[9] H.-S. Chung and J. Jia. Efficient photometric stereo on
glossy surfaces with wide specular lobes. In CVPR, pages
1–8, 2008.
[10] R. L. Cook and K. E. Torrance. A reflectance model for
computer graphics. ACM Trans. Gr., 1(1):7–24, 1982.
[11] Y. Dong, J. Wang, X. Tong, J. Snyder, Y. Lan, M. Ben-Ezra,
and B. Guo. Manifold bootstrapping for svbrdf capture. In
ACM Transactions on Graphics, volume 29, page 98, 2010.
[12] Z. Dong, B. Walter, S. Marschner, and D. P. Greenberg. Pre-
dicting appearance from measured microgeometry of metal
surfaces. ACM Transactions on Graphics, 35(1):9, 2015.
[13] P. Einarsson, C.-F. Chabert, A. Jones, W.-C. Ma, B. Lam-
ond, T. Hawkins, M. T. Bolas, S. Sylwan, and P. E. Debevec.
Relighting human locomotion with flowed reflectance fields.
Rendering techniques, 2006:17th, 2006.
[14] A. Gardner, C. Tchou, T. Hawkins, and P. Debevec. Linear
light source reflectometry. In ACM Transactions on Graph-
ics, volume 22, pages 749–758, 2003.
[15] A. S. Georghiades. Incorporating the torrance and sparrow
model of reflectance in uncalibrated photometric stereo. In
CVPR, pages 816–823, 2003.
[16] D. B. Goldman, B. Curless, A. Hertzmann, and S. M. Seitz.
Shape and spatially-varying brdfs from photometric stereo.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 32(6):1060–1071, 2010.
[17] R. Goldman. Curvature formulas for implicit curves and sur-
faces. Computer Aided Geometric Design, 22(7):632–658,
2005.
[18] E. Heitz. Understanding the masking-shadowing function
in microfacet-based brdfs. Journal of Computer Graphics
Techniques, 3(2):32–91, 2014.
[19] T. Higo, Y. Matsushita, and K. Ikeuchi. Consensus photo-
metric stereo. In CVPR, 2010.
[20] Z. Hui and A. C. Sankaranarayanan. A dictionary-based
approach for estimating shape and spatially-varying re-
flectance. In ICCP, pages 1–9, 2015.
[21] S. Ikehata and K. Aizawa. Photometric stereo using con-
strained bivariate regression for general isotropic surfaces.
In CVPR, pages 2179–2186, 2014.
[22] S. Ikehata, D. Wipf, Y. Matsushita, and K. Aizawa. Pho-
tometric stereo using sparse bayesian regression for general
diffuse surfaces. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 36(9):1816–1831, 2014.
[23] E. P. Lafortune, S.-C. Foo, K. E. Torrance, and D. P. Green-
berg. Non-linear approximation of reflectance functions.
In Proceedings of the 24th annual conference on Computer
graphics and interactive techniques, pages 117–126, 1997.
[24] V. Larsson and K. ˚Aström. Uncovering symmetries in poly-
nomial systems. In ECCV, pages 252–267. Springer, 2016.
[25] W. Matusik and M. Brand. A data-driven reflectance model.
ACM Transactions on Graphics, 22(3):759–769, 2003.
[26] G. Nam, J. H. Lee, H. Wu, D. Gutierrez, and M. H. Kim.
Simultaneous acquisition of microscale reflectance and nor-
mals. ACM Transactions on Graphics, 35(6), 2016.
[27] A. Ngan, F. Durand, and W. Matusik. Experimental analysis
of brdf models. Rendering Techniques, 2005(16th):2, 2005.
[28] M. Oren and S. K. Nayar. Generalization of lambert’s re-
flectance model. In Proceedings of the 21st annual con-
ference on Computer graphics and interactive techniques,
pages 239–246, 1994.
[29] M. Pharr, W. Jakob, and G. Humphreys. Physically based
rendering: From theory to implementation. Morgan Kauf-
mann, 2016.
[30] B. T. Phong. Illumination for computer generated pictures.
Communications of the ACM, 18(6):311–317, 1975.
[31] E. A. Rakhmanov, E. Saff, and Y. Zhou. Minimal discrete
energy on the sphere. Math. Res. Lett, 1(6):647–662, 1994.
[32] B. Shi, P. Tan, Y. Matsushita, and K. Ikeuchi. Elevation angle
from reflectance monotonicity: Photometric stereo for gen-
eral isotropic reflectances. In ECCV, pages 455–468, 2012.
[33] B. Shi, P. Tan, Y. Matsushita, and K. Ikeuchi. Bi-polynomial
modeling of low-frequency reflectances. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 36(6):1078–
1091, 2014.
[34] B. Shi, Z. Wu, Z. Mo, D. Duan, S.-K. Y. Yeung, and P. Tan.
A benchmark dataset and evaluation for non-lambertian and
uncalibrated photometric stereo. In CVPR, 2016.
[35] B. Smith. Geometrical shadowing of a random rough sur-
face. IEEE Transactions on Antennas and Propagation,
15(5):668–671, 1967.
[36] K. E. Torrance and E. M. Sparrow. Theory for off-specular
reflection from roughened surfaces. Journal of the Optical
Society of America, 57(9):1105–1112, 1967.
[37] S. Tozza, R. Mecca, M. Duocastella, and A. D. Bue. Di-
rect differential photometric stereo shape recovery of diffuse
and specular surfaces. Journal of Mathematical Imaging and
Vision, 56:57–76, 2016.
[38] T. S. Trowbridge and K. P. Reitz. Average irregularity repre-
sentation of a rough surface for ray reflection. Journal of the
Optical Society of America, 65(5):531–536, 1975.
[39] G. Vickers. The projected areas of ellipsoids and cylinders.
Powder technology, 86(2):195–200, 1996.
[40] B. Walter, Z. Dong, S. Marschner, and D. P. Greenberg. The
ellipsoid normal distribution function. Supplementary ma-
terial, http://www.cs.cornell.edu/Projects/metalappearance/,
2016.
[41] B. Walter, S. R. Marschner, H. Li, and K. E. Torrance. Micro-
facet models for refraction through rough surfaces. In Pro-
ceedings of the 18th Eurographics conference on Rendering
Techniques, pages 195–206, 2007.
[42] G. J. Ward. Measuring and modeling anisotropic reflec-
tion. ACM SIGGRAPH Computer Graphics, 26(2):265–272,
1992.
[43] R. J. Woodham. Photometric method for determining sur-
face orientation from multiple images. Optical engineering,
19(1):191139–191139, 1980.
[44] L. Wu, A. Ganesh, B. Shi, Y. Matsushita, Y. Wang, and
Y. Ma. Robust photometric stereo via low-rank matrix com-
pletion and recovery. In Proc. of Asian Conference on Com-
puter Vision, pages 703–717, 2010.
[45] Z. Wu and P. Tan. Calibrating photometric stereo by holistic
reflectance symmetry analysis. In CVPR, pages 1498–1505,
2013.