
40 Published by the Ieee Computer Society 1089-7801/17/$33.00 © 2017 Ieee Ieee InTerneT COMPuTInG

IIoTEED: An Enhanced, Trusted
Execution Environment for
Industrial IoT Edge Devices

Sandro Pinto, Tiago
Gomes, Jorge Pereira,
Jorge Cabral, and Adriano
Tavares
University of Minho, Portugal

With the advent of the Internet of Things (IoT), security has emerged as a major

design goal for smart connected devices. This explosion in connectivity created a

larger attack surface area. Software-based approaches have been applied for security

purposes; however, these methods must be extended with security-oriented

technologies that promote hardware as the root of trust. The arM TrustZone

can enable trusted execution environments (Tees), but existing solutions disregard

real-time needs. Here, the authors demonstrate why TrustZone is becoming a

reference technology for securing IoT edge devices, and how enhanced Tees can

help meet industrial IoT applications’ real-time requirements.

IC
T

fo
r

Sm
ar

t
In

du
st

ri
es

T he Internet has changed the way
we live, and the Internet of Things
(IoT) is making the Internet even

more immersive and pervasive. Nowa-
days IoT represents a collection of bil-
lions of smart, connected devices.1 The
ability to connect, manage, and control
a device from anywhere and at any time
leads IoT systems to generate, process,
and exchange vast amounts of secu-
rity-critical and privacy-sensitive data,
turning them into attractive cyberat-
tack targets.2,3 Traditional protection
mechanisms such as cryptographic
algorithms and security protocols have
proven ineffi cient,3,4 because security
is being misconstrued as the addi-
tion of features in a late stage of system
development. The strong connectivity of
IoT environments requires an holistic,

end-to-end security approach, address-
ing security and privacy risks at all
abstraction levels.3

Security by isolation is a well-
established strategy for achieving secu-
rity goals such as data confi dentiality,
integrity, and availability (CIA). Sev-
eral software-based approaches such as
microkernels, sandboxes, and virtualiza-
tions have been used,5 but these meth-
ods fail in providing the desired security
level. IoT systems must be extended
with new security-oriented technologies
that guarantee security from the outset.
Among existing security-oriented tech-
nologies, TrustZone6 is gaining particular
attention due to the massive presence of
ARM processors in the embedded market.
By splitting the hardware and software
resources into two worlds, TrustZone

january/february 2017� 41

IIoTEED: An Enhanced, Trusted Execution Environment for Industrial IoT Edge Devices

enables a secure environment to coexist with a
rich execution environment (REE), while ensur-
ing that sensitive data are completely isolated and
protected from unauthorized accesses. Several
academic and commercial trusted execution envi-
ronment (TEE) solutions have been proposed, but
they lack in providing the real-time requirements
of Industrial IoT (IIoT) applications.3

IIoT applications such as industrial control
systems are increasingly looking for consolida-
tion of several critical and noncritical functions
into a single device to reduce equipment and
factory footprint and consequently the overall
cost.3 Moreover, with the advent of smart ser-
vices,3,7 equipment needs to send and receive
status information, control commands, and

configuration updates from its manufacturer.
In this sense, IIoT controllers not only need to
guarantee functionality isolation and real-time
requirements of control algorithms, but also
need to protect their integrity against unauthor-
ized modification, as well as ensure the veracity
of their inputs. While in the context of indus-
trial control systems, the notion of security has
traditionally almost the same meaning as safety
(that is, protection of human lives and machines
against system failures), with integration of
information technology, protection against
cyberattacks became a major design goal.

In this article, we demonstrate how the Indus-
trial IoT Trusted Execution Environment for Edge
Devices (IIoTEED) can meet the real-time and

Related Work in ARM TrustZone-Based Systems

Security, safety, and real-time processing are system-
level requirements that drive the current development of

Internet of Things (IoT) applications. There are several broad
classes of approaches that have been applied to address them:
software-based approaches for isolation such as microkernels,
sandboxes, and virtualizations;1 and hardware-based technolo-
gies such as trusted platform modules (TPMs), ARM TrustZone,
and Intel SGX. Due to the extensive list of works on the secu-
rity and real-time spectrum, we will focus our description on
existing TrustZone-based solutions that individually or partially
tackle the aforementioned requirements. To the best of the
authors’ knowledge there’s no existing solution that fully and
simultaneously addresses these requirements.

Peter Wilson and his colleagues pioneered the research
around a trusted environment of typical ARM TrustZone sys-
tems.2 They proposed an architecture that can be seen as a
precursor for what the trusted execution environment (TEE)
specifications standardized some years later. Johannes Winter
developed a Linux-based virtualization framework to implement
virtual TPMs using a software-only approach.3 Marco Cereia and
Ivan Cibrario Bertolotti implemented an asymmetric virtualiza-
tion approach for real-time systems.4 We implemented our own
dual-OS solution5 by running FreeRTOS side-by-side with Linux
on a TrustZone-enabled Zynq platform. TZ-RKP6 provides real-
time protection of the OS kernel using the ARM TrustZone
secure world. Implementing a non-bypassable event-driven
monitoring strategy, TZ-RKP uses memory protection to pre-
vent attacks that aim at modifying an OS kernel running on the
non-secure world side. SeCReT7 builds a secure communication
channel between the rich execution environment (REE) and TEE
because no message-protection mechanism exists in TrustZone.
By creating a session key to sign the messages transferred during
interdomain communication, the processes in the REE can com-

municate with TrustZone securely. Johannes Winter’s research
group developed the ANDIX OS8 to evaluate the applicability of
ARM TrustZone to secure future industrial control systems, and
later compared such an approach against a security controller.9

References
1.	 F. Armand and M. Gien, “A Practical Look at Micro-Kernels and Virtual

Machine Monitors,” Proc. 6th IEEE Consumer Communications and Networking

Conf., 2009, pp. 1–7.

2.	 P. Wilson et al., “Implementing Embedded Security on Dual-Virtual-CPU

Systems,” IEEE Design & Test of Computers, vol. 24, no. 6, 2007, pp. 582–591.

3.	 J. Winter, “Trusted Computing Building Blocks for Embedded Linux-Based

ARM TrustZone Platforms,” Proc. 3rd Workshop on Scalable Trusted Computing,

2008, pp. 21–30.

4.	 M. Cereia and I.C. Bertolotti, “Virtual Machines for Distributed Real-Time

Systems,” Computer Standards & Interfaces, vol. 31, no. 1, 2009, pp. 30–39.

5.	 S. Pinto et al., “Towards a Lightweight Embedded Virtualization Architec-

ture Exploiting ARM TrustZone,” Proc. IEEE Int’l Conf. Emerging Technologies

and Factory Automation, 2014, pp. 1–4.

6.	 A.M. Azab et al., “Hypervision Across Worlds: Real-Time Kernel Protec-

tion from the ARM TrustZone Secure World,” Proc. ACM Conf. Computer

and Comm. Security, 2014, pp. 90–102.

7.	 J. Jang et al., “SeCReT: Secure Channel between Rich Execution Environ-

ment and Trusted Execution Environment,” Proc. Network and Distributed

System Security Symp. (NDSS), 2015; www.internetsociety.org/doc/secret-

secure-channel-between-rich-execution-environment-and-trusted-execu-

tion-environment.

8.	 A. Fitzek et al., “The ANDIX Research OS: ARM TrustZone Meets Indus-

trial Control Systems Security,” Proc. 13th IEEE Int’l Conf. Industrial Informat-

ics, 2015, pp. 88–93.

9.	 C. Lesjak, D. Hein, and J. Winter, “Hardware-Security Technologies for

Industrial IoT: TrustZone and Security Controller,” Proc. 41st IEEE Ann. Conf.

Industrial Electronics Soc., 2015, pp. 002589–002595.

ICT for Smart Industries

42	 www.computer.org/internet/� IEEE INTERNET COMPUTING

security requirements of IIoT edge devices, dic-
tated by the three elements of CIA. We propose
a TrustZone-based architecture that implements
the basic building blocks of a TEE as a lower-
priority thread of a real-time operating system
(RTOS). The RTOS was slightly modified to sup-
port trusted applications (TAs) and to schedule
the REE only during the idle periods. Experi-
ments demonstrate security is assured while
the system’s real-time properties remain nearly
intact. Our main contributions are

•	 design and implementation of a new Trust-
Zone-based architecture that implements an
enhanced TEE that meets the IIoT requirements;

•	 evaluation of the implemented solution to
measure the impact on the real-time prop-
erties of the system while it leverages the
three fundamental elements of CIA; and

•	 discussion about how IIoTEED will per-
fectly align with resource-constrained edge
devices, and why it must be complemented
with other critical security strategies.

For others’ work in this area, see the related
sidebar.

ARM TrustZone
TrustZone technology6 refers to security exten-
sions implemented by ARM since the ARMv6
architecture. These extensions provide a secure
and separate execution environment that
protects the integrity and confidentiality of
secure−sensitive processing, by splitting the
hardware and software resources into two
worlds — the secure and the non-secure world.

TrustZone Hardware
The most significant architectural innovation of
the TrustZone hardware architecture is the addi-
tion of a new 33rd processor bit, the non-secure
bit, which indicates in which world the proces-
sor is currently executing. To switch between the
secure and the non-secure world, a special new
secure processor mode, called monitor mode,
was introduced. To enter the monitor mode,
a new privileged instruction was also speci-
fied — secure monitor call (SMC). The TrustZone
address space controller (TZASC) extends secu-
rity at the memory level, by enabling partition of
DRAM into different memory regions. The Trust-
Zone-aware memory management unit (MMU)
provides two distinct MMU interfaces, and the

isolation is still available at the cache-level.
System devices can be dynamically configured
as secure or non-secure through the TrustZone
protection controller (TZPC). The generic inter-
rupt controller provides several interrupt mod-
els, allowing the configuration of fast interrupt
requests (FIQs) and interrupt requests (IRQs) to
secure or non-secure interrupt sources.

TrustZone API
The TrustZone API (TZAPI) is an application
API that specifies how non-secure applica-
tions (NSAs), running on the rich environment,
interact with the isolated execution environ-
ment. Following a client−server model, the API
defines a set of abstract software interfaces by
which an NSA can interact with a TA. The API
allows clients to send commands and requests to
a TA, and exchange data between both worlds.
Secondary API features include querying the
properties of installed applications as well as
downloading new security TAs at runtime. The
TrustZone API doesn’t include any specifica-
tion about how to develop applications running
inside the isolated execution environment.

IIoTEED
The TEE is a secure area ensuring that sensi-
tive data are stored, processed, and protected in
an isolated and trusted environment. Typical
TrustZone-based TEE solutions embody a small
secure kernel, responsible for managing TAs, on
the secure world side, and a rich OS, responsible
for managing NSA, on the non-secure world side.
The secure OS is only scheduled explicitly under
request of the rich environment, when an NSA
needs to access sensitive data. While this approach
perfectly fits in several application domains
where real-time performance isn’t a concern (for
example, mobile phones), it’s not well-suited for a
multitude of domains where real-time processing
is a key requirement (for example, IIoT).

Figure 1 depicts IIoTEED, our proposed Trust-
Zone-based architecture that provides a safe and
secure environment, completely isolated from the
REE, protecting the integrity and confidentiality
of secure−sensitive processing while enhanc-
ing availability by isolating critical processing
from the noncritical one. Security-related opera-
tions and real-time processing are performed on
the secure world side, while the general-purpose
and rich environment lies on the non-secure
side. The software running in the secure world

IIoTEED: An Enhanced, Trusted Execution Environment for Industrial IoT Edge Devices

january/february 2017� 43

is composed by the Monitor layer, the Trusted
RTOS (T-RTOS), and its corresponding real-time
tasks and TAs. The monitor component, running
in monitor mode, works as a gatekeeper and is
responsible for preserving the state of each world
during the world switch operation (that is, the
change from the secure to the non-secure world
side and vice versa). The T-RTOS, running in
kernel mode, corresponds to a lightweight ver-
sion of an RTOS extended with some security
capabilities, which allows not only the execu-
tion of real-time tasks but also TAs. The software
running in the non-secure world side consists of
a general-purpose operating system (GPOS) with
the respective TZAPI-dependent software (that
is, the privileged TrustZone kernel module and
the unprivileged TZAPI library) and the NSA.

Secure World Components
The secure world software provides a lightweight,
real-time environment extended with some secu-
rity capabilities. The monitor is responsible for
every world entry and exit, as well as for estab-
lishing a communication channel between both
worlds. The T-RTOS is responsible for guarantee-
ing the real-time characteristics of the system
and simultaneously interacting with NSA during
its idle periods.

T-RTOS is a modified version of an RTOS
extended with some security capabilities. The
main modifications on the kernel side encom-
pass the implementation of the idle schedul-
ing policy, the addition of some system calls,
and the support for the TZAPI communication.
First, to preserve the system’s real-time proper-
ties, the idle task was modified to implement the
idle scheduling policy: the RTOS has a greater
scheduling priority than the GPOS, and con-
sequently the GPOS is only scheduled during
RTOS idle periods. To support the addition of
new security features, some system calls were
implemented: because the idle task and secure
services run in user mode, requesting new ker-
nel services dictates the addition of specific
system calls. Last, a new small kernel module
for managing the TZAPI communication was
implemented; it’s responsible for interpreting
the commands/data received from the NSA and
acting accordingly to the desired operation. If
the requested action has to be handled by the
TA, the request is forwarded to the user space.

The monitor component, although running
at a higher privileged level (monitor mode) than

the T-RTOS, is configured to behave in a passive
way so that the T-RTOS has the processor as long
as real-time tasks are ready-to-run. Hence, from
the secure side, the monitor will be dispatched
only when T-RTOS is idle or returning from a TA
by invoking specific system calls that will trig-
ger an SMC instruction. On the other hand, once
the GPOS starts executing, the monitor will be
invoked through the specific SMC instruction
(that is, through TrustZone kernel module) as
well as later when an FIQ is triggered (for exam-
ple, T-RTOS systick). In any case, the monitor will
perform a world switch operation by saving the
state of the current world, and restoring the state
of the ready-to-run world. Due to the intrinsic
TrustZone hardware capabilities in banking an
extensive list of processor and coprocessor regis-
ters, the world control block (that is, data struc-
ture with the state of each world) is minimal and
composed of only 28 registers.

Non-Secure World Components
The non-secure world software provides the
foundation for application developers to design

Figure 1. Proposed Industrial IoT Trusted Execution Environment for
Edge Devices (IIoTEED) architecture. GPOS = general-purpose operating
system; H/W = hardware; RT&T = real-time and trusted; T-RTOS =
Trusted real-time operating system; TZAPI = TrustZone API.

Non-secure world
(Rich execution environment)

Secure world
(RT&T execution environment)

Non-secure client apps
(TZAPI-aware)

TZAPI-client library
User mode
Kernel mode

User mode

System call handler

Kernel mode

Monitor mode

Monitor

Communication mechanism

ARM TrustZone-based SoC

H/W secure resources

GPOS
T-RTOS

Real-time tasks

Secure services

Idle task 0 Pr
io

ri
ty

 le
ve

l

1
2

N

Kernel module (TZAPI)

ICT for Smart Industries

44	 www.computer.org/internet/� IEEE INTERNET COMPUTING

and implement standard NSAs that interact
with TAs. The GPOS provides a rich and flex-
ible environment by which NSAs, following the
TZAPI specification (TZAPI library), interact
with TAs through the TZAPI kernel module.

The TZAPI-client library exposes the stan-
dardized API defined by TrustZone specifica-
tion, abstracting the application developer from
the specificities of the TrustZone message for-
mats and the TrustZone kernel module input/
output control (IOCTL) calls. We implemented
the complete specification, which includes the
descriptors, control functions, encoder and
decoder functions, service manager functions,
and asynchronous operations, with the excep-
tion of functions related to the runtime down-
load and removal of services.

The TrustZone kernel module implemented
for the GPOS (Linux) provides a pseudo-charac-
ter device that implements a logical communi-
cation channel (between the non-secure and the
secure world) on top of the real communication
channel, and provides the functional founda-
tion to implement the non-secure world TZAPI
library. It provides a set of specific IOCTLs that
semantically understands parameters, allo-
cates memory buffers, encodes and decodes
data, prepares the requests, and establishes the
communication.

Communication
IIoTEED implements a remote procedure call
(RPC)-style communication interface to estab-
lish a communication channel between the NSA
and TA. RPCs are always initiated in the non-
secure world side, where NSAs use the avail-
able system call interfaces (kernel module) to
explicitly invoke the SMC instruction. This SMC
instruction will trap the execution flow into the
monitor mode, where the monitor component is
responsible for restoring T-RTOS execution as
well as forwarding allocated message buffers
information that passed through the core reg-
isters. Once the T-RTOS is restored, the idle task
is recovered and the TA dispatcher will forward
the incoming request to the respective TA. The
communication follows a blocking-implementa-
tion strategy, which means the non-secure world
side will only be recovered on completion of
the RPC request. Once it happens, the TA noti-
fies the T-RTOS, which in turn goes through the
SMC handler and returns to the last well-known
execution point of the non-secure world side.

Evaluation
Our solution was evaluated on a ZedBoard target-
ing a dual ARM Cortex-A9 running at 600 MHz.
Despite using a multicore hardware architecture,
our current implementation only supports a sin-
gle-core configuration. We focused our evalua-
tion on real-time processing (experiment 5.1) and
security (experiment 5.2). To evaluate the sys-
tem’s real-time properties we targeted three met-
rics: performance, determinism, and interrupt
latency. To evaluate the security, we conduct a
discussion around how IIoTEED has achieved
confidentiality, integrity, and availability.

Real-Time Processing
To measure the impact on real-time system prop-
erties, we split our experiments in two parts. To
assess the performance and determinism met-
rics, we compared the native single-core version
of the FreeRTOS (v. 7.0.2) against T-FreeRTOS,
using the Thread-Metric Benchmark Suite. To
ascertain the system interrupt latency, we per-
formed specific microbenchmarks. MMU, caches,
branch predictor, and others dynamic architec-
tural features were disabled in the secure world
side. We used a performance monitoring unit to
assess the world switch and latency overhead.

The Thread-Metric Benchmark Suite consists
of a set of specific benchmarks to evaluate RTOS
performance. The suite comprises seven bench-
marks, evaluating the most common RTOS ser-
vices and interrupt processing. Each benchmark
outputs a counter value, representing the RTOS
impact on the running application: the higher
the value, the smaller the impact. We collected
50 samples for each benchmark, corresponding
to a total of 700 collected samples for both test
case scenarios. Assessed results demonstrate
the overhead introduced by our approach, when
compared to the single execution of FreeR-
TOS, is negligible (<0.0001 percent). Regarding
determinism, the assessed variance was in the
same order of magnitude in both test scenarios.
This is perfectly understandable because once
T-FreeRTOS starts running real-time tasks,
it will never be interrupted by any security-
related feature. Furthermore, all introduced ker-
nel modifications were carefully implemented
to first privilege the execution of real-time fea-
tures. For example, in conditional statements
(such as “if” or “switch”), secure features were
introduced below real-time related statements,
just to avoid compromising the execution flow.

IIoTEED: An Enhanced, Trusted Execution Environment for Industrial IoT Edge Devices

january/february 2017� 45

Interrupt latency is the measurement of the
system’s response time to an interrupt, which
corresponds to the elapsed time between inter-
rupt assertion and the instant a response occurs.
Equation 1 expresses the system latency where
tH is the hardware dependent time that depends
on the interrupt controller on the board as well
as the type of the interrupt, tOS is the OS-spe-
cific induced overhead, and tWS is the monitor-
specific induced overhead (world switch):

tIL = tH + tOS + (tWS).� (1)

Our experiments showed that latency in the
native system (FreeRTOS) is 0.89 microseconds,
which corresponds also to the average inter-
rupt handling overhead of our system. The last
part of Equation 1 represents the extra overhead
induced by our approach, but which only hap-
pens when the RTOS has no real-time ready-
to-run tasks, and consequently the monitor
is invoked to perform a world switch. Because
the monitor runs with all interrupt sources dis-
abled, the worst case scenario happens when
an FIQ request (for example, RTOS tick) arrives
while a context switch from the secure to the
non-secure world is starting. In this case, the
request is handled only after two complete
world switches, which corresponds to a worst-
case interrupt latency of 8.11 microseconds.
This is a sporadic situation that happens under
rare conditions, because two asynchronous and
independent events need to occur at the same
time: an asynchronous FIQ needs to be triggered
while a world switch is happening. Nevertheless,
because the overhead introduced on latency has
a deterministic upper bound, it can be taken into
account when designing the real-time system.

Security
In this section, we evaluate the security of our
solution by summarizing how IIoTEED has fully
or partially achieved the three fundamental
elements of CIA: confidentiality, integrity, and
availability.

Confidentiality. This feature is the ability to
restrict data to only those with authorized access.
IIoTEED partially provides confidentiality by
means of TrustZone’ strong spatial isolation
mechanisms. The GPOS can’t access any memory
segment allocated to the T-RTOS, because the
TZASC traps any unauthorized memory access.

The GPOS with a separated MMU and cache
interface nullifies any cached information leak-
age. Moreover, it can’t access any device assigned
to the T-RTOS, because the TZPC also traps any
unauthorized device access. The only possible
access path is through the communication chan-
nel, where there exists one well-known secu-
rity breach of TrustZone.8 The current design
of TrustZone’s architecture doesn’t authenticate
access to resources, enabling man-in-the-middle
attacks and so, interception and manipulation of
messages transferred through the channel. Side-
channel attacks are also out of scope of the ARM
TrustZone specification.

Integrity. This element enforces the consis-
tency, accuracy, and trustworthiness of data
and of the system over its entire life cycle.
IIoTEED provides integrity only at boot time,
through the secure boot process. Once the sys-
tem is booted, TrustZone per se doesn’t provide
any hardware mechanisms to assure the integ-
rity of data over time. A software-based solu-
tion for introspection (for example, a health
monitor) could be implemented, however we
believe hardware trust anchors such as security
controllers will fit better in the IIoT domain. A
hybrid approach using TrustZone and security
controllers, as envisioned by Johannes Winter’s
research group,7 will assure continuous check-
ing of component authenticity as well as data
and system integrity to prevent manipulation.

Availability. This characteristic emphasizes that
authorized parties are able to access the infor-
mation when needed. T-RTOS proved to have
a high-level of availability, guaranteed by the
strong temporal isolation (asymmetric scheduling
policy) as well as by the coexistence of privileged
(FIQs) and unprivileged (IRQs) interrupt sources.
By scheduling the GPOS only on T-RTOS idle
periods, as well as preempting its execution once
an FIQ is triggered, we were able to guarantee a
high-level of availability at the secure world side.
Our experiments focused on performing some
tests and attacks to the Linux system running
on the non-secure side, and observing how they
could disturb the correct behavior of the T-RTOS.
The first experiment forced several Linux
reboots. We have observed that the nonexistence
of services from the GPOS while rebooting doesn’t
affect any service type provided by the T-RTOS.
Then, we injected a device driver on Linux to

ICT for Smart Industries

46	 www.computer.org/internet/� IEEE INTERNET COMPUTING

reconfigure the MMU interface of the non-secure
world side to try to access a memory area outside
the boundary of the non-secure memory area.
Due to the existence of one MMU interface for
each world, as well as the strong memory iso-
lation provided by the TZASC, the attempt was
completely unsuccessful. Finally, we connected a
radio transceiver to the system, linked and man-
aged by Linux, that’s able to receive data pack-
ets from several sensors on a sensor hub. We’ve
tested the behavior of a compromised sensor by
repeatedly sending data bursts to our edge device,
which repeatedly generated interrupt requests on
Linux. This experiment simulates a denial-of-
service attack to the system. Due to the coexis-
tence of privileged (FIQs) and unprivileged (IRQs)
interrupt sources, FIQs belonging to the T-RTOS
were able to preempt the execution of Linux,
even when executing an IRQ request.

Envisioned Future of IIoTEED
IIoTEED, in its current implementation, can act as
a suitable solution for high-end edge devices, but
in a smart industry environment the supremacy
of resource-constrained devices demands a simi-
lar solution. The recent ARM’s decision about
introducing TrustZone technology to the new
Cortex-M and Cortex-R processors series opens

the possibility to widen our IIoTEED solution to
the resource-constrained edge devices with min-
imum engineering effort. Industrial applications
with real-time requirements, for example, data
acquisition or permanent monitoring systems,
will benefit much more from the given technol-
ogy, allowing resource-constrained edge devices
to connect to the network while real-time execu-
tion and security are never jeopardized.

Figure 2 partially depicts a possible simplified
and generic IIoT architecture. A large number
of topologies within an infinite number of con-
figurations and requirements will have to coexist
on the same environment — such as constrained
edge devices with monitoring applications, router
devices capable of forwarding wireless pack-
ets over the network, and border router devices
responsible for interfacing the IIoT network to
the Internet. According to the device’s role in the
network and the corresponding architecture, the
IIoTEED environment will be able to perform in
different configurations. For example, for a mid-
dle-end edge device, IIoTEED can be configured
to run an IoT-based OS on the non-secure world
side (such as Contiki-OS or RIOT), and an RTOS on
the secure world side. On a low-end edge device,
IIoTEED can be configured to run a lightweight
IoT-based OS on the non-secure world side, and
a bare-metal support for TAs on the secure world
side. Complex network operations that usually
demand higher processing capabilities — secur-
ing the communication channels by encrypting
data using strong security, for example — are also
covered as the new processors include hardware
peripherals to perform these tasks.

Currently, IIoTEED only partially addresses
the industrial security puzzle at edge level. To
help with end-to-end security while meeting the
right tradeoff between security and real-time
requirements, it must be extended with other tai-
lored, hardware-assisted security and accelera-
tion strategies, mainly those implementing edge
device identities as well as measures to continu-
ously monitor and protect the authenticity of data
exchanges and firmware upgrades. Edge device
authentication not only prevents counterfeit spare
parts and repair tools, but it also reinforces edge
device encryption and transport layer security.

T he IoT is an emerging key technology that
paves the way for the next generation of

smart industrial systems. In today’s IoT systems,

Figure 2. Future Industrial IoT (IIoT) application
scenario. 6LoWPAN = IPv6 and low-power wireless
personal area networks; SoC = system on chip.

Cloud
gateway

IIoT
6LoWPAN
network

BR

ED

R

R

ED

ED Non-secure world Secure world

IoT-OS
(Contiki-OS)

(RIOT)

RTOS/
Bare-metal

Monitor

ARM TrustZone-based SoC

R - Router
ED - End device
BR - Border router

IIoTEED: An Enhanced, Trusted Execution Environment for Industrial IoT Edge Devices

january/february 2017� 47

the functional and security requirements aren’t
totally fulfilled. The strong connectivity of
IoT environments require an end-to-end secu-
rity approach, addressing security at both the
device, network, and cloud levels. ARM Trust-
Zone addresses security at the device level, and is
being used as a foundation for a TEE realization.
However, the TEE specification doesn’t address the
real-time needs of industrial applications. IIoTEED
offers an enhanced TEE for IIoT edge devices.
Experiments demonstrated real-time properties
of the system that remain practically unaffected
while security is guaranteed from the outset.
However, to guarantee tight industrial security,
IIoTEED must be complemented with other critical
security strategies for edge devices (for example,
hardware-assisted device identity) to better lever-
age the three fundamental elements of CIA.

Current research aims at GlobalPlatform
standards’ implementation. With interoperability
and standardization as the top of our goals, we’ve
already implemented a huge part of the Global-
Platform TEE client and TEE internal specifica-
tions. Our future research roadmap will focus on
implementing our vision about the applicability
of this solution for resource-constrained edge
devices, as well as reinforcing their security by
integrating other hardware trust anchors.

Acknowledgments
This work has been supported by COMPETE (POCI-01-

0145-FEDER-007043) and Fundação para a Ciência e Tec-

nologia (FCT) under grant SFRH/BD/91530/2012 and UID/

CEC/00319/2013.

References
1.	 L.D. Xu, W. He, and S. Li, “Internet of Things in Indus-

tries: A Survey,” IEEE Trans. Industrial Informatics, vol. 10,

no. 4, 2014, pp. 2233–2243.

2.	 S.L. Keoh, S.S. Kumar, and H. Tschofenig, “Securing the

Internet of Things: A Standardization Perspective,” IEEE

Internet of Things J., vol. 1, no. 3, 2014, pp. 265–275.

3.	 A.-R. Sadeghi, C. Wachsmann, and M. Waidner, “Security

and Privacy Challenges in Industrial Internet of Things,”

Proc. 52nd Design Automation Conf., 2015, pp. 54:1–54:6.

4.	 R. Langner, “Stuxnet: Dissecting a Cyberwarfare Weapon,”

IEEE Security & Privacy, vol. 9, no. 3, 2011, pp. 49–51.

5.	 F. Armand and M. Gien, “A Practical Look at Micro-

Kernels and Virtual Machine Monitors,” Proc. 6th IEEE

Consumer Comm. and Networking Conf., 2009, pp. 1–7.

6.	 J. Winter, “Trusted Computing Building Blocks for Embed-

ded Linux-Based ARM TrustZone Platforms,” Proc. 3rd

Workshop on Scalable Trusted Computing, 2008, pp. 21–30.

7.	 C. Lesjak, D. Hein, and J. Winter, “Hardware-Security

Technologies for Industrial IoT: TrustZone and Security

Controller,” Proc. 41st IEEE Ann. Conf. Industrial Electronics

Soc., 2015, pp. 002589–002595.

8.	 J. Jang et al., “SeCReT: Secure Channel between

Rich Execution Environment and Trusted Execu-

tion Environment,” Proc. Network and Distributed System

Security Symp., 2015; www.internetsociety.org/doc/

secret-secure-channel-between-rich-execution-envi-

ronment-and-trusted-execution-environment.

Sandro Pinto is a researcher and a PhD student at

the Embedded Systems Research Group at Centro

Algoritmi, University of Minho. His research interests

include operating systems, virtualization, and security

for embedded, cyber-physical, and IoT-based systems.

Pinto has an MS in electronics engineering from the

University of Minho. Contact him at sandro.pinto@dei.

uminho.pt.

Tiago Gomes is a researcher and a PhD student at

the Embedded Systems Research Group at Centro

Algoritmi, University of Minho. His research interests

include embedded systems hardware/software code-

sign for resource constrained wireless devices, wireless

protocols for low-rate wireless personal area networks

and, network protocols for the IoT. Gomes has an MS in

telecommunications engineering from the University

of Minho. Contact him at mr.gomes@dei.uminho.pt.

Jorge Pereira is a researcher and a PhD student at the

Embedded Systems Research Group at Centro Algoritmi,

University of Minho, Portugal. His research interests

include operating systems, hardware/software code-

sign, virtualization, and security technologies. Pereira

has an MS in industrial electronics and computers

engineering from the University of Minho, Portugal.

Contact him at jorge.m.pereira@algoritmi.uminho.pt.

Jorge Cabral is an assistant professor with the University of

Minho, Portugal. His research interests include embed-

ded systems applications. Cabral has a PhD in micro-

systems technology from Imperial College London, UK.

Contact him at jcabral@dei.uminho.pt.

Adriano Tavares is an associate professor at the Univer-

sity of Minho, Portugal, and a visiting professor at

Jilin University, China. His research interests include

embedded, cyber-physical, and IoT-based systems’

modeling and design; system software design; system-

on-chip design; and engineering education. Tavares

has a PhD in industrial electronics from the University

of Minho. Contact him at atavares@dei.uminho.pt.

