Напряжённость магнитного поля
Напряжённость магнитного поля | |
---|---|
Размерность | L−1I |
Единицы измерения | |
СИ | А/м |
СГС | Э |
Примечания | |
векторная величина |
Напряжённость магни́тного по́ля — векторная физическая величина, равная разности векторов магнитной индукции и намагниченности в рассматриваемой точке. Обозначается символом .
В Международной системе единиц (СИ):
- ,
где — радиус-вектор точки, — магнитная постоянная. Единица измерения (в СИ) — А/м (ампер на метр).
Входит в уравнения Максвелла. По физическому смыслу представляет вклад внешних (по отношению к данной точке пространства) источников магнитного поля в магнитную индукцию в данной точке.
Понятие напряжённости магнитного поля
[править | править код]Под напряжённостью магнитного поля понимается разность векторов магнитной индукции и намагниченности в данной точке:
В простейшем случае изотропной (по магнитным свойствам) неферромагнитной среды и в приближении низких частот намагниченность зависит от приложенного магнитного поля с индукцией линейно:
- .
Исторически вместо описания этой линейной зависимости коэффициентом принято использовать связанные величины — магнитную восприимчивость или магнитную проницаемость :
Отсюда может также быть получена связь и .
Единицы измерения напряжённости
[править | править код]В системе СГС напряжённость магнитного поля измеряется в эрстедах (Э), в системе СИ — в амперах на метр (А/м). В технике эрстед постепенно вытесняется единицей СИ — ампером на метр.
Соотношения: 1 Э = 1000/(4π) А/м ≈ 79,5775 А/м; 1 А/м = 4π/1000 Э ≈ 0,01256637 Э.
Уравнения Максвелла для напряжённости
[править | править код]Из четырёх фундаментальных уравнений теории электромагнетизма — уравнений Максвелла — напряжённость магнитного поля входит в три, в том числе в одно в явном виде (уравнения приведены в СИ):
- ,
где — плотность тока проводимости, — вектор электрической индукции, — напряжённость электрического поля. В магнитостатическом пределе остаются два уравнения в форме
- .
Для большинства сред магнитная индукция и напряжённость магнитного поля связаны как .
Поведение напряжённости на границе сред
[править | править код]На границе раздела двух материалов, вдоль которой не течёт поверхностный ток проводимости, параллельная границе компонента напряжённости не претерпевает разрыва.
Если же упомянутый поверхностный ток присутствует, то величина разности этой компоненты с одной и другой стороны границы как раз равна .
Физический смысл величины напряжённости
[править | править код]В соответствии с определением вектор представляет вклад в магнитную индукцию, обусловленный действием внешних (по отношению к конкретной рассматриваемой точке) причин, создающих поле. Таковыми могут быть токи проводимости , переменное во времени электрическое поле (ток смещения ), а также локализованные молекулярные токи . Токами создаётся намагниченность, в том числе в областях вне рассматриваемой точки, и эта намагниченность влияет на распределение поля во всём пространстве.
Кроме внешних причин, вклад в даёт намагниченность непосредственно в рассматриваемой точке, но этот вклад вычитается.
Оперирование вектором не позволяет радикально упростить расчёты. Для нахождения профиля поля (будь то или ) обычно необходимо решать уравнения Максвелла с учётом соотношений, связывающих и .
Некорректная трактовка физического смысла
[править | править код]Распространено ошибочное восприятие «внешних причин», ответственных за создание поля . А именно, иногда считается, что якобы во всех случаях может вычисляться по заданному распределению токов в пространстве, как если бы магнетики отсутствовали (скажем, по формуле Био—Савара—Лапласа без ). Аналогичный вариант недоразумения: полагается, что при внесении куска магнетика в известное магнитное поле это поле якобы не претерпевает изменений, а изменяется только согласно поведению .
В качестве псевдомотивации акцентируется тот факт, что в уравнении Максвелла для фигурируют только токи проводимости, а параметры магнетиков вообще отсутствуют. Однако нельзя игнорировать уравнение для (то есть для )), в которое входит магнитная проницаемость. В числе прочего о влиянии магнетиков на вектор говорит преломление силовых линий на границе среда—вакуум, не параллельной .
Некоторые частные случаи и примеры
[править | править код]- В вакууме
В вакууме (или в отсутствие среды, способной к магнитной поляризации, а также в случаях, когда последняя пренебрежима) напряжённость магнитного поля совпадает с вектором магнитной индукции с точностью до коэффициента, равного 1 в СГС и в СИ.
- В магнетиках некоторых форм
В случае однородного, с фиксированным , образца магнетика определённой формы: эллипсоида, цилиндра и ряда других — и однородного до внесения такого образца поля , внутри образца создаётся однородное поле , отличное от и вычисляемое из соотношения (последнее равенство — для неферромагнитных сред). Здесь — размагничивающий фактор.
- В цилиндрическом образце
Для помещённого в соленоид (так, что поле параллельно образующим) длинного цилиндрического образца с поперечным сечением любой формы, изготовленного из любой комбинации материалов (но так, чтобы не было изменений в продольном направлении), напряжённость везде в образце одинакова, а размагничивающий фактор равен нулю. Эта напряжённость совпадает (быть может, в зависимости от принятых единиц измерения, с точностью до постоянного коэффициента, как, например, в системе СИ, что не меняет идеи) с таким вектором магнитной индукции, какой «был бы, если бы магнетика не было».
В этом конкретном частном (и практически важном) случае трактовка поля как не зависящего от наличия-отсутствия магнетика является полностью уместной.
Сравнительная роль напряжённости и индукции
[править | править код]Из величин и более фундаментальной характеристикой магнитного поля является вектор магнитной индукции , так как именно он определяет силу действия магнитного поля на движущиеся заряженные частицы и токи, а также может быть непосредственно измерен, в то время как напряжённость магнитного поля можно рассматривать скорее как вспомогательную величину.
Правда, в обычно используемое выражение для энергии магнитного поля (в среде) и входят почти равноправно, но надо иметь в виду, что в эту энергию включена и энергия, затраченная на поляризацию среды, а не только энергия собственно поля[1]. Энергия магнитного поля как такового выражается только через фундаментальную величину . Тем не менее видно, что величина феноменологическая и тут весьма удобна.
Примечания
[править | править код]Литература
[править | править код]- Иродов И. Е. Основные законы электромагнетизма. — 2-е, стереотипное. — Москва: Высшая школа, 1991.