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With the advent of the Internet of Things (IoT), security has emerged as a major 

design goal for smart connected devices. This explosion in connectivity created a 

larger attack surface area. Software-based approaches have been applied for security 

purposes; however, these methods must be extended with security-oriented 

technologies that promote hardware as the root of trust. The arM TrustZone 

can enable trusted execution environments (Tees), but existing solutions disregard 

real-time needs. Here, the authors demonstrate why TrustZone is becoming a 

reference technology for securing IoT edge devices, and how enhanced Tees can 

help meet industrial IoT applications’ real-time requirements.
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T he Internet has changed the way 
we live, and the Internet of Things 
(IoT) is making the Internet even 

more immersive and pervasive. Nowa-
days IoT represents a collection of bil-
lions of smart, connected devices.1 The 
ability to connect, manage, and control 
a device from anywhere and at any time 
leads IoT systems to generate, process, 
and exchange vast amounts of secu-
rity-critical and privacy-sensitive data, 
turning them into attractive cyberat-
tack targets.2,3 Traditional protection 
mechanisms such as cryptographic 
algorithms and security protocols have 
proven ineffi cient,3,4 because security 
is being misconstrued as the addi-
tion of features in a late stage of system 
development. The strong connectivity of 
IoT environments requires an holistic, 

end-to-end security approach, address-
ing security and privacy risks at all 
abstraction levels.3

Security by isolation is a well-
established strategy for achieving secu-
rity goals such as data confi dentiality, 
integrity, and availability (CIA). Sev-
eral software-based approaches such as 
microkernels, sandboxes, and virtualiza-
tions have been used,5 but these meth-
ods fail in providing the desired security 
level. IoT systems must be extended 
with new security-oriented technologies 
that guarantee security from the outset. 
Among existing security-oriented tech-
nologies, TrustZone6 is gaining particular 
attention due to the massive presence of 
ARM processors in the embedded market. 
By splitting the hardware and software 
resources into two worlds, TrustZone 
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enables a secure environment to coexist with a 
rich execution environment (REE), while ensur-
ing that sensitive data are completely isolated and 
protected from unauthorized accesses. Several 
academic and commercial trusted execution envi-
ronment (TEE) solutions have been proposed, but 
they lack in providing the real-time requirements 
of Industrial IoT (IIoT) applications.3

IIoT applications such as industrial control 
systems are increasingly looking for consolida-
tion of several critical and noncritical functions 
into a single device to reduce equipment and 
factory footprint and consequently the overall 
cost.3 Moreover, with the advent of smart ser-
vices,3,7 equipment needs to send and receive 
status information, control commands, and 

configuration updates from its manufacturer. 
In this sense, IIoT controllers not only need to 
guarantee functionality isolation and real-time 
requirements of control algorithms, but also 
need to protect their integrity against unauthor-
ized modification, as well as ensure the veracity 
of their inputs. While in the context of indus-
trial control systems, the notion of security has 
traditionally almost the same meaning as safety 
(that is, protection of human lives and machines 
against system failures), with integration of 
information technology, protection against 
cyberattacks became a major design goal.

In this article, we demonstrate how the Indus-
trial IoT Trusted Execution Environment for Edge 
Devices (IIoTEED) can meet the real-time and 

Related Work in ARM TrustZone-Based Systems

Security, safety, and real-time processing are system-
level requirements that drive the current development of 

Internet of Things (IoT) applications. There are several broad 
classes of approaches that have been applied to address them: 
software-based approaches for isolation such as microkernels, 
sandboxes, and virtualizations;1 and hardware-based technolo-
gies such as trusted platform modules (TPMs), ARM TrustZone, 
and Intel SGX. Due to the extensive list of works on the secu-
rity and real-time spectrum, we will focus our description on 
existing TrustZone-based solutions that individually or partially 
tackle the aforementioned requirements. To the best of the 
authors’ knowledge there’s no existing solution that fully and 
simultaneously addresses these requirements.

Peter Wilson and his colleagues pioneered the research 
around a trusted environment of typical ARM TrustZone sys-
tems.2 They proposed an architecture that can be seen as a 
precursor for what the trusted execution environment (TEE) 
specifications standardized some years later. Johannes Winter 
developed a Linux-based virtualization framework to implement 
virtual TPMs using a software-only approach.3 Marco Cereia and 
Ivan Cibrario Bertolotti implemented an asymmetric virtualiza-
tion approach for real-time systems.4 We implemented our own 
dual-OS solution5 by running FreeRTOS side-by-side with Linux 
on a TrustZone-enabled Zynq platform. TZ-RKP6 provides real-
time protection of the OS kernel using the ARM TrustZone 
secure world. Implementing a non-bypassable event-driven 
monitoring strategy, TZ-RKP uses memory protection to pre-
vent attacks that aim at modifying an OS kernel running on the 
non-secure world side. SeCReT7 builds a secure communication 
channel between the rich execution environment (REE) and TEE 
because no message-protection mechanism exists in TrustZone. 
By creating a session key to sign the messages transferred during 
interdomain communication, the processes in the REE can com-

municate with TrustZone securely. Johannes Winter’s research 
group developed the ANDIX OS8 to evaluate the applicability of 
ARM TrustZone to secure future industrial control systems, and 
later compared such an approach against a security controller.9
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security requirements of IIoT edge devices, dic-
tated by the three elements of CIA. We propose 
a TrustZone-based architecture that implements 
the basic building blocks of a TEE as a lower-
priority thread of a real-time operating system 
(RTOS). The RTOS was slightly modified to sup-
port trusted applications (TAs) and to schedule 
the REE only during the idle periods. Experi-
ments demonstrate security is assured while 
the system’s real-time properties remain nearly 
intact. Our main contributions are

•	 design and implementation of a new Trust-
Zone-based architecture that implements an 
enhanced TEE that meets the IIoT requirements;

•	 evaluation of the implemented solution to 
measure the impact on the real-time prop-
erties of the system while it leverages the 
three fundamental elements of CIA; and

•	 discussion about how IIoTEED will per-
fectly align with resource-constrained edge 
devices, and why it must be complemented 
with other critical security strategies.

For others’ work in this area, see the related 
sidebar.

ARM TrustZone
TrustZone technology6 refers to security exten-
sions implemented by ARM since the ARMv6 
architecture. These extensions provide a secure  
and separate execution environment that 
protects the integrity and confidentiality of 
secure−sensitive processing, by splitting the 
hardware and software resources into two 
worlds — the secure and the non-secure world.

TrustZone Hardware
The most significant architectural innovation of 
the TrustZone hardware architecture is the addi-
tion of a new 33rd processor bit, the non-secure 
bit, which indicates in which world the proces-
sor is currently executing. To switch between the 
secure and the non-secure world, a special new 
secure processor mode, called monitor mode, 
was introduced. To enter the monitor mode, 
a new privileged instruction was also speci-
fied — secure monitor call (SMC). The TrustZone 
address space controller (TZASC) extends secu-
rity at the memory level, by enabling partition of 
DRAM into different memory regions. The Trust-
Zone-aware memory management unit (MMU) 
provides two distinct MMU interfaces, and the 

isolation is still available at the cache-level. 
System devices can be dynamically configured 
as secure or non-secure through the TrustZone 
protection controller (TZPC). The generic inter-
rupt controller provides several interrupt mod-
els, allowing the configuration of fast interrupt 
requests (FIQs) and interrupt requests (IRQs) to 
secure or non-secure interrupt sources.

TrustZone API
The TrustZone API (TZAPI) is an application 
API that specifies how non-secure applica-
tions (NSAs), running on the rich environment, 
interact with the isolated execution environ-
ment. Following a client−server model, the API 
defines a set of abstract software interfaces by 
which an NSA can interact with a TA. The API 
allows clients to send commands and requests to 
a TA, and exchange data between both worlds. 
Secondary API features include querying the 
properties of installed applications as well as 
downloading new security TAs at runtime. The 
TrustZone API doesn’t include any specifica-
tion about how to develop applications running 
inside the isolated execution environment.

IIoTEED
The TEE is a secure area ensuring that sensi-
tive data are stored, processed, and protected in 
an isolated and trusted environment. Typical 
TrustZone-based TEE solutions embody a small 
secure kernel, responsible for managing TAs, on 
the secure world side, and a rich OS, responsible 
for managing NSA, on the non-secure world side. 
The secure OS is only scheduled explicitly under 
request of the rich environment, when an NSA 
needs to access sensitive data. While this approach 
perfectly fits in several application domains 
where real-time performance isn’t a concern (for 
example, mobile phones), it’s not well-suited for a 
multitude of domains where real-time processing 
is a key requirement (for example, IIoT).

Figure 1 depicts IIoTEED, our proposed Trust-
Zone-based architecture that provides a safe and 
secure environment, completely isolated from the 
REE, protecting the integrity and confidentiality 
of secure−sensitive processing while enhanc-
ing availability by isolating critical processing 
from the noncritical one. Security-related opera-
tions and real-time processing are performed on 
the secure world side, while the general-purpose 
and rich environment lies on the non-secure 
side. The software running in the secure world 
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is composed by the Monitor layer, the Trusted 
RTOS (T-RTOS), and its corresponding real-time 
tasks and TAs. The monitor component, running 
in monitor mode, works as a gatekeeper and is 
responsible for preserving the state of each world 
during the world switch operation (that is, the 
change from the secure to the non-secure world 
side and vice versa). The T-RTOS, running in 
kernel mode, corresponds to a lightweight ver-
sion of an RTOS extended with some security 
capabilities, which allows not only the execu-
tion of real-time tasks but also TAs. The software 
running in the non-secure world side consists of 
a general-purpose operating system (GPOS) with 
the respective TZAPI-dependent software (that 
is, the privileged TrustZone kernel module and 
the unprivileged TZAPI library) and the NSA.

Secure World Components
The secure world software provides a lightweight, 
real-time environment extended with some secu-
rity capabilities. The monitor is responsible for 
every world entry and exit, as well as for estab-
lishing a communication channel between both 
worlds. The T-RTOS is responsible for guarantee-
ing the real-time characteristics of the system 
and simultaneously interacting with NSA during 
its idle periods.

T-RTOS is a modified version of an RTOS 
extended with some security capabilities. The 
main modifications on the kernel side encom-
pass the implementation of the idle schedul-
ing policy, the addition of some system calls, 
and the support for the TZAPI communication. 
First, to preserve the system’s real-time proper-
ties, the idle task was modified to implement the 
idle scheduling policy: the RTOS has a greater 
scheduling priority than the GPOS, and con-
sequently the GPOS is only scheduled during 
RTOS idle periods. To support the addition of 
new security features, some system calls were 
implemented: because the idle task and secure 
services run in user mode, requesting new ker-
nel services dictates the addition of specific 
system calls. Last, a new small kernel module 
for managing the TZAPI communication was 
implemented; it’s responsible for interpreting 
the commands/data received from the NSA and 
acting accordingly to the desired operation. If 
the requested action has to be handled by the 
TA, the request is forwarded to the user space.

The monitor component, although running 
at a higher privileged level (monitor mode) than 

the T-RTOS, is configured to behave in a passive 
way so that the T-RTOS has the processor as long 
as real-time tasks are ready-to-run. Hence, from 
the secure side, the monitor will be dispatched 
only when T-RTOS is idle or returning from a TA 
by invoking specific system calls that will trig-
ger an SMC instruction. On the other hand, once 
the GPOS starts executing, the monitor will be 
invoked through the specific SMC instruction 
(that is, through TrustZone kernel module) as 
well as later when an FIQ is triggered (for exam-
ple, T-RTOS systick). In any case, the monitor will 
perform a world switch operation by saving the 
state of the current world, and restoring the state 
of the ready-to-run world. Due to the intrinsic 
TrustZone hardware capabilities in banking an 
extensive list of processor and coprocessor regis-
ters, the world control block (that is, data struc-
ture with the state of each world) is minimal and 
composed of only 28 registers.

Non-Secure World Components
The non-secure world software provides the 
foundation for application developers to design 

Figure 1. Proposed Industrial IoT Trusted Execution Environment for 
Edge Devices (IIoTEED) architecture. GPOS = general-purpose operating 
system; H/W = hardware; RT&T = real-time and trusted; T-RTOS = 
Trusted real-time operating system; TZAPI = TrustZone API.
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and implement standard NSAs that interact 
with TAs. The GPOS provides a rich and flex-
ible environment by which NSAs, following the 
TZAPI specification (TZAPI library), interact 
with TAs through the TZAPI kernel module.

The TZAPI-client library exposes the stan-
dardized API defined by TrustZone specifica-
tion, abstracting the application developer from 
the specificities of the TrustZone message for-
mats and the TrustZone kernel module input/
output control (IOCTL) calls. We implemented 
the complete specification, which includes the 
descriptors, control functions, encoder and 
decoder functions, service manager functions, 
and asynchronous operations, with the excep-
tion of functions related to the runtime down-
load and removal of services.

The TrustZone kernel module implemented 
for the GPOS (Linux) provides a pseudo-charac-
ter device that implements a logical communi-
cation channel (between the non-secure and the 
secure world) on top of the real communication 
channel, and provides the functional founda-
tion to implement the non-secure world TZAPI 
library. It provides a set of specific IOCTLs that 
semantically understands parameters, allo-
cates memory buffers, encodes and decodes 
data, prepares the requests, and establishes the 
communication.

Communication
IIoTEED implements a remote procedure call 
(RPC)-style communication interface to estab-
lish a communication channel between the NSA 
and TA. RPCs are always initiated in the non-
secure world side, where NSAs use the avail-
able system call interfaces (kernel module) to 
explicitly invoke the SMC instruction. This SMC 
instruction will trap the execution flow into the 
monitor mode, where the monitor component is 
responsible for restoring T-RTOS execution as 
well as forwarding allocated message buffers 
information that passed through the core reg-
isters. Once the T-RTOS is restored, the idle task 
is recovered and the TA dispatcher will forward 
the incoming request to the respective TA. The 
communication follows a blocking-implementa-
tion strategy, which means the non-secure world 
side will only be recovered on completion of 
the RPC request. Once it happens, the TA noti-
fies the T-RTOS, which in turn goes through the 
SMC handler and returns to the last well-known 
execution point of the non-secure world side.

Evaluation
Our solution was evaluated on a ZedBoard target-
ing a dual ARM Cortex-A9 running at 600 MHz. 
Despite using a multicore hardware architecture, 
our current implementation only supports a sin-
gle-core configuration. We focused our evalua-
tion on real-time processing (experiment 5.1) and 
security (experiment 5.2). To evaluate the sys-
tem’s real-time properties we targeted three met-
rics: performance, determinism, and interrupt 
latency. To evaluate the security, we conduct a 
discussion around how IIoTEED has achieved 
confidentiality, integrity, and availability.

Real-Time Processing
To measure the impact on real-time system prop-
erties, we split our experiments in two parts. To 
assess the performance and determinism met-
rics, we compared the native single-core version 
of the FreeRTOS (v. 7.0.2) against T-FreeRTOS, 
using the Thread-Metric Benchmark Suite. To 
ascertain the system interrupt latency, we per-
formed specific microbenchmarks. MMU, caches, 
branch predictor, and others dynamic architec-
tural features were disabled in the secure world 
side. We used a performance monitoring unit to 
assess the world switch and latency overhead.

The Thread-Metric Benchmark Suite consists 
of a set of specific benchmarks to evaluate RTOS 
performance. The suite comprises seven bench-
marks, evaluating the most common RTOS ser-
vices and interrupt processing. Each benchmark 
outputs a counter value, representing the RTOS 
impact on the running application: the higher 
the value, the smaller the impact. We collected 
50 samples for each benchmark, corresponding 
to a total of 700 collected samples for both test 
case scenarios. Assessed results demonstrate 
the overhead introduced by our approach, when 
compared to the single execution of FreeR-
TOS, is negligible (<0.0001 percent). Regarding  
determinism, the assessed variance was in the 
same order of magnitude in both test scenarios. 
This is perfectly understandable because once 
T-FreeRTOS starts running real-time tasks, 
it will never be interrupted by any security-
related feature. Furthermore, all introduced ker-
nel modifications were carefully implemented 
to first privilege the execution of real-time fea-
tures. For example, in conditional statements 
(such as “if” or “switch”), secure features were 
introduced below real-time related statements, 
just to avoid compromising the execution flow.
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Interrupt latency is the measurement of the 
system’s response time to an interrupt, which 
corresponds to the elapsed time between inter-
rupt assertion and the instant a response occurs. 
Equation 1 expresses the system latency where 
tH is the hardware dependent time that depends 
on the interrupt controller on the board as well 
as the type of the interrupt, tOS is the OS-spe-
cific induced overhead, and tWS is the monitor-
specific induced overhead (world switch):

tIL = tH + tOS + (tWS).� (1)

Our experiments showed that latency in the 
native system (FreeRTOS) is 0.89 microseconds, 
which corresponds also to the average inter-
rupt handling overhead of our system. The last 
part of Equation 1 represents the extra overhead 
induced by our approach, but which only hap-
pens when the RTOS has no real-time ready-
to-run tasks, and consequently the monitor 
is invoked to perform a world switch. Because 
the monitor runs with all interrupt sources dis-
abled, the worst case scenario happens when 
an FIQ request (for example, RTOS tick) arrives 
while a context switch from the secure to the 
non-secure world is starting. In this case, the 
request is handled only after two complete 
world switches, which corresponds to a worst-
case interrupt latency of 8.11 microseconds. 
This is a sporadic situation that happens under 
rare conditions, because two asynchronous and 
independent events need to occur at the same 
time: an asynchronous FIQ needs to be triggered 
while a world switch is happening. Nevertheless, 
because the overhead introduced on latency has 
a deterministic upper bound, it can be taken into 
account when designing the real-time system.

Security
In this section, we evaluate the security of our 
solution by summarizing how IIoTEED has fully 
or partially achieved the three fundamental 
elements of CIA: confidentiality, integrity, and 
availability.

Confidentiality. This feature is the ability to 
restrict data to only those with authorized access. 
IIoTEED partially provides confidentiality by 
means of TrustZone’ strong spatial isolation 
mechanisms. The GPOS can’t access any memory 
segment allocated to the T-RTOS, because the 
TZASC traps any unauthorized memory access. 

The GPOS with a separated MMU and cache 
interface nullifies any cached information leak-
age. Moreover, it can’t access any device assigned 
to the T-RTOS, because the TZPC also traps any 
unauthorized device access. The only possible 
access path is through the communication chan-
nel, where there exists one well-known secu-
rity breach of TrustZone.8 The current design 
of TrustZone’s architecture doesn’t authenticate 
access to resources, enabling man-in-the-middle 
attacks and so, interception and manipulation of 
messages transferred through the channel. Side-
channel attacks are also out of scope of the ARM 
TrustZone specification.

Integrity. This element enforces the consis-
tency, accuracy, and trustworthiness of data 
and of the system over its entire life cycle. 
IIoTEED provides integrity only at boot time, 
through the secure boot process. Once the sys-
tem is booted, TrustZone per se doesn’t provide 
any hardware mechanisms to assure the integ-
rity of data over time. A software-based solu-
tion for introspection (for example, a health 
monitor) could be implemented, however we 
believe hardware trust anchors such as security 
controllers will fit better in the IIoT domain. A 
hybrid approach using TrustZone and security 
controllers, as envisioned by Johannes Winter’s 
research group,7 will assure continuous check-
ing of component authenticity as well as data 
and system integrity to prevent manipulation.

Availability. This characteristic emphasizes that 
authorized parties are able to access the infor-
mation when needed. T-RTOS proved to have 
a high-level of availability, guaranteed by the 
strong temporal isolation (asymmetric scheduling 
policy) as well as by the coexistence of privileged 
(FIQs) and unprivileged (IRQs) interrupt sources. 
By scheduling the GPOS only on T-RTOS idle 
periods, as well as preempting its execution once 
an FIQ is triggered, we were able to guarantee a 
high-level of availability at the secure world side. 
Our experiments focused on performing some 
tests and attacks to the Linux system running 
on the non-secure side, and observing how they 
could disturb the correct behavior of the T-RTOS. 
The first experiment forced several Linux 
reboots. We have observed that the nonexistence 
of services from the GPOS while rebooting doesn’t 
affect any service type provided by the T-RTOS. 
Then, we injected a device driver on Linux to 
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reconfigure the MMU interface of the non-secure 
world side to try to access a memory area outside 
the boundary of the non-secure memory area. 
Due to the existence of one MMU interface for 
each world, as well as the strong memory iso-
lation provided by the TZASC, the attempt was 
completely unsuccessful. Finally, we connected a 
radio transceiver to the system, linked and man-
aged by Linux, that’s able to receive data pack-
ets from several sensors on a sensor hub. We’ve 
tested the behavior of a compromised sensor by 
repeatedly sending data bursts to our edge device, 
which repeatedly generated interrupt requests on 
Linux. This experiment simulates a denial-of-
service attack to the system. Due to the coexis-
tence of privileged (FIQs) and unprivileged (IRQs) 
interrupt sources, FIQs belonging to the T-RTOS 
were able to preempt the execution of Linux, 
even when executing an IRQ request.

Envisioned Future of IIoTEED
IIoTEED, in its current implementation, can act as 
a suitable solution for high-end edge devices, but 
in a smart industry environment the supremacy 
of resource-constrained devices demands a simi-
lar solution. The recent ARM’s decision about 
introducing TrustZone technology to the new 
Cortex-M and Cortex-R processors series opens 

the possibility to widen our IIoTEED solution to 
the resource-constrained edge devices with min-
imum engineering effort. Industrial applications 
with real-time requirements, for example, data 
acquisition or permanent monitoring systems, 
will benefit much more from the given technol-
ogy, allowing resource-constrained edge devices 
to connect to the network while real-time execu-
tion and security are never jeopardized.

Figure 2 partially depicts a possible simplified 
and generic IIoT architecture. A large number 
of topologies within an infinite number of con-
figurations and requirements will have to coexist 
on the same environment — such as constrained 
edge devices with monitoring applications, router 
devices capable of forwarding wireless pack-
ets over the network, and border router devices 
responsible for interfacing the IIoT network to 
the Internet. According to the device’s role in the 
network and the corresponding architecture, the 
IIoTEED environment will be able to perform in 
different configurations. For example, for a mid-
dle-end edge device, IIoTEED can be configured 
to run an IoT-based OS on the non-secure world 
side (such as Contiki-OS or RIOT), and an RTOS on 
the secure world side. On a low-end edge device, 
IIoTEED can be configured to run a lightweight 
IoT-based OS on the non-secure world side, and 
a bare-metal support for TAs on the secure world 
side. Complex network operations that usually 
demand higher processing capabilities — secur-
ing the communication channels by encrypting 
data using strong security, for example — are also 
covered as the new processors include hardware 
peripherals to perform these tasks.

Currently, IIoTEED only partially addresses 
the industrial security puzzle at edge level. To 
help with end-to-end security while meeting the 
right tradeoff between security and real-time 
requirements, it must be extended with other tai-
lored, hardware-assisted security and accelera-
tion strategies, mainly those implementing edge 
device identities as well as measures to continu-
ously monitor and protect the authenticity of data 
exchanges and firmware upgrades. Edge device 
authentication not only prevents counterfeit spare 
parts and repair tools, but it also reinforces edge 
device encryption and transport layer security.

T he IoT is an emerging key technology that 
paves the way for the next generation of 

smart industrial systems. In today’s IoT systems,  

Figure 2. Future Industrial IoT (IIoT) application 
scenario. 6LoWPAN = IPv6 and low-power wireless 
personal area networks; SoC = system on chip.
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the functional and security requirements aren’t 
totally fulfilled. The strong connectivity of 
IoT environments require an end-to-end secu-
rity approach, addressing security at both the 
device, network, and cloud levels. ARM Trust-
Zone addresses security at the device level, and is 
being used as a foundation for a TEE realization. 
However, the TEE specification doesn’t address the 
real-time needs of industrial applications. IIoTEED 
offers an enhanced TEE for IIoT edge devices. 
Experiments demonstrated real-time properties 
of the system that remain practically unaffected 
while security is guaranteed from the outset. 
However, to guarantee tight industrial security, 
IIoTEED must be complemented with other critical 
security strategies for edge devices (for example, 
hardware-assisted device identity) to better lever-
age the three fundamental elements of CIA.

Current research aims at GlobalPlatform 
standards’ implementation. With interoperability 
and standardization as the top of our goals, we’ve 
already implemented a huge part of the Global-
Platform TEE client and TEE internal specifica-
tions. Our future research roadmap will focus on 
implementing our vision about the applicability 
of this solution for resource-constrained edge 
devices, as well as reinforcing their security by 
integrating other hardware trust anchors.
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