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Introduction

In the present paper we consider the mathematical model of secondary processes and give
a general and rigorous method for solving special problems. We do not suppose that the
basic “process” is a time-process but consider the problem more generally, i.e. we replace
the time axis by an abstract space where the random points are distributed. The idea of
our general method was suggested by a lecture of C. Ryll–Nardzewski, who gave an
elegant solution of a telephone-problem.1 We shall return to this problem and its solution
in § 3 (Example 3.)

In § 1 we give a sufficient condition ensuring the Poisson character of a random point
distribution. In § 2 the secondary process generated by a random point distribution of
Poisson-type is considered and in § 3 some examples are given.

I express my sincere thank to P. Révész for his valuable remarks.

§. 1. The random point distribution of Poisson type

Let us consider an abstract space T in which a σ-algebra ST is given (cf. [3], p. 28) with
{t} ∈ ST for t ∈ T . We suppose that in T a random point distribution is given, i.e. a
random selection of a finite number of points of T . We suppose that if A ∈ ST , then the
number of the random points which are inside of the set A is a random variable, and we
denote it by ξ(A).

Another equivalent conception is the following: we consider the set Ω of all the purely
discontinuous measures defined on ST which have a finite number of discontinuities and
the magnitude of the discontinuities is equal to 1. We suppose that in the space Ω there
is a σ-algebra SΩ on which a probability measure P is defined with P(Ω) = 1. Finally, if
ω ∈ Ω and ξ(A) = ξ(ω,A) denotes the number of discontinuities of the measure ω in the
set A ∈ ST , then this function of ω is measurable with respect to SΩ for every fixed A.

1This lecture was held in Wroclaw at the Colloquium on Stochastic Processes in 1953.
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We shall suppose that SΩ is constructed so that it contains those realizations which
are determined by the conditions

(1) ξ(A1) = k1, . . . , ξ(An) = kn,

where A1, . . . , An are sets of SΩ and k1, . . . , kn non-negative integers, furthermore if S0

is the set of realizations satisfying a condition of the type (1), then SΩ is the smallest
σ-algebra containing S0. The probabilities of the events of type (1) wholly determine the
probability measure on SΩ.

If the sets A1, . . . , An in (1) are not disjoint, then there are disjoint sets of ST :
B1, . . . , Br such that each Ak can be represented as

Ak =
lk∑

l=1

Bil .

We suppose that the probability measure is constructed so that to disjoint sets there
belong independent random variables ξ(A). But in this case the probability distribution
on SΩ is completely determined by the joint distributions of the variables

(2) ξ(B1), . . . , ξ(Br).

The notion of a random point distribution of Poisson type is formulated in

Definition 1. A random point distribution is called of a Poisson type if there is a finite
measure λ(A)(A ∈ ST ) such that

(3) P(ξ(A) = k) =
λk(A)

k!
e−λ(A) (a ∈ ST ; k = 0, 1, 2, . . .).

In the following we shall give sufficient conditions under which a random point distri-
bution will be of Poisson type. First we introduce some other definitions.

Definition 2. We say that the finite system of sets B = {A1, . . . , Ar} is a decomposition
(or subdivision) of the set A ∈ ST if Ak ∈ ST (k = 1, . . . , r),

∑r
k=1 Ak = A and AiAk = 0

for i �= k.

Definition 3. Let B1 =
{

A
(1)
1 , . . . , A

(1)
r1

}
, B2 =

{
A

(2)
1 , . . . A

(2)
r2

}
be two subdivisions of the

set A ∈ ST . We say that B1 precedes B2,B1 < B2 if every A
(1)
i can be decomposed with the

aid of the sets A
(2)
k .

Let us introduce the notation

Pk(A) = P(ξ(A) = k) (k = 0, 1, 2, . . .)

and formulate the notion of an atomless random point distribution.

Definition 4. A random point distribution will be called atomless if for every t ∈ T we
have

P0({t}) = 1.

This means that the points are well distributed.
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For the space T we introduce the following condition:

a) For every set B ∈ ST there exists a sequence of subdivisions Bn with Bn < Bn+1 such
that if t1 ∈ B, t2 ∈ B, t1 �= t2, then for large n these are separated by the sets of Bn,
i.e. t1 ∈ A

(n)
i , T2 ∈ A

(n)
k where i �= k.

Theorem 1. 2 Let us suppose that the space T has the property a) and the random point
distribution satisfies the following conditions:

b) For every system A1, . . . , Ar of disjoint sets of ST , the random variables ξ(A1), . . .,
ξ(Ar) are independent.

c) The random point distribution is atomless.

Under these conditions we have

(4) Pk(A) =
λk(A)

k!
e−λ(A) (k = 0, 1, 2, . . .),

where λ(A) is a finite-valued, atomless measure defined on the σ-algebra ST .

Proof. First we prove that for every B ∈ ST , P0(B) > 0. In fact, if for a set B ∈ ST ,
P0(B) = 0, then according to Condition a) there exists a point t ∈ B with P0({t}) = 0
which contradicts Condition c). Let us introduce the notation

(5) λ(B) = − log P0(B) (B ∈ ST ).

We prove that λ(B) is a bounded, atomless measure on ST .

The additiveness of λ is obvious. Let B1, B2, . . . be a non-increasing sequence of sets
of ST with

∏∞
k=1 Bk = 0. Then P(ξ(Bn) → 0) = 1, hence P0(Bn) → 1 if n → ∞ which

implies the complete additiveness of λ. Since λ(B) < ∞ for every B ∈ ST , we conclude
that the measure λ is bounded. Finally, according to Condition c), λ is atomless.

Let B(n) =
{

B
(n)
1 , . . . , B

(n)
kn

}
be a sequence of subdivisions of the set A ∈ ST such that

(6) λ
(
B

(n)
k

)
≤ λ(A)

2n
(k = 1, . . . , kn).

We may suppose that B(n) has also the property described in Condition a). In fact, B(n)

can be chosen in such a way that B(n) < B(n+1) and if B(n)
0 is a sequence of subdivisions

satisfying c), then the superposition of B(n) and B(n)
0 has the required property.

If we introduce the new random variables

(7) ξ′
(
B

(n)
k

)
=

{
1 if ξ

(
B

(n)
k

)
= 1,

0 otherwise,
(k = 1, . . . , kn; n = 1, 2, . . .).

2Another proof for this theorem is given in [9].
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then

(8) P

(
lim

n→∞

kn∑
k=1

ξ′
(
B

(n)
k

)
= ξ(A)

)
= 1.

Clearly

(9) M
(
eiξ′(B(n)

k )u
)

= 1 − P1

(
B

(n)
k

)
+ P1

(
B

(n)
k

)
eiu = 1 + P1

(
B

(n)
k

)
(eiu − 1).

According to (8)

(10)
kn∏

k=1

{
1 + P1

(
B

(n)
k

)
(eiu − 1)

}
⇒ M

(
eiξ(A)u

)

but P1

(
B

(n)
k

)
≤ 1 − P0

(
B

(n)
k

)
≤ − log P0

(
B

(n)
k

)
(k = 1, . . . , kn, n = 1, 2, . . .), hence

∣∣∣∣∣
kn∏

k=1

{
1 + P1

(
B

(n)
k

)
(eiu − 1)

}
− exp

kn∑
k=1

P1

(
B

(n)
k

)
(eiu − 1)

∣∣∣∣∣
(11)

≤ 2
kn∑

k=1

P 2
1

(
B

(n)
k

)
≤ 1

2n−1
log

1
P0(A)

→ 0,

when n → ∞. Thus

(12) f(u,A) = M
(
eiξ(A)u

)
= lim

n→∞ e
�kn

k=1 P1(B
(n)
k )(eiu−1)

which shows that ξ(A) has a Poisson distribution. It follows from (12) that

(13) lim
n→∞

kn∑
k=1

P1

(
B

(n)
k

)
= − log P0(A) = λ(A).

Since λ(A)(A ∈ ST ) is a bounded, atomless measure, our theorem is completely proved.

�

Now, we introduce the notion of a σ-finite random point distribution of Poisson type.

Definition 5. Let us suppose that in the space T there is a random selection of a countable
number of points so that if ξ(A)A ∈ ST is the number of random points lying in A, then
the following conditions hold:

1◦ For every A ∈ ST , ξ(A) is a random variable. We permit here random variables
taking on the +∞ with a positive probability.

2◦ If A1, A2, . . . is a sequence of disjoint sets of ST , then the random variables ξ(A1),
ξ(A2), . . . are independent.
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3◦ There is a σ-finite measure λ defined on ST such that

P(ξ(A) = k) =
λk(A)

k!
e−λ(A) (k = 0, 1, 2, . . .),

provided that A ∈ ST and λ(A) < ∞.

In this case we say that this is a σ-finite random point distribution of Poisson type.

It follows from the above conditions that for every A ∈ ST the probability P(ξ(A) = ∞)
equals either 0 or 1. In fact, the set A can be represented as A =

∑∞
k=1 Ak where

Ak ∈ ST (k = 1, 2, . . .), AiAk = 0 for i �= k and λ(Ak) < ∞ (k = 1, 2, . . .). According to
Condition 1◦ the random variables ξ(A1), ξ(A2), . . . are independent, hence the sum

∞∑
k=1

ξ(Ak)

is either finite or infinite with probability 1 (cf. [4], p. 60). But

ξ(A) =
∞∑

k=1

ξ(Ak)

and the statement follows.

§ 2. The secondary process

In this section we suppose that in the space T there is a random point distribution of
Poisson type with M(ξ(A)) = λ(A)(A ∈ ST ) where ξ(A) is the number of random points
lying in the set A.

In many practical problems the case arises that every random point is a starting point
of a further “happening”. This happening may be e.g. the telephone conversation follow-
ing the call or the random path of a microbe supposing that the microbes were originally
distributed according to a Poisson law on the plane etc. In each case we may character-
ize the whole phenomenon by a finite sequence of data (t1, y1), . . . , (tn, yn), the elements
t1, . . . , tn being a realization of a random point distribution in the space T and the elements
y1, . . . , yn some characteristics of the corresponding happenings such as the durations of
the conversations, the paths of the bacteria etc. Thus the sample space of the phenomenon
will be the space of the random point distributions in the product space Z = T ×Y , where
Y = {y} is that space, the elements of which characterize the secondary happenings.

In many practical applications we deal with problems in which Y may not be considered
as a Euclidean but a more general space. We consider the problem generally and regard
Y as an abstract space.

We suppose that in the space Y there is a σ-algebra SY consisting of some subsets of
Y and denote by SZ the σ-ring ST × SY .
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We shall use the notation Ω for the sample space of the underlying random point
distribution of Poisson type. The sample space of the secondary process arises then in
such a way that we replace each ω ∈ Ω by a set of point-systems in the space T × Y .

Thus we form a new probability space Ω1, the elements of which are the point distrib-
utions (t1, y1), . . . , (tn, yn) where (t1, . . . , tn) ∈ Ω and y1, . . . , yn are arbitrary elements of
Y . For the probability measure on Ω1 we keep the notation P.

Let us define a class of sets T , the elements of which are sets of Ω1, as follows. If n is
a non-negative integer and D = A × C(A ∈ ST , C ∈ SY ), then {(t1, y1), . . . , (tn, yn)} ∈ T
provided that exactly k (0 ≤ k ≤ n) of the points (t1, y1), . . . , (tn, yn) fall in the set D.
Now, SΩ1 is defined as the smallest σ-algebra containing the class of sets T , or by symbols,
SΩ = S(T ).

If D ∈ SZ , then the definition of Ω1 implies that the number of random points being in
the set D, which we shall denote in the sequel by η(D) = η(ω1,D) (ω1 ∈ Ω1), is a random
variable. In other terms, η(D) is measurable with regard to the σ-algebra SΩ1 .

Consider the σ-algebra SΩ. This is obviously isomorphic to a system of sets of SΩ1 .
From now on we shall not consider the underlying random point distribution separately
from the whole phenomenon, hence it will not give rise to a misunderstanding if we denote
this isomorphic σ-algebra also by SΩ and apply the notations ω, ξ(A)(A ∈ ST ) too. We
consider the conditional probabilities

P(η(D1) = k1, . . . , η(Dn) = kn | SΩ)
(14)

×(Di = Ai × Ci, Ai ∈ ST , Ci ∈ SY ; i = 1, . . . , n)

existing with probability 1 (cf. [2], Chapter I). If ω = (t1, . . . , tr) denotes the variable
element (variable realization) of the probability space Ω, then another notation for (14) is
the following:

(15) P(η(D1) = k1, . . . , η(Dn) = kn | t1, . . . , tr).

We make an assumption expressing that the secondary happenings corresponding to dif-
ferent points of T are independent as follows:

α) If Di = Ai × Ci where Ai ∈ ST , Ci ∈ SY , ti ∈ Ai (i = 1, . . . , n), AiAk = 0 for i �= k,
then

(16) P(η(D1) = 1, . . . , η(Dn) = 1 | t1, . . . , tn) = μ(C1, t1) . . . μ(Cn, tn),

where μ(C, t)(C ∈ SY ) denotes a probability measure defined on the σ-algebra SY while t
is an element of T . In other terms, μ(C, t)(C ∈ SY ) is the probability distribution of the
secondary happening if its starting point is t.

For every fixed C ∈ SY the function μ(C, t)(t ∈ T ) is measurable with respect to the
σ-ring ST . In fact, if we consider the set of realizations Ω(1) of the sample space Ω which
are composed only of one random point t, then by (16) we get

P(η(D) = 1 | t) = μ(C, t),
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where D = T × C, C ∈ SY , T ∈ ST and t ∈ T . Thus μ(C, t) as a function of ω = (t)
is measurable relative to the σ-algebra SΩ given in the space Ω. Our assumption on SΩ

implies that a set {ω} = {(t)} of Ω(1) is measurable with respect to SΩ if and only if the
set {t} is measurable with respect to ST . But

{ω : Ω(1), a ≤ P(η(D) = 1 | ω) ≤ b} ∈ SΩ,

hence
{t : a ≤ μ(C, t) ≤ b} ∈ ST

for every pair a ≤ b.

Now we are in a position to formulate our main theorem.

Theorem 2. If for the random point distribution in the product space T × Y Condition
α) holds, then it is of Poisson type, i.e. to disjoint sets D1, . . . ,Dn of SZ there correspond
independent random variables depending on Poisson distributions and if D = A × C(A ∈
ST , C ∈ SY ), then

(17) M(η(D)) =
∫

C
μ(A, t)λ(dt).

If D′ is an arbitrary set of SZ , then

(18) M(η(D′)) = ν∗(D′)

where ν∗ denotes the extended measure of M(η(D)) which is defined on the rectangular
sets D = A × C(A ∈ ST , C ∈ SY ).

Before turning to the proof of Theorem 2 we prove a

Lemma. Let us consider the subspace Ω(n) of Ω determined by the condition ξ(ω,A) =
n(A ∈ ST ) with the corresponding conditional probability measure P

(
· | Ω(n)

)
. If f(t)(t ∈

T ) is a measurable complex-valued function and

(19) ϕ(ω) = f(t1) . . . f(tn) for ω = (t1, . . . , tn) ∈ Ω(n),

then

(20)
∫

Ω(n)
ϕ(ω)P

(
dω | Ω(n)

)
=
(∫

A
f(t)

λ(dt)
λ(A)

)n

.

Proof of the Lemma. We consider the product space T (n) = A× . . .×A. To every
ω = (t1, . . . , tn) we order the n! points (ti1 , . . . , tin) where tij ∈ A and (i1, . . . , in) run over
all permutations of the elements 1, . . . , n. In this case every point distribution (t1, . . . , tn)
in the set A is represented by n! points in the set T (n). This correspondence in one-to-one.

Let us introduce a terminology: a set {(t1, . . . , tn)} of T (n) will be called symmetric if for
every permutation (i1, . . . , in) of the numbers 1, . . . , n it is identical with {(ti1 , . . . , tin)}.
In this sense to every set {(t1, . . . , tn)} of Ω(n) there corresponds a symmetric set in T (n).
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A complex-valued function g(t1, . . . , tn) will be called symmetric if for every permutation
(i1, . . . , in) of the numbers 1, . . . , n we have

g(t1, . . . , tn) = g(ti1 , . . . , tin).

In the mapping Ω(n) → T (n) we have constructed a new probability space instead
of Ω(n). Let J (n) denote the product σ-algebra in T (n) which is the smallest σ-algebra
containing the sets of the type A1 × . . . × An where Ai is a measurable subset of A.

If a set {(t1, . . . , tn)} was measurable in Ω(n), its image in T (n) is measurable with
respect to J (n). Conversely, every symmetric set belonging to J (n) is an image of a
measurable set of Ω(n). In fact, SΩ is generated by the conditions ξ(A1) = k1, . . . , ξ(An) =
kn where AiAk = 0 for i �= k. But this can be formulated with the language applied for
T (n) so that the random element (i.e. the n! points)

∑
(i1,...,in)(ti1 , . . . , tin) belongs to a

measurable (with respect to J (n)) symmetric set of T (n). On the other hand, the event
that

∑
(i1,...,in)(ti1 , . . . , tin) belongs to a measurable (with respect to (J (n)) and symmetric

set, which is a finite sum of rectangular measurable sets of T (n), can be expressed so that
ξ(A1) = k1, . . . , ξ(An) = kn with some A1, . . . , An and k1, . . . , kn.

Let J (n)
1 denote the σ-algebra of the symmetric sets of J (n). If a symmetric function

g(t1, . . . , tn) is measurable in Ω(n), then, according to what has been said above, the
function g(t1, . . . , tn) is measurable with respect to J (n)

1 .

Let us calculate the probability

P
(
ξ(A1) = k1, . . . , ξ(Ar) = kr | Ω(n)

)
for Ai ∈ A ST (i = 1, . . . , n), AiAk = 0 if i �≡ k and A =

∑r
i=1 Ai. A simple argument

shows that (n = k1 + · · · + kr)

P
(
ξ(A1) = k1, . . . , ξ(Ar) = k | Ω(n)

)
(21)

=
n!

k1! . . . kr!

(
λ(A1)
λ(A)

)k1

. . .

(
λ(Ar)
λ(A)

)kr

.

This means that if A′ ⊆ T (n) is the image of the set determined by ξ(A1) = k1, . . . , ξ(Ar) =
kr, then

(22) P

⎛
⎝ ∑

(i1,...,in)

(ti1 , . . . , tin) ∈ A′

⎞
⎠ =

n!
k1! . . . kr!

(
λ(A1)
λ(A)

)k1

. . .

(
λ(Ar)
λ(A)

)kr

which is equal to

(23) λ(n)(A′),

where λ(n) denotes the product measure

(24) λ(n) =
λ

λ(A)
× · · · × λ

λ(A)
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defined on J (n).

The sets of the type A′ generate the σ-algebra J (n)
1 , hence if B ∈ J (n)

1 , then the random
element of T (n) belongs to B with the probability λ(n)(B)/λn(A).

This implies at once that

(25)
∫

Ω(n)

ϕ(ω)P
(
dω | Ω(n)

)
=
∫

T (n)

f(t1) . . . f(tn) dλ(n) =
(

1
λ(A)

∫
A

f(t) dλ

)n

what was to be proved. �

Proof of Theorem 2. In the first step of the proof we show that if

Dk = Ak × Ck (Ak ∈ ST , Ck ∈ SY ; k = 1, . . . , n)

and DiDk = 0 for i �= k, then the random variables η(D1), . . . , η(Dn) are independent,
η(Dk) has a Poisson-distribution with the parameter

(26)
∫

Ak

μ(Ck, t)λ(dt)

for k = 1, . . . , n.

We reduce this problem to another one which is more convenient for our method.
The sets A1, . . . , An and C1, . . . , Cn can be represented as sums of disjoint groups of
sets A′

1, . . . A
′
m and C ′

1, . . . , C
′
r belonging to ST and SY , respectively. Thus it suffices to

prove that the random variables η(D′
jl) (D′

jl = A′
j × C ′

l ; j = 1, . . . ,m; l = 1, . . . , r) are
independent and depend on Poisson distributions with

(27) M(η(D′
jl)) =

∫
Aj

μ(C ′
l , t)λ(dt).

Let Ω(N1,...,Nm) denote the set of those ω’s for which ξ(A′
1) = N1, . . . , ξ(A′

r) = Nr and
consider the conditional probability

P
(
η(D′

jl) = kjl, j = 1, . . . ,m, l = 1, . . . , r | Ω(N1,...,Nm)
)

(28)

=
∫

Ω(N1,...,Nm)
P
(
η(D′

jl) = kjl, j = 1, . . . ,m, l = 1, . . . , r | ω
)
P
(
dω | Ω(N1,...,Nm)

)
,

where the integration is taken with respect to the conditional probability measure

P
(
E | Ω(N1,...,Nm)

)(
E ∈ Ω(N1,...,Nm)SΩ

)
and Nj ≥

∑r
l=1 kjl. (If for at least one j,Nj <

∑r
l=1 kjl, then (28) is equal to 0.)

If ω = (T11, . . . , t1N1 , t21, . . . , t2N2 , . . . , tm1, . . . , tmNm) where tjs ∈ A′
j (s = 1, . . . , Nj ;

j = 1, . . . ,m), then the characteristic function of the integrand in (28) equals
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m∑
j=1

r∑
l=1

eiujlkjlP(η(Djl) = kjl, j = 1, . . . ,m, l = 1, . . . , r | ω)

=
m∏

j=1

Nj∏
s=1

{
1 −

r∑
l=1

μ(C ′
l , tjs) +

r∑
l=1

μ(C ′
l , tjs)e

iujl

}
(29)

=
m∏

j=1

Nj∏
s=1

{
1 +

r∑
l=1

μ(C ′
l , tjs)(e

iujl − 1)

}
.

Using (29), the characteristic function of the conditional probabilities in (28) equals

m∑
j=1

r∑
l=1

eiujlkjlP
(
η(D′

jl) = kjl, j = 1, . . . ,m, l = 1, . . . , r | Ω(N1,...,Nm)
)

=
∫

Ω(N1,...,Nm)

m∑
j=1

r∑
l=1

eiujlkjlP
(
η(D′

jl) = kjl, j = 1, . . . ,m,

(30)
l = 1, . . . , r | ω)P

(
dω | Ω(N1,...,Nm)

)

=
∫

Ω(N1,...,Nm)

N∑
j=1

N∑
s=1

{
1 +

r∑
l=1

μ(C ′
l , tjs)(e

iujl − 1

}
P
(
dω | Ω(N1,...,Nm)

)
.

Since

(31) P
(
Ω(N1,...,Nm)

)
= P

(
Ω(N1) . . . Ω(Nm)

)
= P

(
Ω(N1)

)
P
(
Ω(Nm)

)
,

(30) equals furthermore

(32)
m∏

j=1

∫
Ω(Nj )

Nj∏
s=1

{
1 +

r∑
l=1

μ(C ′
l , tis)(e

iujl − 1)

}
P
(
dω | Ω(Nj)

)
.

Now, let us apply the Lemma for the factors in (32). For a fixed j the function

Nj∏
s=1

{
1 +

r∑
l=1

μ(C ′
l , tjs)(e

iujl − 1)

}

satisfies the condition of the Lemma, hence

∫
Ω(Nj)

Nj∏
s=1

{
1 +

r∑
l=1

μ(C ′
l , tjs)(e

iujl − 1)

}
P
(
dω | Ω(Nj)

)

=

(∫
A′

j

{
1 +

r∑
l=1

μ(C ′
l , t)(e

iujl − 1)

}
λ(dt)
λ(A′

j)

)Nj

(33)

=

(
1 +

r∑
l=1

1
λ(A′

j)

∫
A′

j

μ(C ′
l , t)λ(dt)(eiujl − 1)

)Nj

(j = 1, . . . ,m).
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Introducing the notation

(34) bj =
r∑

l=1

1
λ(A′

j)

∫
A′

j

μ(C ′
l , t)λ(dt)(eiujl − 1) (j = 1, . . . ,m),

by (30), (32) and (33) we conclude
m∑

j=1

r∑
l=1

eiujlkjlP(η(D′
jl) = kjl, j = 1, . . . ,m, l = 1, . . . , r)

=
∑

N1,...,Nm

m∑
j=1

r∑
l=1

eiujlkjlP
(
η(D′

jl) = kjl, j = 1, . . . ,m, l = 1, . . . , r | Ω(N1,...,Nm)
)

.

(35)

m∏
s=1

λNs(A′
s)

Ns!
e−λ(A′

s) =
∑

N1,...,Nm

m∏
j=1

(1 + bj)Nj
λNj (A′

j)
Nj !

e−λ(A′
j)

=
∑

N1,...,Nm

m∏
j=1

(λ(A′
j) + λ(A′

j)bj)
Nj!

e−λ(A′
j),

where N1, . . . , Nm run independently of each other through the non-negative integers.
Thus the joint characteristic function of the random variables η(D′

jl) (j = 1, . . . ,m; l =
1, . . . , r) has the form

(36)
m∏

j=1

∞∑
Nj=0

(λ(A′
j) + λ(A′

j)bj)Nj

Nj !
e−λ(A′

j ) =
m∏

j=1

eλ(A′
j)+λ(A′

j )bje−λ(A′
j) =

m∏
j=1

eλ(A′
j)bj .

Taking into account (34), we get finally

(37) M

�
ei

�m
j=1

�r
l=1 ujlη(D′

jl)
�

=
m∏

j=1

r∏
l=1

exp

{∫
A′

j

μ(C ′
l , t)λ(dt)

}
(eiujl − 1)

and this completes the first step of the proof.

Now, let us consider the random variables η(D)(D ∈ Sz). We have proved that η(D) is
a completely additive stochastic set function on the ring of sets the elements of which are
finite sums of sets belonging to T . (Cf. [8], p. 215–216). Let R(T0) denote this ring and
S(R(T0)) the smallest σ-ring containing R(T0). Clearly SZ = S(R(T0)). Since η(D) ≥ 0
for D ∈ R(T0), by Theorem 3.14 of [8] there is one and only one completely additive
stochastic set function η∗(D)(D ∈ SZ) for which

P(η∗(D) = η(D)) = 1 if D ∈ R(T0).

We prove that P(η(D) = η∗(D)) = 1 for D ∈ SZ . Let M denote the set of those D’s
for which P(η(D) = η∗(D)) = 1 and let D1,D2, . . . be a monotone sequence of sets of M

with limn→∞ Dn = D. η∗ is a completely additive stochastic set function on SZ , hence

P
(

lim
n→∞ η∗(Dn) = η∗(D)

)
= 1.
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On the other hand, η(D) denotes the number of random points lying in the set D, hence

P
(

lim
n→∞ η(Dn) = η(D)

)
= 1.

Thus
P(η∗(D) = η(D)) = 1.

This means that M is a monotone class of sets (cf. [3] , p. 27). Since R(T0) ⊆ M, by
Theorem B of [3], p. 27, M = S(R(T0)), what was to be proved. Thus η(D)(D ∈ Sz) is a
completely additive stochastic set function.

Let us introduce the notation

(38) ν(D) =
∫

A
μ(C, t)λ(dt) (A ∈ ST , C ∈ SY ).

We have shown that if D′ ∈ R(T0), then η(D′) has a Poisson distribution and

M(η(D′)) = ν(D′).

Let D1,D2, . . . be a sequence of disjoint sets of R(T0) with D =
∑∞

k=1 Dk ∈ R(T0). Since
η(Dk) ≥ 0 (k = 1, 2, . . .) and

P

(
η(D) =

∞∑
k=1

η(Dk)

)
= 1,

it follows that

ν(D) = M(η(D)) =
∞∑

k=1

M(η(Dk)) =
∞∑

k=1

ν(Dk).

Thus ν(D) is a measure on R(T0). If ν∗ denotes the extended measure of ν from R(T0)
to SZ , then

(39) M(η(D)) = ν∗(D) for D ∈ SZ .

It is sufficient to show that M(η(D)) is a measure on SZ . But if D1,D2, . . . is a sequence
of disjoint sets of SZ , then

P

(
η(D) =

∞∑
k=1

η(Dk)

)
= 1

(
D =

∞∑
k=1

Dk

)
,

hence (M(η(D)) < ∞, η(Dk) ≥ 0, k = 1, 2, . . .)

M(η(D)) =
∞∑

k=1

M(η(Dk)).

this completes the proof of Theorem 2. �
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Remark. If the probability distributions μ(C, t)(C ∈ SY , t ∈ T ) do not depend on
t, i.e. if the secondary happenings have the same distributions independently of their
starting points, then the random variable η(D)(D ∈ SZ) has a Poisson distribution with
the parameter ν∗(D) where ν∗ is the product measure

(40) ν∗ = μ × λ.

In many of the practical applications occurs this simple case.

The case when the random point distribution in T is σ-finite, can be treated quite anal-
ogously. In this case Ω and Ω1 are the ensembles {(t1, t2, . . .)} and {((t1, y1)(t2, y2), . . .)},
respectively. According to Condition 3◦ in Definition 5 for every B ∈ ST there is a se-
quence of disjoint sets B1, B2, . . . (Bk ∈ ST , k = 1, 2, . . .) such that

∑∞
k=1 Bk = B and

λ(Bk) < ∞ (k = 1, 2, . . .). Thus every problem can be solved first inside of the sets
B1, B2, . . . and the formulate the general assertion. Hence we obtain

Theorem 3. Let us suppose that in the space T there is a σ-finite random point distribution
of Poisson type with

M(ξ(A)) = λ(A) (A ∈ ST )

where ξ(A) denotes the number of random points being in the set A.

Suppose furthermore that for every B ∈ ST with λ(B) < ∞, the corresponding random
point distribution (i.e. when T is replaced by B) satisfies the conditions of Theorem 2.

In this case the random point distribution given in the space Z = T ×Y is σ-finite and
if Poisson-type. Finally, if η(D) is the number of random points being in the set D ∈ SZ ,
then

(41) M(η(D)) = ν∗(D),

where

(42) ν∗(D′) =
∫

A
μ(C, t)λ(dt) for D′ = A × C(A ∈ ST , C ∈ SY ).

The proof can be carried out simply by reducing it to Theorem 2 and will be omitted.

§ 3. Examples

1. A telephone-problem. Let us suppose that the calls arrive at the telephone centre
according to a Poisson process and denote ξt the number of calls arrived during the time
interval (0, t). We restrict ourselves to a finite time interval 0 ≤ t ≤ t0 where t0 > 0.
Suppose that each call is followed by a conversation the duration of which is also a random
variable. If a conversation began at time t, then the probability distribution of its duration
will be denoted by F (x, t).

In this case the space Y is the half real axis [0,∞) and if J = [a, b) is an interval where
0 ≤ a < b < ∞, then

(43) μ(J, t) = F (b, t) − F (a, t).

13



The product space T × Y is the following stripe of the plane

{(t, y) : 0 ≤ t ≤ t0, 0 ≤ y}.

We can imagine the situation so that at every point of the calls we draw a vertical line
and measure on it the duration of the corresponding conversation. If ξ(A) is the number
of calls arriving in the set A ⊆ [0, t0] where A is a Borel-set, then we suppose ξ(A) to be a
completely additive stochastic set function defined on the Borel-sets of the interval [0, t0].
Thus if μ(C, t) is defined on the Borel-sets of the axis [0,∞), then in the plane to every
Borel set D ⊆ T × Y there corresponds a random variable η(D).

According to Theorem 2, η(D)(D ∈ SZ) has a Poisson distribution, and if D = J × I
where

J = [a, b), 0 ≤ a < b < t0, I = [c, d), 0 ≤ c < d < ∞,

then
M(η(D)) =

∫
I
μ(J, t)λ(dt) =

∫
I
(F (b, t) − F (a, t))λ(dt).

Let ζt denote the number of conversations going on at time t (t ≤ t0). Then clearly
ζt = η(D), where D denotes the closed set straffed in Figure 1. (This was the idea of
C. Ryll–Nardzewski). Thus by Theorem 2, ζt = η(D) has a Poisson distribution with

M(ζt) =
∫

[0,t]
(1 − F (t − τ, τ))λ(dτ).

t τ

y

Figure 1:

If F (x, t) is independent of t, then

(44) M(ζt) =
∫

[0,t]
(1 − F (t − τ))λ(dτ).
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In particular if F (x, t) = 1 − e−0x, then

(45) M(ζt) = e−ct

∫
[0,t]

ecτλ(dτ).

Finally, if ξt is a homogeneous process with M(ξt) = λt, then

(46) M(ζt) = λe−ct

∫ t

0
ecτ dτ =

λ

c
(1 − e−ct).

The case when t > t0, can be treated similarly.

If ζt is defined for all t(−∞ < t < ∞), then we can apply Theorem 3 and in the
homogeneous case (46) becomes λ/c.

With the aid of our model it is possible to calculate the correlation coefficients R(ζt, ζs)
and solve other problems, but we will not enter into the details.

Formulae (46) and (44) (the letter with a continuous λ(t)) were published in [10] and
[11], respectively. Formula (46) can be derived from the results of [5] and [7] where the
problem is solved with other assumptions.

Example 2. In the phototechnique an interesting problem is to calculate the transpar-
entness of a film darked by a finite number of emulsion spheres distributed at random in
the film.

Following B. Picinbono we make for the problem a plane model and imagine that
the emulsions are circles the centres of which are distributed according to a random point
distribution of Poisson type.

For simplicity we suppose the film to be infinite large so that it covers the whole plane
{(x1, x2)} = {(t)}. Each emulsion radius is supposed to be a random variable having a
probability distribution F (x, t) = F (x;x1, x2), provided that the centre is at the point
t = (x1, x2).

In this case T = {t = (x1, x2) : −∞ < x1 < ∞, −∞ < x2 < ∞}, Y = {y : 0 ≤ y} and
T × Y is the upper half of the three-dimensional Euclidean space {(x1, x2, y)}. ST is the
system of Borel sets of T (including the sets with infinite measure) ξ(A)(A ∈ ST ) is the
number of centres being in the set A. ξ(A)(A ∈ ST ) is supposed to be a completely additive
stochastic set function, the random variables ξ(A) of which have Poisson distributions with

M(ξ(A)) = λ(A) (A ∈ ST ).

In other terms, the emulsion centres form a σ-finite random point distribution of Poisson
type. SY is the system of Borel sets of Y and SZ is the system of Borel sets of Z = T ×Y .

Let ζt = ζ(x1, x2) denote the number of emulsion circles covering their point t. This
equals the number of random points lying in the reversed straight cone the apex of which
is at t = (x1, x2) and has an angle 90◦ (Fig. 2).

Thus if D denotes this closed cone, then ζt = η(D) and according to Theorem 3

(47) M(ζt) = M(η(D)) =
∫ ∞

0

∫
(μ−x1)2+(v−x2)2≤x2

(1− F (x, u − x1, v − x2))λ(du,dv) dx.
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If F (x, x1, x2) is independent of (x1, x2) and has a density function f(x), then (47) reduces
to

(48) M(ζt) =
∫ ∞

0
f(x)λ(Ax) dx,

where Ax = {(u, v) : (u − x2
1) + (v − x2)2 ≤ x2}.

(x1,x )2

Figure 2:

If we have on the plane a homogeneous random point distribution, then on the whole
plane there is an infinite number of random points with probability 1. In this case

M(ξ(A)) = λ|A| (A ∈ S),

where |A| is the Lebesgue-measure of the set A. Hence (48) will be equal to

(49) M(ζt) = λπ

∫ ∞

0
x2f(x) dx.

In the practically interesting cases we suppose that the integral in (49) is finite. Formula
(49) was published by B. Picinbono [6].

It is possible to solve also the problem for the case of a finite film and calculate other
quantities so as the correlation coefficients R(ζt1 , ζt2) etc.

Particular interesting has the random variable

ζ ′t =
{

1 if ζt = 0,
0 if ζt �= 0.

If we consider the case of a finite film and a homogeneous random point distribution, then
the value of the stochastic integral

χ =
∫ M1

0

∫ M2

0
ζ ′x1,x2

dx1 dx2 = lim
max Δx

(k)
1 →0

max Δx
(l)
2

→0

∑
k

∑
l

ζ
x
(k)
1 ,x

(l)
2

Δx
(k)
1 Δx

(l)
2
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is the transparence of the film covering the rectangle {(x1, x2) : 0 ≤ x1 ≤ M1, 0 ≤ x2 ≤
M2}. Since 0 ≤ ξ′x1,x2

≤ 1, we have

M(χ) =
∫ M1

0

∫ M2

0
M(ζ ′x1,x2

) dx1 dx2 =
∫ M1

0

∫ M2

0
P (ζx1,x2 = 0) dx1 dx2.

An analogous formula can be derived for the case of an infinite film.

Example 3. Let us consider a σ-finite random point distribution of Poisson type in the n-
dimensional Euclidean space T . Let ST be the system of Borel sets of T and ξ(A)(A ∈ ST )
the number of random points being in the set A with M(ξ(A)) = λ(A).

In many practical problems occurs the situation that the random points distributed in
the space T wander in the time, and the curves belonging to different random points are
independent of each other.

In our model the phenomenon can be described as follows. Let Y = {ϕ1(x), . . . , ϕn(x)}
(x denotes the time parameter) be a function vector space, where the functions ϕk are
defined on the half time axis 0 ≤ x < ∞ and denote SY a σ-algebra of sets of Y . We
suppose that every set {(ϕ1(x), . . . , ϕn(x)) : ak ≤ ϕk(x0) ≤ bk k = 1, . . . , n} is an element
of SY where [ak, bk] are arbitrary intervals and 0 ≤ x0 < ∞. Denote μ(C, t)(C ∈ SY , t ∈
T ) a system of measures depending on the parameter t = (x1, . . . , xn). μ(C, t) is the
probability distribution of the path of a random point if its original place was at t.

Suppose that our condition α) holds in the product space Z = T × Y . We can then
solve different problems. The first is the following: what is the probability that at time x
there are exactly k points in a set A ∈ ST .

This event can completely be characterized so that

η(D) = k,

where D ≤ SZ is the set of those elements (x1, . . . , xn, ϕ1(x), . . . , ϕn(x)) of T × Y for
which (ϕ1(x) − x1, . . . , ϕn(x) − xn) ∈ A. Now, the solution is that η(D) has a Poisson
distribution with the parameter

(50) M(η(D)) =
∫

T
μ(Cx − t, t)λ(dt),

where Cx − t denotes the set of those elements y = (ϕ1(x), . . . , ϕn(x)) for which (ϕ1(x)−
x1, . . . , ϕn(x) − xn) ∈ A.

If ξ(A) is a homogeneous point distribution with M(ξ(A)) = λ|A| where |A| is the
Lebesgue-measure of the set A, μ(C, t) is independent of t for every C ∈ SY and ξX(A) is
the number of the particles in the set A at time x, then

(51) M(ξx(A)) = λ

∫
T

μ(Cx − t) dt.

The integral in (51) is an n-dimensional Lebesgue-integral. If n = 1, then we obtain as a
special case the result of Doob (cf. [2] pp.).

With the aid of our method it is possible also to solve and generalize the problems
considered by L. Takács [12] , [13]. We can thus obtain similar results but as the
practically interesting formulae are given in [12] and [13], we do not enter into the details.
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