Rseal values of SkMel28 

cells and RBL-2H3 cells were comparable, one might assume a comparable height of 

SkMel28 cells and RBL-2H3 cells. 

In addition to higher membrane capacitance the H441 cells also showed a higher seal 

resistance compared to SkMel28 and RBL-2H3 cells. This indicates an effectively smaller gap 

between the cell layer and the transistor surface. One possible explanation for this behavior 

might be a possibly tighter connection between individual H441 cells. Microscopic analysis of 

confluent cell layers of H441 cells adhered to the transistor surface revealed a very tight 

connection between individual cells. Assuming the effective gap between the transistor 

surface and adhering cells is influenced by the contacts between individual cells and effects 

taking place at the edges of said area of contact this possibly tighter connection might affect 

the sealing properties of the adhering cell layer. In addition H441 cells were unable to form 

low density cultures with individual isolated cells, instead always forming small confluent 

patches of cells. Both RBL-2H3 and SkMel28 cells showed a loser connection between 

individual cells, being able to form cell cultures with individual cells being isolated from each 

other. 

The FETCIS system presented in this thesis is capable to analyze cell adhesion of both 

confluent and low density cell cultures of morphologically different cell types. Measuring cell 

adhesion as a measure of cell viability is a well-established approach in impedance based 

biosensing (Asphahani and Zhang, 2007). As has been mentioned before, cells adhering to a 

transistor surface affect the impedance spectrum of said gate and thereby their detachment 
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from said surface leads to a measurable shift in the TTF spectrum. This shift seems to be 

characteristic for cell lines stemming from different histological sources as indicated by the 

results obtained from analyzing the TTF spectra of different cell lines. The observed 

difference between morphologically distinguishable cell types leads to the possibility of 

using the presented measuring technique to identify specific cell types using their 

impedimetric fingerprint. This would lead to an impedimetric alternative to classic 

histological methods creating an impedimetric histology technique (Ingebrandt et al., 2014 - 

Device and method for measuring biological and/or electronic properties of a sample, and uses 

thereof, Application number PCT/DE2015/100040). Utilizing this particular capability of the 

shown system opens new possibilities in the field of individualized cancer therapy providing 

a fast method to analyze the histological composition of solid tumors using tissues obtained 

from biopsy cultivated on the surface of field-effect transistors.  

4.3 Impedimetric detection of cell adhesion of low density cell cultures on ISFET surfaces 

In addition to impedimetric measurements utilizing confluent cell layers, experiments were 

conducted during this thesis work using low density cultures of SkMel28 cells to analyze the 

effects of incomplete coverage of the transistor surface. The cell line SkMel28 was chosen 

for these experiments due to their relatively large cell body (and resulting capacity to seal 

the transistor gate completely with a single cell) and their ability to grow isolated from one 

another in low density cultures. 

 As can be found in the results section transistor gates with coverage of below 75 % of their 

respective surface did not show any discernible suppression of the transfer function for cell-

covered transistor gates. The presented data fitting technique made it possible to extract 

values for both seal resistance and membrane capacitance. Meeting the expectations the 
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Rseal value was lowest for a rate of transistor coverage of 25 to 50 %, while a rate of gate 

coverage of 50 to 75 % lead to a comparable seal resistance like the one observed for a rate 

of transistor coverage above 75 %. Since lower amounts of gate coverage equal limited 

sealing of the transistor by the adhering cell these results were no surprise.  

Since the CM value is defined by the characteristics of the individual cell type, it should be 

comparable for confluent and low density cultures of the same cell type. Therefor the main 

parameter responsible for the different behavior of adhering cells with varying rates of 

transistor coverage should be the seal resistance Rseal. However the presented fitting 

approach is not yet able to provide absolute data concerning CM and Rseal based on the data 

acquired during this thesis work (as indicated by the differing CM values observed for 

confluent and low density cultures of SkMel28 cells). Since the data fitting was done using 

averaged impedance spectra this could be one reason for this behavior.  

According to these results it can be concluded that the sealing of the transistor gates by 

adhering cells needs to be above 50 % of the transistor surface. Therefore in future designs 

the size of the ISFET should be miniaturized. In this work, with the sensor designs available, 

the SkMel28 cells were chosen for low density cell culture experiments due to their 

comparably large cell bodies, making it easier to achieve high rates of gate coverage. In case 

of different cell types with different morphologies, for example the RBL-2H3 cells, this is 

possible to achieve utilizing smaller transistor gates.  

These findings strongly indicate the applicability of the proposed system to monitor the 

activity of cells, which are normally not acting as a part of a confluent cell layer. So far the 

ECIS system was the most frequently used system for impedimetric measurements regarding 

cell viability, membrane integrity or cellular migration. However such systems use metal 
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electrode arrays interacting with larger cell populations, meaning that the obtained results 

can only be interpreted as the response of an averaged cell to the applied stimulus. Studies 

aiming to analyze the effects of physiological or chemical stimuli on primary tissues might 

not be conducted as efficiently, since the effect of the applied stimulus might not be the 

same for every cell type present in the cell sample. The composition of most primary tissues 

is not necessarily homogeneous, consisting of different cell types that might react differently 

to external stimuli. Other examples where an averaged observation might be a disadvantage 

are cell types stemming from the immune system (e.g. T-cells, Law et al., 2014) or primary 

neuronal tissues, which do not form necessarily form tight connections to other cells and are 

thereby hard to analyze using a system utilizing large metal electrodes. This holds especially 

true for solid tumors, which can show a high rate of heterogeneity stemming from their high 

rate of chromosome instability. Therefor it is of utmost importance to analyze the response 

of individual cells to treatment with potentially selective compounds (Lips et al., 2008; 

Asphahani et al., 2011).  

Coupled with the already described capability of the presented system to differentiate 

between individual cell types, its ability to impedimetrically monitor cytological responses on 

single cell level provides us with the possibility to monitor the response of malign and benign 

tissue to antineoplastic drugs, simultaneously. In addition it would provide a possibility to 

analyze the composition of a biopsy sample of a solid tumor to analyze the effectiveness of 

the planned treatment before it is administered, thereby advancing the possibilities of 

individualized therapy. 

The difficulty in assessing the response of individual cells is mainly caused by the electrode 

size. In general it can be assumed that the lower size limit for metal electrodes in bio-

impedance assays is 25 µm in diameter, with the main problem being the double layer 



4. DISCUSSION 

108 
 

capacitance formed at the metal-liquid interface dominating the overall impedance (Xiao et 

al., 2002). The ion-sensitive FET devices utilized in this work are considerably smaller than 

the area of even circular electrodes with sizes below 20 µm diameter (Koppenhöfer et al., 

2015).  

4.4 Impedimetric analysis of the nanotoxicity of the industrial nanoparticle NexSil20 

During this thesis experiments were conducted analyzing the cytotoxic effect of the 

nanoparticle NexSil20 on the human papillary adenocarcinoma cell line H441. This cell line 

has been used by Prof. Dr. Roland Stauber as part of a model simulating particle absorption 

via the lung (Kasper et al., 2011). Cells were cultivated on top of pre-coated transistor 

surfaces and exposed to particle concentrations whose toxicity was already described as 

being apoptosis inducing (Kasper et al., 2011). 

Particle treatment led to significant reduction of cell viability in MTT assays as described in 

the results section. Microscopic examination showed typical signs of cellular detachment 

(round shape, bright edges; Okano et al., 1995). This observed reduction of cell viability 

matched the already published results of Prof. Dr. Stauber’s research group and provided an 

ideal system to test the real-time monitoring capabilities of the FETCIS impedance 

measurement setup. Therefore H441 cells were cultivated in confluent cell layers on pre-

coated FET surfaces and the cytotoxic effects of the NexSil20 particles were analyzed via 

real-time monitoring of the transistor-transfer function using a fixed frequency of 200 kHz. 

Monitoring the transfer function of FETs covered by H441 cells revealed a rise of the transfer 

function in the first 30 min after nanoparticle exposure (600 µg/ml) began. The observed 

shift can be correlated to the MTT assay results were the cytotoxic effect was shown to take 

place in the first hour after particle administration. The observed change in the amplitude of 
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the measured transfer function indicates progressive cellular damage occurring after particle 

administration. In addition, control measurements using untreated H441 cells showed 

fluctuations of the transistor-transfer function. These fluctuations have already been 

described as the reaction of the impedance sensor to activity (e.g. membrane fluctuations) 

of living cells (Koppenhöfer et al., 2013).  

Nanostructures are more and more something of a hot topic in the scientific community. 

Keeping the scope of this work in mind their possible application in cancer diagnosis and 

therapy is of special interest. As has been mentioned in the introduction chapter such 

structures can be used for tumor targeting, drug delivery or as a therapeutical compound 

themselves. In this context the analysis of their toxic effects is of major interest for the 

development of new selective antineoplastic compounds based on nanoscale structures. 

The real-time monitoring of the cytotoxic effects of NexSil20 particles using impedance 

spectroscopy via field-effect transistors demonstrates the applicability of the presented 

system as an alternative to standard toxicity or cell viability assays like MTT or LDH, 

especially in the context of nanoparticle toxicity. These assays must be used with precaution 

given that the used chemicals tend to interact with the tested nanoparticles and thereby 

influence the results (Monteiro-Riviere et al., 2009; Wörle-Knirsch et al., 2006). As a 

consequence it is of importance to use more than one assay to reach solid conclusions 

(Lewinski et al., 2008). The proposed FET system provides another possible solution to 

analyze the toxicity of such particles providing a platform for real-time analysis of 

cytotoxicity. Standard procedures (e.g. MTT, LDH) do not provide the possibility to monitor 

affected cells in real-time if they are not expressing GFP or any other live-cell marker.  
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The presented FET system can be used to not only impedimetrically analyze changes in cell 

adhesion in a time-resolved manner but could simultaneously be used to monitor pH 

changes in the cell medium at a low frequency. One further advantage is the possibility to 

obtain impedimetric results of individual cells in a confluent culture, while measuring several 

channels under cell culture conditions (Schäfer et al., 2009), thereby generating a high 

amount of data for statistical analysis.  

Taking the results obtained from the impedimetric analysis of cell adhesion (in both 

confluent and low density cell cultures) into account it becomes clear that the presented 

system can provide researchers with an impedimetric multiparametric live-cell 

measurement setup, vastly widening the possible applications of impedance-based 

biosensors. 

4.5 Impedimetric detection of cell adhesion of primary neuronal tissues on ISFET surfaces 

To further substantiate the usefulness and versatility of the presented FETCIS approach 

additional experiments were conducted using Neuro2A cells and primary neuronal cells 

obtained from the subventricular zone of postnatal BALB/c mice. 

The impedimetric analysis of Neuro2A and primary SVZ cells showed an expected 

suppression of the transistor-transfer function for cell-covered transistor gates comparable 

to the suppression caused by the previously tested cell lines. As mentioned before such 

suppression has already been described as characteristic for the used field-effect transistors 

with an attached cell on top of it (Schäfer et al., 2009; Koppenhöfer et al., 2013; Susloparova 

et al., 2013; Koppenhöfer et al., 2015; Susloparova et al., 2015). The minor differences 

observed between the impedance spectra of the tested cell types seem to be caused by their 



4. DISCUSSION 

111 
 

different morphologies and adhesion strength and might be interpreted as a kind of 

fingerprint of these specific cell types as has been detailed in section 4.2. 

4.6 Impedimetric analysis of neurodegeneration caused by oxidative stress in primary 

neuronal tissues 

As a continuation of the aforementioned experiments and further expansion of the possible 

applications of the presented system, a new encapsulation procedure was formulated 

leading to a new parallel culture platform utilizing two individual FET-chips with separated 

cell culture receptacles. These chips were then used for experiments analyzing the cytotoxic 

effect of hydrogen peroxide to simulate oxidative stress in primary neuronal tissues obtained 

from the subventricular zone of postnatal BALB/c mice. During these experiments primary 

SVZ cells were cultivated in both cell culture receptacles and were treated with hydrogen 

peroxide to induce oxidative stress. Neuro2A cells were used as a control. MTT assays in cell 

culture medium and HBSS were done before impedimetric measurements to find 

appropriate concentrations of hydrogen peroxide for impedimetric measurements. 

Cell culture medium with 10 mM of H2O2 induced a reduction of cell viability in Neuro2A 

cells to below 10 % of the untreated control, while in primary SVZ cells a H2O2 concentration 

of 50 mM was necessary to achieve a similar reduction of cell viability. If cell culture medium 

was replaced with HBSS the concentration of H2O2 could be lowered to 1 mM to achieve a 

reduction of viability to below 15 % in both cell types. 

The concentrations of hydrogen peroxide needed to induce a nearly total reduction of cell 

viability in cell culture medium are much higher than what should be expected based on the 

literature (25 to 50 µM; Da´vila and Torres-Aleman, 2008). This effect is most probably 

caused by a combination of several factors inherent to the used cell culture technique, like 
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the presence of glia cells in the primary cell culture and the presence of beta-

mercaptoethanol (acting as an antioxidant) in the cell culture medium. The primary cell 

culture created from the cells obtained from the subventricular zone of mice is a mixture of 

different cell types and contains both neurons and glia cells. The presence of glia cells in the 

used culture leads to a reduction of the effective H2O2 concentration due to detoxification by 

the glia cells (Desagher et al., 1996). To lower the needed hydrogen peroxide concentration 

and reduce possible interference from components of the cell culture medium the cell 

culture medium was replaced with HBSS. Using HBSS instead of cell culture medium allowed 

for a reduction of the H2O2 concentration to 1 mM. However it must be kept in mind that 

HBSS is not suited to sustain long term cell culture, in our case longer than 6 hours. To 

properly study the effects of hydrogen peroxide induced oxidative stress longer time periods 

would be beneficial. 

Impedimetric analysis of H2O2 toxicity using adhered Neuro2A cells and primary SVZ cells 

was done to examine the cytotoxic effects of hydrogen peroxide treatment and to monitor 

the damaging effects of oxidative stress on neuronal tissue. Both cell types were 

impedimetrically analyzed using H2O2 containing cell culture medium (10 mM and 50 mM) 

and HBSS (1 mM), respectively. Both cell types showed the already described suppression of 

the transistor-transfer function for healthy cells adhering to a transistor gate. Hydrogen 

peroxide treatment (in medium) led to the abolition of said suppression due to massive 

cellular damage caused by the oxidative stress, indicating cellular detachment and cell 

death. However such suppression could not be observed in HBSS. The difference between 

HBSS and cell culture medium mainly seem to stem from the buffer itself. Keeping in mind 

that a loss of viability of 40 % was observable in HBSS in untreated cells, one can assume that 

the exposition to HBSS might have been enough to damage the cells to the point of not 
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adhering strong enough to cause the expected suppression of the transistor-transfer 

function. However, the results of experiments using hydrogen peroxide containing cell 

culture medium still yielded useful results with measurement  taking roughly five minutes of 

time and not needing additional chemicals or incubation periods. It has to be kept in mind 

though, that the experiments done in this particular study were not meant to emulate in 

vivo-conditions and the used cells and stimulus do not necessarily represent a clinically 

relevant experimental setup. 
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5. CONCLUSION AND OUTLOOK 

During this thesis work a measurement system using field-effect transistors for the 

impedimetric measurement of cellular adhesion was used to establish first methods and 

testing protocols for toxicity testing, cell viability monitoring and pharmacological testing. To 

this purpose three sub-projects were conducted using different cell types to analyze the 

systems applicability in different experimental setups.  

In the first step of the first sub-project general cell adhesion was analyzed using three 

different cell types grown in confluent cell layers, revealing distinct patterns in their 

respective impedance spectra implicating possible impedance-based histological analysis of 

tissue samples using the presented system. The second part of the first sub-project used low 

density cultures of SkMel28 cells to test the system’s ability to monitor individual cells for 

several applications. Finding that transistor gate coverage of around 75 % is necessary to see 

an individual cellular binding event impact the TTF spectrum proves the possible application 

of the presented systems to study individual cellular reactions to specific stimuli. 

During the second sub-project the focus was shifted from assessing cell adhesion using 

impedance spectroscopy to analyzing cytotoxicity of nanoparticles using real time 

monitoring of the transistor-transfer function. H441 cells were grown in confluent cultures 

and exposed to the nanoparticle NexSil20 and their reaction was analyzed using MTT assays 

and impedimetric real time measurements. Both MTT assays and impedimetric monitoring 

revealed an apoptosis-inducing effect taking place during the first 30 minutes of particle 

exposure. 

The third and final sub-project focused on the impedimetric analysis of the viability of 

primary neuronal cells obtained from the subventricular zone of postnatal BALB/c mice 
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(Neuro2A cells were used as a control). The sub-project was divided into two parts. Cells 

were isolated from postnatal mice and cultivated on top of pre-coated FET-surfaces. During 

the first part of this sub-project the obtained neuronal tissue was cultivated on standard 16-

channel FET-chips and analyzed impedimetrically using impedance spectroscopy. Both 

primary cells and Neuro2A cells showed significant suppression of the transistor-transfer 

function comparable to the suppression observed in other cell types. This is the first time 

that such cell types were successfully used in impedance asays. For the second part the 

obtained primary cells were cultivated on top of pre-coated 2 x 8-channel FET-parallel 

culture-chips and treated with hydrogen peroxide. Attached cells were expected to cause 

the already observed suppression of the transistor-transfer function, while cells damaged by 

their exposure to hydrogen peroxide were expected to detach from the transistor surface. 

The expected observations could only be made when cell culture medium (with and without 

hydrogen peroxide) was used but not for HBSS.  

The measurement and analysis system developed in our group and tested  in this work is 

primarily meant for pharmacological testing. In this context it could provide researchers with 

a fast working system capable of analyzing the effects of new pharmacological compounds, 

side effects of existing compounds or the possible effects of micro-environmental conditions 

(e.g. temperature, pH value, etc.) both in real time and under cell culture conditions.  

Considering the amount of time needed for one individual measurement of an impedance 

spectrum, which is roughly 5 minutes, the system could in the future be used in a high 

throughput manner. In addition to its ability for fast measurements it also provides the 

possibility of multiparametric readouts, since not just the impedance spectra can be 

measured but also possible changes of the pH (not done in this thesis). 
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In addition to its possible application in pharmacological testing the presented system 

should also be usable in individualized cancer diagnostics and therapy. Based on the implied 

possibility to measure the adhesion of individual cells and to differentiate between different 

cell types using their impedimetric fingerprints could allow for the development of an 

impedimetric histology system. Starting with tissue obtained from a biopsy, which can then 

be dissociated and cultured on top of a transistor array, individual transistor gates could 

provide the impedance spectra of the individual cell types present in the tumor. By utilizing 

devices with small transistor gates and a high density of individual measurement points the 

presented system could be used to analyze the dissociated primary tissue and identify the 

present cell types.  

It has been shown that the FETCIS system is very well capable to monitor the adhesion and 

the detachment of individualized cells accurately. Since the ability of cells to adhere to a 

surface can be used as a way to monitor their viability (Susloparova et al., 2013; 

Koppenhöfer et al., 2013) the system could potentially be used to monitor the effects of 

planned cancer treatment before it is actually administered to the patient. Again starting 

with cells obtained from dissociated biopsy tissue primary cultures of the tumor could be 

created on top of the transistor surface. Such cell cultures would represent a cross section of 

the actual tumor and therefor provide a possibility to analyze the effectiveness of the 

planned chemotherapy. By applying the planned chemotherapy procedure and 

impedimetrically monitoring the cell adhesion over a defined period of time the responsible 

medical doctors could adjust their treatment regiment according to the results of the FETCIS 

analysis. This would allow for both changes to the planned treatment or the general 

scrapping of it, if the treatment proves to be ineffective before the patient would have to 

deal with side effects and a loss of quality of life. Since the process of impedimetrically 
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measuring the cell adhesion and cell viability is fairly fast this technique could provide 

medical doctors a possibility to optimize the treatment of solid tumors and thereby tailor it 

to an individual patient.  

By combining the two possible applications described above the presented system could in 

the future provide researchers and medical doctors with an integrated system able to 

monitor the cell adhesion (as a measure of cell viability) and changes of the pH in the 

electrolyte impedimetrically to analyze the effects of pharmacological or physical stimuli. 

Thereby this system could be used to test pharmacological compounds, optimize 

therapeutical procedures like chemotherapy and to analyze the composition of primary cell 

samples. 

However the presented system is not without disadvantages. In general the system is only 

able to monitor changes of cell adhesion and therefor is unable to document the 

intracellular mechanism of action of pharmacological compounds if it is not directly tied to 

cell adhesion.  

In addition the system itself is not yet fully developed, with the density of individual 

transistors being too low for efficient medical or scientific application. By raising the number 

of individual measurement points on top of the chip surface the amount of generated data 

per measurement will grow considerably thereby generating a better basis for reproducible 

experiments. 

Performance stability of the proposed system is another point of concern for future 

applications. During this thesis the presented system proofed difficult to use for long term 

measurements because of excess heat produced by the electrical components. The 
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mentioned excess heat is enough to heat up the cell culture medium to 40 °C thereby 

influencing the cell viability assay. 

Chip feasibility and deterioration are further major problems of the system. So far it seems 

that the chips can be reused roughly 15 times before becoming defective, indicated by a 

reduction of the transconductance gm to a value of below 0.1 mS. This decline of chip 

performance combined with the complex fabrication process leads to a reduced long term 

usability, making it necessary to establish cheaper and more robust chip platforms. 

Nevertheless the described FETCIS measurement setup is a promising tool for future 

research, providing researchers with a fast, reliable and label-free method to study the 

interaction of individual cells and their reaction to external stimuli under cell culture 

conditions. Its applicability in a wide range of research fields, ranging from pharmacological 

testing to individualized cancer diagnostics and treatment or impedance-based histological 

analysis, coupled with the high resolution down to individual cells make it an ideal tool for 

the rapidly growing field of individualized medicine.     
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6. APPENDIX 

App. 1: Abbreviations 

AC Alternating current 

ATP Adenosine triphosphate 

BHF Buffered hydrofluoric acid 

BSA Bovine serum albumin 

CL Contact line capacitance 

CM Combined membrane capacitance 

CNT-FET Carbon nanotube field effect transistor 

COx Gate oxide capacitance 

CT Cytotoxic T lymphocyte 

DMEM Dulbecco’s modified Eagle's Medium 

DMSO Dimethyl sulfoxide 

DNA  Deoxyribonucleic acid 

e.g. exempli gratia 

ECIS Electrical cell-substrate impedance sensing 

ECM Extracellular matrix 

EEC Electrical equivalent circuit 

EGF Epidermal growth factor 

EPR Enhanced permeability and retention 

FCS Fetal calf serum 

FET Field effect transistor 

FETCIS FET system for ECIS measurements 

fg Cutoff frequency of the operational amplifier 

FGF Fibroblast growth factor 

Fig. Figure 

gm Transistor transconductance 

HBSS Hank's balanced salt solution 

HEK293 Human embryonic kidney cells 293 

HF Hydrofluoric acid 

HNE 4-hydroxyl-2,3-nonenal 

IDAM Interdigitated array microelectrode 

IDS Drain-source current 

IGS Gate-source current 

ISFET Ion sensitive field effect transistor 

LCC Leaded chip carrier 

MEM Minimum essential medium 

MOSFET Metal oxide semiconductor field effect transistor 

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

NEAA Non-essential amino acids 

OECT Organic electrochemical transistors 

OTFT Organic thin-film transistor 

PBS Phosphate buffered saline 

PCB Printed circuitry board 
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PDL Poly-D-lysine 

PDMS Polydimethylsiloxane 

PEDOT:PSS Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate 

poly-Si NWFET Polycrystalline silicon nanowire field effect transistor 

PSA Prostate specific antigen 

Rel Serial resistance of electrolyte and reference electrode 

Rfeedback Feedback resistance 

rhEGF Recombinant human epidermal growth factor 

RNA Ribonucleic acid 

ROS Reactive oxygen species 

rpm Rotations per minute 

RPMI Roswell Park Memorial Institute medium 

Rseal Seal resistance 

SEM Scanning electron microscopy 

SVZ Subventricular zone 

TTF Transistor-transfer function 

VDS Drain-source voltage 

VGS Gate-source voltage 
 

App. 2: Chemicals, cell culture supplies and devices used during this work in alphabetical order 

Item Abbreviations Provider 

3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide MTT Carl Roth, Germany 

AccuMax  PAA Laboratories, Germany 

Accutase  PAA Laboratories, Germany 

Adhesive 377 1LB  Epoxy Technology, USA 

Alpha medium  Biochrom, Germany 

B27  Gibco Life technologies, Germany 

Bovine serum albumin BSA AppliChem, Germany 

Dimethylsulfoxide DMSO AppliChem, Germany 

Dulbecco’s modified Eagle's medium DMEM PAN Biotech, Germany 

Dulbecco’s modified Eagle's medium 

nutrient mixture F-12 DMEM F12 Gibco Life technologies, Germany 

Fetal calve serum FCS PAN Biotech, Germany 

Fibronectin  AppliChem, Germany 

Genios microplate reader  Tecan, Switzerland 

Glutaraldehyde  Sigma Aldrich, Germany 
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Hank’s balanced salt solution HBSS Sigma Aldrich, Germany 

Hellmanex III  Sigma Aldrich, Germany 

Hydrogen peroxide  AppliChem, Germany 

Laminin  Sigma Aldrich, Germany 

Lead Chip Carrier LCC carrier Global chip Materials, USA 

L-Glutamine Q PAN Biotech, Germany 

Minimum Essential Medium  MEM PAN Biotech, Germany 

Non-essential amino acids NEAA PAN Biotech, Germany 

Penicillin/Streptomycin PS PAN Biotech, Germany 

Phosphate buffered saline PBS PAA Laboratories, Germany 

Polydimethylsiloxane (Silicon adhesive 

Kit 96-083) PDMS Dow Corning, Germany 

Poly-D-Lysine (70 kDa) PDL Sigma Aldrich, Germany 

Printed circuit board dip chip carrier  LeitOn, Germany 

Roswell Park Memorial Institute 

medium RPMI PAN Biotech, Germany 

Scanning electron microscope Supra 

40 SEM Carl Zeiss AG, Germany 

Sulfuric acid  AppliChem, Germany 

Sylgard silicone elastomer 184  Dow Corning, Germany 

Trypsin/EDTA (0.5%)  PAN Biotech, Germany 

Upright microscope Axiotech vario 100 

HD   Carl Zeiss AG, Germany 

 

App. 3: Graphs and figures 

Fig. 1: Cancer statistics of the Federal Republic of Germany of 2008 (Kaatsch et al., 2012) ---- 1 

Fig. 2: Characteristics of cancer (Leischner, Oncology, 3rd edition,  2014) -------------------------- 5 

Fig. 3: Apoptotic and necrotic cell death ------------------------------------------------------------------- 6 

Fig. 4: Different cell connections in epithelia (Alberts et al., Molecular Biology of the Cell, 4th 

edition, 2004) ----------------------------------------------------------------------------------------------- 8 

Fig. 5: Schematic drawing of the structure of integrins (a) and cadherins (b) (Alberts et al., 
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Fig. 8: Nano structures commonly used as carrier devices in cancer research and therapy -- 19 

Fig. 9: Passive tumor targeting via the Enhanced Permeability and Retention effect (EPR): - 21 

Fig. 10: Microscopic picture of neuronal tissue of a Alzheimer’s disease afflicted patient 

(Behl, 1999) ------------------------------------------------------------------------------------------------ 24 

Fig. 11: Histological analysis of neuronal tissue of a Parkinson’s disease afflicted patient 

(Zarranz et al., 2003): ------------------------------------------------------------------------------------ 25 

Fig. 12: Comercially available cell impedance measurements systems: --------------------------- 31 

Fig. 13: Field-effect transistor platform used during this thesis: ------------------------------------ 33 
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9.1 Summary 

Cancer is one of the most common cause of death and one of the most severe diagnoses 

patients can receive in modern medicine. Its treatment normally involves a combination of 

chemotherapy, tumor resection and radiation therapy, often accompanied by severe side 

effects causing high psychological strain. In recent years treatment shifts from general 

approaches to individual therapy regiments for individual patients. A similar situation can be 

assumed for neurodegenerative diseases like Alzheimer’s or Parkinson’s disease, for which 

oxidative stress is a common contributing factor.  

For both cancer and neurodegenerative diseases the development of new pharmacological 

compounds and treatment strategies is a high priority goal facilitating the need for fast and 

efficient screening and testing platforms. The objective of this thesis was the establishment 

of an impedance spectroscopy-based high throughput testing system using silicon-based 

field-effect transistors. During this thesis work three subprojects were conducted. 

The first subproject of this thesis covered the topic of the analysis of cellular adhesion.  

Morphologically and histologically different cell lines were compared with regard to their 

respective impedance spectra (for both confluent and low density cultures) and unique 

characteristics of the tested cell lines were identified, demonstrating the ability of the 

presented system to differentiate between cells of different cell types down to the single cell 

level. 

In the second subproject the toxicity of an industrial silica nanoparticle was monitored in 

real time under cell culture conditions using the presented FETCIS system. Observed 

transfer-function suppression between 30 and 60 min after particle administration could be 
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correlated with the observed cytotoxic effect of the used particle NexSil20. By analyzing the 

toxicity of an already described particle via real-time impedance monitoring, the applicability 

of the proposed system was further substantiated.  

During the third subproject of this thesis work the applicability of the presented system to 

simultaneously monitor the reaction of primary neuronal tissue to external stimuli using a 

parallel-culture setup. Primary SVZ cells were exposed to hydrogen peroxide to induce 

apoptosis and monitored for their response to this treatment. By analyzing the effects of 

hydrogen peroxide toxicity in neuronal tissues the capability to open up new research 

applications in Alzheimer’s and Parkinson’s disease of the presented system could be shown.  

The measurement and analysis system presented in this thesis work is primarily meant for 

pharmacological testing both in real time and under cell culture conditions, providing a fast 

working method of analyzing the effects of external stimuli like pharmacological compounds 

or effects of micro-environmental conditions (e.g. temperature, pH value, etc.). As a second 

possible application the presented system should also be usable in the field of individualized 

cancer diagnostics and therapy. By differentiating between the impedimetric fingerprints of 

different cell types an impedimetric histology system would be possible. 

9.2 Zusammenfassung 

Krebs ist eine der häufigsten Todesursachen und gleichzeitig eine der erschütterndsten 

Diagnosen der modernen Medizin, die Patienten erhalten können. Die Behandlung besteht 

normallerweise aus Chemotherapie, Tumorresektion und Strahlentherapie zusammen, 

wobei die Behandlung häufig mit starken Nebenwirkungen und einem hohen Leidensdruck 

verbunden ist. In den letzten Jahren verlagert sich die Behandlung von Krebs weg von 

generischen Behandlungsansätzen hin zur individuell auf einzelne Patienten zugeschnittenen 
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Therapie. Eine ähnliche Entwicklung lässt sich bei der Behandlung neurodegenerativer 

Erkrankungen wie Alzheimer oder Parkinson erkennen, bei denen oxidativer Stress als 

gemeinsamer begünstigender Faktor eine Rolle spielt. 

Sowohl für Krebs als auch neurodegenerative Erkrankungen ist die Entwicklung neuer 

Wirkstoffe und Behandlungsansätze ein Ziel mit hoher Priorität, was die Etablierung von 

schnellen und effizienten Screening-Plattformen nötig macht. Ziel der vorliegenden Arbeit 

war die Etablierung einer auf Impedanzspektroskopie basierenden Hochdurchsatz-Plattform, 

die siliziumbasierte Feldeffekt-Transistoren verwendet. Im Verlauf dieser Arbeit wurden drei 

Unterprojekte bearbeitet. 

Im Verlauf des ersten Unterprojekts wurde die Zelladhäsion dreier morphologisch und 

histologisch unterschiedlicher Zelltypen untersucht und bezüglich ihrer jeweiligen 

Impedanzspektren verglichen (sowohl für konfluente als auch nicht-konfluente Zellkulturen). 

Dabei wurden für die verschieden Zelltypen charakteristische Merkmale beobachtet, die die 

Fähigkeit des vorgestellten Systems zur Unterscheidung spezifischer Zelltypen voneinander 

mit einer Auflösung bis zur Einzelzellebene belegt. 

Im Zuge des zweiten Unterprojekts wurde die Toxizität eines industriellen Silica-

Nanopartikels in Echtzeit unter Zellkulturbedingungen mittels des präsentierten FETCIS-

Systems untersucht. Dabei konnte eine Unterdrückung der Transistor-Transferfunktion 

zwischen 30 und 60 min nach Partikelapplikation beobachtet werden, die mit bereits 

veröffentlichten Toxizitätsergebnissen des verwendeten Partikels NexSil20 korrelieren. 

Durch die Analyse der Zytotoxizität eines bereits beschriebenen Partikels via Echtzeit-

Impedanzmessung konnte die Anwendbarkeit der beschriebenen Methode in 

pharmakologischen Studien weiter belegt werden. 
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Das dritte Unterprojekt der vorliegenden Arbeit diente dem Beleg der Nutzbarkeit des 

vorgestellten Systems zur simultanen Untersuchung der Reaktion primären neuronalen 

Gewebes auf externe Stimuli mittels eines Parallel-Kultur-Setups. Primäre SVZ-Zellen wurden 

mit Wasserstoffperoxid behandelt um Apoptose zu induzieren, anschließend  wurde die 

Reaktion der Zellen auf diese Behandlung beobachtet. Durch die Analyse der 

Wasserstoffperoxid-Toxizität in neuronalem Gewebe konnte die Fähigkeit des vorgestellten 

Systems gezeigt werden neue Forschungsanwendungen in den Bereichen Alzheimer und 

Parkinson zu eröffnen.  

Das in dieser Arbeit vorgestellte Mess- und  Analysesystem soll primär für pharmakologische 

Untersuchungen in Echtzeit und unter Zellkulturbedingungen verwendet werden und stellt 

dabei eine schnelle Methode dar die Effekte externer Stimuli, wie pharmakologische 

Wirkstoffe oder Veränderungen der Umgebungsbedingungen (z.B. Temperatur, pH-Wert, 

etc.) zu untersuchen. Eine zweite mögliche Anwendung des vorgestellten Systems liegt im 

Feld der individualisierten Krebsdiagnostik und –therapie. Durch die Unterscheidung der 

impedimetrischen Fingerabdrücke unterschiedlicher Zelltypen ist eine impedimetrische 

Histologie möglich.  
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