
Characterizing the Functional Roles of Classes and Methods by Analyzing
Feature Traces

Orla Greevy and Stéphane Ducasse
Software Composition Group

University of Bern, Switzerland
{greevy, ducasse}@iam.unibe.ch

Abstract

Software developers are often faced with the task of
maintaining or extending large and complex applications,
with which they are unfamiliar. Typically change requests
and bug reports are expressed in terms of system features.
Much of the maintenance effort is spent trying to identify
which classes and methods provide functionality to individ-
ual features. To tackle this problem, we propose an ap-
proach based on dynamic analysis that exploits the relation-
ships between features and software entities. Our definition
of a feature is a unit of observable behavior of a software
system. We apply our approach to large open source ap-
plication and identify the key classes and methods which
provide functionality for individual features.

Keywords: reverse engineering, features, feature-traces,
feature model dynamic analysis, static analysis.

1 Introduction

Most reverse engineering approaches to software anal-
ysis focus on static source code entities of a system, such
as classes and methods [3, 16, 17]. A static perspective
considers only the structure and implementation details of a
system. Thus, key semantic information about the roles of
software entities in the features of a system is overlooked.
Without explicit relationships between features and the enti-
ties that implement their functionality, it is difficult for soft-
ware developers to maintain and extend the code.

Several works have shown that exercising the features
of a system is a reliable means of correlating features and
code [6, 24]. In a previous work [11], we describe a feature-
driven approach based on dynamic analysis, in which we
extract execution traces to achieve an explicit mapping be-
tween features and software entities like classes and meth-
ods. The focus of our approach is on object-oriented sys-
tems. We characterize features in terms of classes and meth-

ods that implement their functionality, and we characterize
classes and methods based on how they participate in fea-
tures.

One of the main problems of dynamic analysis is the
large volume of data generated, thus making it difficult to
reason about the data. In our approach we apply measure-
ments to the feature traces and compact the data without
loss of information about the relationships between features
and classes or features and methods.

In this paper, we refine the approach of our previous
work [11] and apply it to a large open source case study
argoUML which is implemented in Java. Previously we
applied our approach on medium sized applications imple-
mented in Smalltalk and established a correlation between
features and classes. Our goal with this paper is to (1) il-
lustrate the scaleability of the approach, (2) its applicability
to finer grained software entities such as methods and (3) to
underline the language independence of the feature model
we abstract.

We start by introducing the terminology we use to char-
acterize software entities from a features perspective Sec-
tion 2. In Section 3 we outline the mechanisms of our tech-
nique. In Section 4 we report on the open source case study
argoUML conducted using our approach. Subsequently, in
Section 5 we discuss our results. We summarize related
work in Section 7. Section 8 outlines our conclusions and
future work.

2 Feature Characterization

In this section we briefly outline the key background ter-
minology of our approach to correlating features with code.

We adopt the definition of Eisenbarthet al. for features
[6]. A featureis an observable unit of behavior of a system
triggered by the user. We analyze the relationship between
the features and classes by exercising the features and cap-
turing their execution traces, which we refer to asfeature-
traces. We refer to the set of extracted feature-traces as a



feature model.
We focus on the relationships between both features

and classes and features and methods. Moreover, our ap-
proach is generally applicable to coarser-grained units such
as packages.

Our characterizations of classes and methods express
their level of participation in a set of features under analy-
sis. We define four distinctclass/method characterizations
as:

• Not Covered (NC) is a class/method that does not par-
ticipate any of the features-traces of our current feature
model.

• Single-Feature (SF ) is a class/method that participates
in only one feature-trace.

• Group-Feature (GF ) is a class/method that partici-
pates in less than half of the features of a feature
model. In other words, group-feature classes/methods
provide functionality to a group of features, but not to
all features.

• Infrastructural (I) is a class/method that participates
in more than half of the features of a feature model.

We define a class characterization measurementa class
characterization in terms of feature participation(FC ) to
compute the characterization of a class asNC, SF ,GF or I
as previously described. Similarily, we apply thea method
characterization in terms of feature participation(FM ) to
compute the characterization of a method.

We compact a feature-trace intofeature-fingerprintsby
reducing multiple references to the same class/method to
one occurrence. In this way, we reduce the volume of data
captured as a result of dynamic analysis without loss of
information about the relationships between features and
classes or features and methods.

A feature-fingerprint represents a set of sets character-
ized classes or a set of sets of characterized methods.

(FPC) is a set of sets of characterized classes:FPi =
{{NC(classes)}, {SF (classes)}, {GF (classes)},
{I(classes)}}

Figure 1 shows a simple visualization of class charac-
terizations and feature-fingerprints for 5 features. The ar-
rows between the features (F1..F5) show which classes par-
ticipate in features. The classes are color-coded according
to their characterizations. Infrastructural classes are shown
in dark gray. As previously explained, these participate in
more than half of the features. On the right side we show the
feature-fingerprints of color-coded parts, each representing
the set of characterized classes that participate in the fea-
ture. The feature-fingerprint for F1, for example, consists of

«single feature»
ClassB

 

F1

F2

F3

F4

F5

«group feature»
ClassC

 

«infrastructural»
ClassD

 

«infrastructural»
ClassD

 

Group classes

Single classes

Infrastructural
classes number of 

 classes = 2

«single feature»
ClassA

 

«not covered»
ClassX

Feature-fingerprintsClasses

Figure 1. Feature-Fingerprints and Classes
Relationships

a set of one single-feature class, a set of one group feature-
class and a set of two infrastructural classes. The cardinal-
ity of each set of characterized classes is represented by the
height of the colored part.

3 Applying our Feature Analysis Technique

We outline how we apply our technique to obtain classes
characterizations from a feature perspective.

• We apply static analysis and abstract a static model of
the source code entities of the application.

• We abstract feature-traces for a set of features using
dynamic analysis. To achieve this we instrument the
code and execute the features.

• We model the feature-traces as first class entities and
incorporate them into the static model of the source
code. By doing so we establish the relationships be-
tween the methods calls of the feature traces and the
static model class and method entities,

• We compact the feature-traces intofeature-fingerprints
for the class characterizations andfeature-fingerprints
for the method characteriztaions by applying feature
characterization measurementsa class characteriza-
tion in terms of feature participation(FC and a
method characterization in terms of feature participa-
tion (FM .

2



Figure 2. ArgoUML Class Characterization w.r.t. Features.

4 Feature Analysis of ArgoUML

In this section we present the results of applying our
approach to theArgoUML case study. ArgoUML is a
UML modelling application implemented in Java. We ap-
plied static analysis to the java source and we extract 1735
Classes and 11762 methods.

ArgoUML provides us with a graphical user interface to
create and manipulate UML diagrams. A set of UML dia-
grams are associated with a project. Projects can be created,
saved to disk and reloaded in a later session. For our feature
analysis ofArgoUML we consider 5 features, which repre-
sent typical user interactions with the application, namely:

• Save a Project

• Load a Project

• Save Configuration

• Create a Class Diagram

• Startup the application

Figure 2 shows thefeature fingerprintsof class charac-
terizations. In the featureSave a Projectwe identify11 sin-
gle feature classes. The featureLoad a Projectwe identify
1 single feature class. We summarize the class characteri-
zations in Table 1

In the case of the featuresSave a Projectand Load a
Project, we discover the classes that manage persistency.
The classorg.argouml.persistence.AbstractFilePersisteris
characterized as agroup feature class as it partic-
pates in these two features of our model. The

Feature SF GF I

Save Configuration 0 0 31
Create a Class Diagram 0 7 31
Startup 101 1 1
Save a Project 11 7 31
Load a Project 1 1 1

Table 1. ArgoUML Class Characterizations
w.r.t. Features

classorg.argouml.persistence.ZargoFilePersisteris charac-
terized assingle-featureas it participates only in the feature
Save a Project.

5 Discussion

The large volume of information and complexity of dy-
namic information makes it hard to infer higher level of
information about the system. Our approach reduces the
complexity of the information to reveal key semantical in-
formation about the system based on measuring how the
relationships between classes and features.

Our feature perspective enables us to view semantic
groupings of the classes and methods. The characteriza-
tions provides us with feature knowledge to reason about
the design intent of the class and methods.

Feature definition. Not all features of a system satisfy
our definition of a feature as a user-triggerable unit of ob-
servable behavior. System internal housekeeping tasks, for
example, are not triggered directly by user interaction. For

3



the identification of features we limit the scope of our in-
vestigation to user-initiated features.

Coverage. We limit the scope of our investigation to fo-
cus on a set of features. Our feature model does not achieve
100% coverage of the system. We argue that for the purpose
of feature location, complete coverage is not necessary. We
use our feature model to focus on a specific set of features.
The model is extensible and the approach to analysis is ex-
tensible to include more features if required.

Scaleability The results obtained show that our approach
is applicable to large applications. The feature-traces are
compacted and thus we can infer highlevel information
from the feature-fingerprints of class and method charac-
terizations.

Language Independence Obtaining the traces from the
running application requires code instrumentation. The
means of instrumenting the application is language depen-
dent. For this experiment we used a Java profiler to extract
traces. We abstract a feature model of the traces which is
the same for every language. Our analysis is performed on
the feature model.

6 Implementation - TraceScraper and Moose

TraceScraper is our feature analysis tool. It is based on
the Moose [5] reengineering platform.For the purpose of
this experiment we used a Java profiler tool to instrument
the code. We manually activated a set of features by inter-
acting with the GUI and thus extracted individual execution
traces. We extended out TraceScraper tool to import these
traces and model them as FAMIX [4] entites in Moose. The
execution traces contain calls to java library classes. Only
classes that exist in our static model are considered relevent
for our analysis Figure 3 shows the relationship between
trace entities and the FAMIX entitiesClassand Method.
TraceScraper computes feature-fingerprints from the trace
entities based on the relationships toclassandmethodenti-
ties.

*

*

ClassMethod

Trace-Entity

*

*

Figure 3. TraceMetaModel.

Moose is an implementation of the FAMIX [4] language
independent meta-model. We extend the FAMIX model
with feature-traceentities. In this way we can relate the
feature-trace information with the class and method entities
of the model.

7 Related Work

Many researchers have identified the potential of feature-
centric approaches in software engineering and in particu-
lar as a basis for reverse-engineering [22, 19, 7, 20, 23, 24,
13, 6]. Our main focus with this work is define a reverse
engineering approach that exploits history information of a
systems features over a series of versions.

The basis of our work is directly related to the field of dy-
namic analysis [1, 25, 12], user-driven approaches [15, 14]
and reverse engineering approaches that consider the evolu-
tion of a system [10, 26, 2, 18, 21] represent the groundwork
on which we base our research.

Wilde and Scully [23] developed a method calledSoft-
ware Reconnaissence. They uses test cases to aid in locat-
ing product features. They have applied their methodology
to legacy system case studies written in C.

Eisenbarth et al. [6] describe a methodology which com-
bines dynamic, static and concept analysis. They collect ex-
ecution traces and categorize the methods according to their
degree of specificity to a given feature. The analysis auto-
matically produces a set of concepts which are presented
in a lattice. Using this technique they identify general and
specific parts of the code.

Wong et al. [24] propose three different metrics for mea-
suring the binding of features to components or program
code. They quantitatively capture the disparity between a
program component and a feature, the concentration of a
feature in a program component, and the dedication of pro-
gram component to a feature.

Hamou-Lhadj et al. [12] described an approach extract-
ing behavioral views as use case models. They filter out
utility methods. They using a an algorithm based on fan-in
analysis to detect utilities.

Our approach complements these approaches. In con-
trast to the above approaches [13, 9, 8], our main focus is
applying feature-driven analysis to object-oriented applica-
tions. We use execution traces to establish the link between
features and software entities. Our characterizations add
semantic information to the software entities and use this
semantic information to reason about their functional roles
in the system in terms its features.

8 Conclusions and Future Work

Reverse engineering approaches tend to focus on the im-
plementation details and static structure of a system. By do-

4



ing so they overlook key knowledge about the system which
establishes the semantic purpose of the individual software
entities.

Our goal is to analyze the functional roles of classes and
methods from a feature perspective and to obtain a feature-
model of a system.

We applied our approach to a large case study and
showed how a feature perspective of a system is useful for
interpreting the functional roles of classes and methods in
the system. We reduce the of a large volume of trace data
so that we are able to reason about the information and in-
fer high level information about the classes and methods of
the system. The characterization for classes and methods
assingle featurereduces the volume of information a soft-
ware developer needs to consider when performing a main-
tenance task for a specific feature.

Similarily our characterization of classes and methods as
infrastructural identifies those software entities that provide
general functionality to more that one feature of the system.
These infrastructure classes and methods may correspond
to theutilities identified by Hamou-Lhadj et al. [12].

In the future, we would like extend our definition of a
feature to consider variations in the external behaviors of the
system. In addition, we plan to extend our feature represen-
tation within the feature model to include multiple paths of
execution of a feature. We expect that as a result we achieve
a higher coverage of classes and methods and increase the
accuracy of our approach.

Acknowledgments: We gratefully acknowledge the fi-
nancial support of the Swiss National Science Founda-
tion for the project “The Achievement and Validation of
Evolution-Oriented Software Systems” (SNF Project No.
PMCD2-102511).

References

[1] T. Ball. The Concept of Dynamic Analysis. InProceed-
ings of ESEC/FSE ’99 (7th European Software Engineering
Conference and 7th ACM SIGSOFT International Sympo-
sium on the Foundations of Software Engineering, number
1687 in LNCS, pages 216–234, sep 1999.

[2] E. Burd and M. Munro. An initial approach towards measur-
ing and characterizing software evolution. InProceedings
of the Working Conference on Reverse Engineering, WCRE
’99, pages 168–174, 1999.

[3] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding refac-
torings via change metrics. InProceedings of OOPSLA
’2000 (International Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications), pages
166–178, 2000.

[4] S. Demeyer, S. Tichelaar, and S. Ducasse. FAMIX 2.1 —
The FAMOOS Information Exchange Model. Technical re-
port, University of Bern, 2001.

[5] S. Ducasse, T. Ĝırba, M. Lanza, and S. Demeyer. Moose:
a Collaborative and Extensible Reengineering Environment.
In Tools for Software Maintenance and Reengineering,
RCOST / Software Technology Series, pages 55 – 71.
Franco Angeli, 2005.

[6] T. Eisenbarth, R. Koschke, and D. Simon. Locating Fea-
tures in Source Code.IEEE Computer, 29(3):210–224, Mar.
2003.

[7] M. El-Ramly, E. Stroulia, and P. Sorenson. Recovering soft-
ware requirements from system-user interaction traces. In
Proceedings of the 14th international conference on Soft-
ware engineering and knowledge engineering, pages 447–
454, 2002.

[8] M. Fischer and H. Gall. Visualizing feature evolution of
large-scale software based on problem and modification re-
port data.Journal of Software Maintenance and Evolution,
2004.

[9] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking sys-
tems. InProceedings of the International Conference on
Software Maintenance (ICSM 2003), pages 23–32, Sept.
2003.

[10] T. Gı̂rba, M. Lanza, and S. Ducasse. Characterizing the evo-
lution of class hierarchies. InProceedings of European Con-
ference on Software Maintenance (CSMR 2005), 2005.

[11] O. Greevy and S. Ducasse. Correlating features and code
using a compact two-sided trace analysis approach. InPro-
ceedings of CSMR 2005 (9th European Conference on Soft-
ware Maintenance and Reengineering. IEEE Computer So-
ciety Press, 2005.

[12] A. Hamou-Lhadj, E. Braun, D. Amyot, and T. Lethbridge.
Recovering behavioral design models from execution traces.
In Proceedings of CSMR 2005 (9th European Conference on
Software Maintenance and Reengineering. IEEE Computer
Society Press, 2005.

[13] I. Hsi and C. Potts. Studying the evolution and enhance-
ment of software features. InProceedings of the 2000 IEEE
International Conference on Software Maintenance, pages
143–151, 2000.

[14] I. Jacobson. Use cases and aspects—working seamlessly to-
gether.Journal of Object Technology, 2(4):7–28, July 2003.

[15] I. Jacobson, M. Christerson, P. Jonsson, and G. Over-
gaard.Object-Oriented Software Engineering — A Use Case
Driven Approach. Addison Wesley/ACM Press, Reading,
Mass., 1992.

[16] J. Krajewski. QCR - A methodology for software evolu-
tion analysis. Master’s thesis, Information Systems Institute,
Distributed Systems Group, Technical University of Vienna,
Apr. 2003.

[17] M. Lanza and S. Ducasse. Understanding software evolution
using a combination of software visualization and software
metrics. InProceedings of LMO 2002 (Langages et Modèles
à Objets, pages 135–149, 2002.

[18] M. M. Lehman, D. E. Perry, and J. F. Ramil. Implications of
evolution metrics on software maintenance. InProceedings
of the International Conference on Software Maintenance
(ICSM 1998), pages 208–217, 1998.

[19] D. Licata, C. Harris, and S. Krishnamurthi. The feature sig-
natures of evolving programs.Automated Software Engi-
neering, 2003.

5



[20] A. Mehta and G. T. Heineman. Evolving legacy systems
features using regression test cases and components. InPro-
ceedings of the 4th international workshop on Principles of
software evolution, pages 190–193. ACM Press, 2002.

[21] T. Mens and M. Lanza. A graph-based metamodel for
object-oriented software metrics.Electronic Notes in The-
oretical Computer Science, 72(2), 2002.

[22] C. R. Turner, A. L. Wolf, A. Fuggetta, and L. Lavazza. Fea-
ture engineering. InProceedings of the 9th International
Workshop on Software Specification and Design, page 162.
IEEE Computer Society, 1998.

[23] N. Wilde and M. C. Scully. Software reconnaisance: Map-
ping program features to code.Software Maintenance: Re-
search and Practice, 7(1):49–62, 1995.

[24] W. E. Wong, S. S. Gokhale, and J. R. Horgan. Quantifying
the closeness between program components and features.J.
Syst. Softw., 54(2):87–98, 2000.

[25] A. Zaidman, T. Calders, S. Demeyer, and J. Paredaens. Ap-
plying webmining techniques to execution traces to sup-
port the program comprehension process. InProceedings of
CSMR 2005 (9th European Conference on Software Main-
tenance and Reengineering. IEEE Computer Society Press,
2005.

[26] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. In26th
International Conference on Software Engineering (ICSE
2004), pages 563–572, 2004.

6


