Quantum-secure symmetric-key cryptography based on hidden shifts

G Alagic, A Russell - Annual international conference on the theory and …, 2017 - Springer
G Alagic, A Russell
Annual international conference on the theory and applications of …, 2017Springer
Recent results of Kaplan et al., building on work by Kuwakado and Morii, have shown that a
wide variety of classically-secure symmetric-key cryptosystems can be completely broken by
quantum chosen-plaintext attacks (qCPA). In such an attack, the quantum adversary has the
ability to query the cryptographic functionality in superposition. The vulnerable
cryptosystems include the Even-Mansour block cipher, the three-round Feistel network, the
Encrypted-CBC-MAC, and many others. In this article, we study simple algebraic …
Abstract
Recent results of Kaplan et al., building on work by Kuwakado and Morii, have shown that a wide variety of classically-secure symmetric-key cryptosystems can be completely broken by quantum chosen-plaintext attacks (qCPA). In such an attack, the quantum adversary has the ability to query the cryptographic functionality in superposition. The vulnerable cryptosystems include the Even-Mansour block cipher, the three-round Feistel network, the Encrypted-CBC-MAC, and many others.
In this article, we study simple algebraic adaptations of such schemes that replace addition with operations over alternate finite groups—such as —and provide evidence that these adaptations are qCPA-secure. These adaptations furthermore retain the classical security properties and basic structural features enjoyed by the original schemes.
We establish security by treating the (quantum) hardness of the well-studied Hidden Shift problem as a cryptographic assumption. We observe that this problem has a number of attractive features in this cryptographic context, including random self-reducibility, hardness amplification, and—in many cases of interest—a reduction from the “search version” to the “decisional version.” We then establish, under this assumption, the qCPA-security of several such Hidden Shift adaptations of symmetric-key constructions. We show that a Hidden Shift version of the Even-Mansour block cipher yields a quantum-secure pseudorandom function, and that a Hidden Shift version of the Encrypted CBC-MAC yields a collision-resistant hash function. Finally, we observe that such adaptations frustrate the direct Simon’s algorithm-based attacks in more general circumstances, e.g., Feistel networks and slide attacks.
Springer
Showing the best result for this search. See all results