Spectral learning of general weighted automata via constrained matrix completion

B Balle, M Mohri - Advances in neural information …, 2012 - proceedings.neurips.cc
Advances in neural information processing systems, 2012proceedings.neurips.cc
Many tasks in text and speech processing and computational biology require estimating
functions mapping strings to real numbers. A broad class of such functions can be defined
by weighted automata. Spectral methods based on the singular value decomposition of a
Hankel matrix have been recently proposed for learning a probability distribution
represented by a weighted automaton from a training sample drawn according to this same
target distribution. In this paper, we show how spectral methods can be extended to the …
Abstract
Many tasks in text and speech processing and computational biology require estimating functions mapping strings to real numbers. A broad class of such functions can be defined by weighted automata. Spectral methods based on the singular value decomposition of a Hankel matrix have been recently proposed for learning a probability distribution represented by a weighted automaton from a training sample drawn according to this same target distribution. In this paper, we show how spectral methods can be extended to the problem of learning a general weighted automaton from a sample generated by an arbitrary distribution. The main obstruction to this approach is that, in general, some entries of the Hankel matrix may be missing. We present a solution to this problem based on solving a constrained matrix completion problem. Combining these two ingredients, matrix completion and spectral method, a whole new family of algorithms for learning general weighted automata is obtained. We present generalization bounds for a particular algorithm in this family. The proofs rely on a joint stability analysis of matrix completion and spectral learning.
proceedings.neurips.cc
Showing the best result for this search. See all results