Sari la conținut

CUDA

De la Wikipedia, enciclopedia liberă
CUDA Toolkit
DezvoltatorNVIDIA Corporation
Ultima versiune4.0 RC2[1] (Aprilie 2011)
Sistem de operareWindows, Linux, MacOS
Disponibil în românăNu
TipGPGPU
LicențăSoftware proprietar, GNU General Public License
Prezență online
http://www.nvidia.com/object/cuda_home_new.html

CUDA (Compute Unified Device Architecture) este o arhitectură software și hardware pentru calculul paralel al datelor dezvoltată de către compania americană NVIDIA. CUDA este utilizată atât în seriile de procesoare grafice destinate utilizatorilor obișnuiți cât și în cele profesionale. O serie de interfețe de calcul din arhitectura CUDA sunt similare cu cele ale principalilor competitori: OpenCL[2] de la Khronos Group și DirectCompute[3] de la Microsoft.

Dezvoltatorii pot accesa prin intermediul CUDA setul de instrucțiuni și memoria elementelor de calcul paralel din procesoarele grafice. Utilizând CUDA, cele mai recente procesoare grafice NVIDIA pot realiza calcule specifice microprocesoarelor. Totuși, spre deosebire de acestea, arhitectura procesoarelor video este concepută pentru execuția simultană a numeroase fire, cu o viteză scăzută și nu a unui singur fir dar foarte rapid. Această tehnică de rezolvare a problemelor de uz general cu ajutorul procesoarelor video este cunoscută ca GPGPU.

În industria jocurilor pe calculator, pe lângă generarea graficii, procesoarele video mai realizează și calculele pentru interacțiunea fizică dintre obiecte (fum, foc, fluide). Un exemplu în acest sens este tehnologia PhysX. CUDA mai este utilizată și în domeniile bioinformaticii, criptografiei precum și în alte arii ale științei și tehnologiei.

CUDA pune la dispoziție atât un API de nivel jos cât și unul de nivel înalt. Primul SDK CUDA a fost făcut public în data de 15 februarie 2007, având versiuni pentru Microsoft Windows și Linux. Versiunea 2.0 oferea suport și pentru Mac OS X[4]. Toate seriile de procesoare NVIDIA (GeForce, Quadro și Tesla) începând cu G8X sunt compatibile CUDA.

CUDA oferă o serie de avantaje față de API-urile tradiționale de prelucrare a datelor cu ajutorul procesoarelor video.

  • Citiri nesecvențiale – se pot face citiri din locații de memorie arbitrare.
  • Memorie partajată – CUDA pune la dispoziție o regiune cu memorie partajată de mare viteză (până la 48KB per Multi-Procesor) care poate fi împărțită între firele de execuție. Această regiune poate fi utilizată ca și cache gestionat de utilizator.[5]
  • Descărcări rapide și recitiri spre și disnpre procesorul video
  • Suport complet pentru operațiile cu întregi și pe bit.
  • CUDA (având capacitatea de calcul 1.x) suportă un subset al limbajului de programare C și o serie de extensii simple. Lipsesc pointerii la funcții și recursivitatea. Un process ce rulează va utiliza mai multe spații de memorie disjuncte. Arhitectura NVIDIA Fermi oferă suport aproape complet pentru C++.
  • În cazul dispozitivelor dezvoltate pe arhitectura Fermi (capacitatea de calcul 2.x), în codul compilat pot fi folosite clase C++ atâta timp cât nicio funcție membră a clasei nu este virtuală.[6]
  • Randarea texturilor nu este suportată.
  • Pentru formatul în virgulă mobilă cu dublă precizie (pentru procesoare cu capacitatea de calcul 1.3 sau mai mult[7]) există niște abateri de la standardul IEEE 754: rotunjirea la cel mai apropiat număr par este singurul mod de rotunjire suportat pentru inversul, împărțirea și radicalul unui număr.
  • Lățimea de bandă a magistralei și latența dintre microprocesor și procesorul grafic pot reprezenta o gâturie în cazul anumitor dispozitive.
  • Pentru a se obține cea mai bună performanță, thread-urile ar trebui să ruleze cel puțin în grupuri de câte 32, atunci când numărul total de thread-uri este de ordinul miilor. Ramificarea execuției codului programului nu afectează semnificativ performanța dacă fiecare din cele 32 de thread-uri urmează aceeași cale de execuție.
  • Spre deosebire de OpenCL, procesoarele compatibile CUDA sunt fabricate doar de NVIDIA (începând cu seria GeForce 8, Quadro și Tesla).[8]
  • Uneori codul valid C/C++ poate împiedica procesul de compilare datorită tehnicilor de optimizare pe care compilatorul le aplică dacă este obligat să utilizeze resurse limitate.

Procesoare video compatibile

[modificare | modificare sursă]

Capacitatea de calcul (Compute capability) reflectă funcționalitățile suportate de dispozitivele[9] CUDA. Partea întreagă a numărului versiunii indică echipamentele ce au aceeași arhitectură de bază. Modificările minore aduse arhitecturii se deosebesc între ele prin partea zecimală. Cunoașterea acestui număr este utilă în cazul în care se dorește rularea unor aplicații pentru CUDA.

Capacitatea
de calcul
(versiune)
Microarhitectură Procesoare video Plăci video
1.0 Tesla G80, G92, G92b, G94, G94b GeForce GT 420*, GeForce 8800 Ultra, GeForce 8800 GTX, GeForce GT 340*, GeForce GT 330*, GeForce GT 320*, GeForce 315*, GeForce 310*, GeForce 9800 GT, GeForce 9600 GT, GeForce 9400GT, Quadro FX 5600, Quadro FX 4600, Quadro Plex 2100 S4, Tesla C870, Tesla D870, Tesla S870
1.1 G86, G84, G98, G96, G96b, G94, G94b, G92, G92b GeForce G110M, GeForce 9300M GS, GeForce 9200M GS, GeForce 9100M G, GeForce 8400M GT, GeForce G105M, Quadro FX 4700 X2, Quadro FX 3700, Quadro FX 1800, Quadro FX 1700, Quadro FX 580, Quadro FX 570, Quadro FX 470, Quadro FX 380, Quadro FX 370, Quadro FX 370 Low Profile, Quadro NVS 450, Quadro NVS 420, Quadro NVS 290, Quadro NVS 295, Quadro Plex 2100 D4, Quadro FX 3800M, Quadro FX 3700M, Quadro FX 3600M, Quadro FX 2800M, Quadro FX 2700M, Quadro FX 1700M, Quadro FX 1600M, Quadro FX 770M, Quadro FX 570M, Quadro FX 370M, Quadro FX 360M, Quadro NVS 320M, Quadro NVS 160M, Quadro NVS 150M, Quadro NVS 140M, Quadro NVS 135M, Quadro NVS 130M, Quadro NVS 450, Quadro NVS 420, Quadro NVS 295
1.2 GT218, GT216, GT215 GeForce GT 240, GeForce GT 220*, GeForce 210*, GeForce GTS 360M, GeForce GTS 350M, GeForce GT 335M, GeForce GT 330M, GeForce GT 325M, GeForce GT 240M, GeForce G210M, GeForce 310M, GeForce 305M, Quadro FX 380 Low Profile, NVIDIA NVS 300, Quadro FX 1800M, Quadro FX 880M, Quadro FX 380M, NVIDIA NVS 300, NVS 5100M, NVS 3100M, NVS 2100M, ION
1.3 GT200, GT200b GeForce GTX 280, GeForce GTX 275, GeForce GTX 260, Quadro FX 5800, Quadro FX 4800, Quadro FX 4800 for Mac, Quadro FX 3800, Quadro CX, Quadro Plex 2200 D2, Tesla C1060, Tesla S1070, Tesla M1060
2.0 Fermi GF100, GF110 GeForce GTX 590, GeForce GTX 580, GeForce GTX 570, GeForce GTX 480, GeForce GTX 470, GeForce GTX 465, GeForce GTX 480M, Quadro 6000, Quadro 5000, Quadro 4000, Quadro 4000 for Mac, Quadro Plex 7000, Quadro 5010M, Quadro 5000M, Tesla C2075, Tesla C2050/C2070, Tesla M2050/M2070/M2075/M2090
2.1 GF104, GF106 GF108,GF114, GF116, GF119 GeForce GTX 560 Ti, GeForce GTX 550 Ti, GeForce GTX 460, GeForce GTS 450, GeForce GTS 450*, GeForce GT 640 (GDDR3), GeForce GT 630, GeForce GT 620, GeForce GT 610, GeForce GT 520, GeForce GT 440, GeForce GT 440*, GeForce GT 430, GeForce GT 430*, GeForce GTX 675M, GeForce GTX 670M, GeForce GT 635M, GeForce GT 630M, GeForce GT 625M, GeForce GT 720M, GeForce GT 620M, GeForce 710M, GeForce 610M, GeForce GTX 580M, GeForce GTX 570M, GeForce GTX 560M, GeForce GT 555M, GeForce GT 550M, GeForce GT 540M, GeForce GT 525M, GeForce GT 520MX, GeForce GT 520M, GeForce GTX 485M, GeForce GTX 470M, GeForce GTX 460M, GeForce GT 445M, GeForce GT 435M, GeForce GT 420M, GeForce GT 415M, GeForce 710M, GeForce 410M, Quadro 2000, Quadro 2000D, Quadro 600, Quadro 410, Quadro 4000M, Quadro 3000M, Quadro 2000M, Quadro 1000M, NVS 5400M, NVS 5200M, NVS 4200M
3.0 Kepler GK104, GK106, GK107 GeForce GTX 770, GeForce GTX 760, GeForce GTX 690, GeForce GTX 680, GeForce GTX 670, GeForce GTX 660 Ti, GeForce GTX 660, GeForce GTX 650 Ti BOOST, GeForce GTX 650 Ti, GeForce GTX 650, GeForce GTX 780M, GeForce GTX 770M, GeForce GTX 765M, GeForce GTX 760M, GeForce GTX 680MX, GeForce GTX 680M, GeForce GTX 675MX, GeForce GTX 670MX, GeForce GTX 660M, GeForce GT 750M, GeForce GT 650M, GeForce GT 745M, GeForce GT 645M, GeForce GT 740M, GeForce GT 730M, GeForce GT 640M, GeForce GT 640M LE, GeForce GT 735M, GeForce GT 730M, Quadro K5000, Quadro K4000, Quadro K2000, Quadro K2000D, Quadro K600, Quadro K500M, Tesla K10
3.5 GK110, GK208 GeForce GTX TITAN Z, GeForce GTX TITAN Black, GeForce GTX TITAN, GeForce GTX 780 Ti, GeForce GTX 780, GeForce GT 640 (GDDR5), GeForce GT 630 v2, Quadro K6000, Tesla K40, Tesla K20x, Tesla K20
5.0 Maxwell GM107, GM108 GeForce GTX 750 Ti, GeForce GTX 750, GeForce GTX 860M, GeForce GTX 850M, GeForce 845M, GeForce 840M, GeForce 830M

'*' - OEM-only products

Un table al dispozitivelor care compatibile oficial cu CUDA:[10]

Nvidia GeForce
GeForce GTX Titan Z
GeForce GTX TITAN Black
GeForce GTX TITAN
GeForce GTX 780 Ti
GeForce GTX 780
GeForce GTX 770
GeForce GTX 760
GeForce GTX 750 Ti
GeForce GTX 750
GeForce GTX 690
GeForce GTX 680
GeForce GTX 670
GeForce GTX 660 Ti
GeForce GTX 660
GeForce GTX 650 Ti BOOST
GeForce GTX 650 Ti
GeForce GTX 650
GeForce GT 640
GeForce GTX 590
GeForce GTX 580
GeForce GTX 570
GeForce GTX 560 Ti
GeForce GTX 560
GeForce GTX 550 Ti
GeForce GT 520
GeForce GTX 480
GeForce GTX 470
GeForce GTX 465
GeForce GTX 460
GeForce GTX 460 SE
GeForce GTS 450
GeForce GT 440
GeForce GT 430
GeForce GT 420
GeForce GTX 295
GeForce GTX 285
GeForce GTX 280
GeForce GTX 275
GeForce GTX 260
GeForce GTS 250
GeForce GTS 240
GeForce GT 240
GeForce GT 220
GeForce 210/G210
GeForce GT 140
GeForce 9800 GX2
GeForce 9800 GTX+
GeForce 9800 GTX
GeForce 9800 GT
GeForce 9600 GSO
GeForce 9600 GT
GeForce 9500 GT
GeForce 9400 GT
GeForce 9400 mGPU
GeForce 9300 mGPU
GeForce 9100 mGPU
GeForce 8800 Ultra
GeForce 8800 GTX
GeForce 8800 GTS
GeForce 8800 GT
GeForce 8800 GS
GeForce 8600 GTS
GeForce 8600 GT
GeForce 8600 mGT
GeForce 8500 GT
GeForce 8400 GS
GeForce 8300 mGPU
GeForce 8200 mGPU
GeForce 8100 mGPU

GeForce GT 630

Nvidia GeForce Mobile
GeForce GTX 880M
GeForce GTX 870M
GeForce GTX 860M
GeForce GTX 850M
GeForce 845M
GeForce 840M
GeForce 830M
GeForce GTX 780M
GeForce GTX 770M
GeForce GTX 765M
GeForce GTX 760M
GeForce GT 750M
GeForce GT 745M
GeForce GT 740M
GeForce GT 735M
GeForce GT 730M
GeForce GTX 680MX
GeForce GTX 680M
GeForce GTX 675MX
GeForce GTX 675M
GeForce GTX 670MX
GeForce GTX 670M
GeForce GTX 660M
GeForce GT 650M
GeForce GT 645M
GeForce GT 640M
GeForce GTX 580M
GeForce GTX 570M
GeForce GTX 560M
GeForce GT 555M
GeForce GT 550M
GeForce GT 540M
GeForce GT 525M
GeForce GT 520M
GeForce GTX 480M
GeForce GTX 470M
GeForce GTX 460M
GeForce GT 445M
GeForce GT 435M
GeForce GT 425M
GeForce GT 420M
GeForce GT 415M
GeForce GTX 285M
GeForce GTX 280M
GeForce GTX 260M
GeForce GTS 360M
GeForce GTS 350M
GeForce GTS 260M
GeForce GTS 250M
GeForce GT 335M
GeForce GT 330M
GeForce GT 325M
GeForce GT 320M
GeForce 310M
GeForce GT 240M
GeForce GT 230M
GeForce GT 220M
GeForce G210M
GeForce GTS 160M
GeForce GTS 150M
GeForce GT 130M
GeForce GT 120M
GeForce G110M
GeForce G105M
GeForce G103M
GeForce G102M
GeForce G100
GeForce 9800M GTX
GeForce 9800M GTS
GeForce 9800M GT
GeForce 9800M GS
GeForce 9700M GTS
GeForce 9700M GT
GeForce 9650M GT
GeForce 9650M GS
GeForce 9600M GT
GeForce 9600M GS
GeForce 9500M GS
GeForce 9500M G
GeForce 9400M G
GeForce 9300M GS
GeForce 9300M G
GeForce 9200M GS
GeForce 9100M G
GeForce 8800M GTX
GeForce 8800M GTS
GeForce 8700M GT
GeForce 8600M GT
GeForce 8600M GS
GeForce 8400M GT
GeForce 8400M GS
GeForce 8400M G
GeForce 8200M G
Nvidia Quadro
Quadro K6000
Quadro K5000
Quadro K4000
Quadro K2000D
Quadro K2000
Quadro K600
Quadro 6000
Quadro 5000
Quadro 4000
Quadro 2000
Quadro 600
Quadro FX 5800
Quadro FX 5600
Quadro FX 4800
Quadro FX 4700 X2
Quadro FX 4600
Quadro FX 3800
Quadro FX 3700
Quadro FX 1800
Quadro FX 1700
Quadro FX 580
Quadro FX 570
Quadro FX 380
Quadro FX 370
Quadro NVS 510
Quadro NVS 450
Quadro NVS 420
Quadro NVS 295
Quadro Plex 1000 Model IV
Quadro Plex 1000 Model S4
Nvidia Quadro Mobile
Quadro K5100M
Quadro K5000M
Quadro K4100M
Quadro K4000M
Quadro K3100M
Quadro K3000M
Quadro K2100M
Quadro K2000M
Quadro K1100M
Quadro K1000M
Quadro K610M
Quadro K510M
Quadro K500M
Quadro 5010M
Quadro 5000M
Quadro 4000M
Quadro 3000M
Quadro 2000M
Quadro 1000M
Quadro FX 3800M
Quadro FX 3700M
Quadro FX 3600M
Quadro FX 2800M
Quadro FX 2700M
Quadro FX 1800M
Quadro FX 1700M
Quadro FX 1600M
Quadro FX 880M
Quadro FX 770M
Quadro FX 570M
Quadro FX 380M
Quadro FX 370M
Quadro FX 360M
Quadro NVS 320M
Quadro NVS 160M
Quadro NVS 150M
Quadro NVS 140M
Quadro NVS 135M
Quadro NVS 130M
Nvidia Tesla
Tesla K40
Tesla K20X
Tesla K20
Tesla K10
Tesla C2050/2070
Tesla M2050/M2070
Tesla S2050
Tesla S1070
Tesla M1060
Tesla C1060
Tesla C870
Tesla D870
Tesla S870

Arhitecturi CUDA

[modificare | modificare sursă]
Flux de procesare CUDA pentru G80
1. Copiază date din memoria principală în memoria video
2. Microprocesorul transmite instrucțiunile cipului video
3. Codul se execută în paralel pe fiecare nucleu
4. Copiază rezultatul din memoria video în memoria principală

Arhitectura CUDA constă în următoarele componente de bază[11]:

  • Motoarele de procesare paralelă din interiorul procesoarelor grafice NVIDIA.
  • Suport pentru inițializare, configurare, la nivelul nucleului sistemului de operare.
  • Driver video la nivel de utilizator, care furnizează API-ul pentru dezvoltatori.
  • Set de funcții și instrucțiuni în limbajul de asamblare PTX pentru nucleele de prelucrare paralelă.

Un program scris pentru CUDA apelează o serie de nuclee paralele. Un nucleu se execută în paralel pe un set de thread-uri. Gruparea thread-urilor în blocuri rămâne la latitudinea compilatorului sau a programatorului. Procesorul grafic instanțiază un program nucleu (kernel program în engleză) într-o grilă de blocuri de thread-uri. Fiecare thread din interiorul unui bloc execută o instanță a nucleului și este identificat prin contorul program, regiștri, memorie/thread, parametri de intrare și rezultate (ieșiri). Într-o grilă se execută același nucleu, se citesc intrările din memoria globală, se scriu rezultatele în memoria globala și se sincronizează apelurile de nuclee. În modelul CUDA, fiecărui thread îi este asociat un spațiu de memorie privat, utilizat pentru regiștri, apeluri de funcții și variabile C. Fiecare bloc de thread-uri deține un spațiu de memorie rezervat comunicării între thread-uri, schimb de date și rezultate. Grilele de blocuri de thread-uri pun rezultatele în memoria globală după ce s-a realizat în prealabil o sincronizare de-a lungul nucleelor[12].

Un procesor video execută una sau mai multe grile de nuclee. Un multiprocesor pentru procesarea fluxurilor de date (streaming multiprocessor) execută unul sau mai multe blocuri de thread-uri. Nucleele CUDA și celelalte unități de execuție din cadrul unui SM execută thread-uri. Un SM execută un grup de 32 de thread-uri, numit și warp[13].

În noiembrie 2006 NVIDIA a lansat prima placă video cu nucleul G80, GeForce 8800[14]. În iunie 2008, arhitectura G80 a fost îmbunătățită seminficativ și redenumită GT200. Aceasta îngloba 240 de nuclee CUDA față de cele 128 în cazul G80.

  • G80 a fost primul procesor video compatibil cu limbajul de programare C, permițând dezvoltatorilor să utilizele resursele video disponibile fără a fi nevoiți să învețe un nou limbaj.
  • G80 a înlocuit pipeline-urile pentru vertecși și pixeli cu un procesor care să le înglobeze și să execute calcule legate de geometrie, pixeli, vertecși și alte programe.
  • G80 a utilizat un procesor de thread-uri scalar, eliminând necesitatea ca programatorii să organizeze manual regiștrii pentru vectori.
  • G80 a introdus modelul de execuție SIMT (single-instruction multiple-thread în engleză) în care o singură instrucțiune se execută concurent pe mai multe thread-uri.
  • G80 a introdus memoria partajată și sincronizarea cu barieră pentru comunicațiile între thread-uri.

Primul procesor grafic proiectat pe arhitectura Fermi conține 3 miliarde de tranzistoare. Dispune de 512 nuclee CUDA care sunt grupate în 16 SM (streaming multiprocessors)[15]. Principalele modificări aduse arhitecturii existente vizează:

  • Imbunătățirea performanței în cazul operațiilor în virgulă mobilă cu dublă precizie.
  • Suportul pentru memorii ECC le permite integratorilor de sisteme să utilizeze cu încredere procesoarele video în centrele de date. Aplicațiile de genul celor financiare sau de Imagistică medicală sunt protejate împotriva anumitor erori de memorie.
  • Introducerea memoriei Cache ierarhice deoarece anumiți algoritmi pentru procesare paralelă nu puteau utiliza memoria partajată a procesorului video. Cantitatea de memorie partajată a fost și ea mărită.
  • Comutarea mai rapidă a contextelor.
  • Creșterea vitezei de execuție a operațiilor atomice read-modify-write.
Procesor video G80 GT200 Fermi
Număr tranzistoare 681 milioane 1,4 miliarde 3 miliarde
Număr nuclee CUDA 128 240 512
Calcul în dublă precizie (virgulă mobilă) NA 30 operații FMA / ceas 256 operații FMA / ceas
Calcul în simplă precizie (virgulă mobilă) 128 operații MAD / ceas 240 operații MAD / ceas 512 operații MAD / ceas
Unități de planificare Warp / SM 1 1 2
Special Function Units / SM 2 2 4
Memorie partajată / SM 16 KB 16 KB Configurabil: 48 KB sau 16 KB
L1 Cache / SM NA NA Configurabil: 16 KB sau 48 KB
L2 Cache / SM NA NA 768 KB
Compatibilitate Memorie ECC NU NU DA
Nuclee concurente NU NU până la 16
Adresare pentru Load/Store 32-bit 32-bit 64-bit

Exemplu de cod C++ care încarcă o textură într-o matrice din procesorul grafic:

void foo()
{
  cudaArray* cu_array;
  texture<float, 2, cudaReadModeElementType> tex;

  // Alocare memorie pentru matrice
  cudaChannelFormatDesc description = cudaCreateChannelDesc<float>();
  cudaMallocArray(&cu_array, &description, width, height);

  // Copiere imagine în matrice
  cudaMemcpyToArray(cu_array, image, width*height*sizeof(float), cudaMemcpyHostToDevice);

  // Setare parametri pentru textură (implicit)
  tex.addressMode[0] = cudaAddressModeClamp;
  tex.addressMode[1] = cudaAddressModeClamp;
  tex.filterMode = cudaFilterModePoint;
  tex.normalized = false; // nu normalizează coordonatele

  // Leagă matricea de textură
  cudaBindTextureToArray(tex, cu_array);

  // Pornește Kernel
  dim3 blockDim(16, 16, 1);
  dim3 gridDim((width + blockDim.x - 1)/ blockDim.x, (height + blockDim.y - 1) / blockDim.y, 1);
  kernel<<< gridDim, blockDim, 0 >>>(d_data, height, width);

  // Desface legătura dintre matrice și textură
  cudaUnbindTexture(tex);
}

__global__ void kernel(float* odata, int height, int width)
{
   unsigned int x = blockIdx.x*blockDim.x + threadIdx.x;
   unsigned int y = blockIdx.y*blockDim.y + threadIdx.y;
   if (x < width && y < height) {
      float c = tex2D(tex, x, y);
      odata[y*width+x] = c;
   }
}

Mai jos este un exemplu scris în Python[16] care calculează în procesorul grafic produsul a două matrice:

import pycuda.compiler as comp
import pycuda.driver as drv
import numpy
import pycuda.autoinit

mod = comp.SourceModule("""
__global__ void multiply_them(float *dest, float *a, float *b)
{
  const int i = threadIdx.x;
  dest[i] = a[i] * b[i];
}
""")

multiply_them = mod.get_function("multiply_them")

a = numpy.random.randn(400).astype(numpy.float32)
b = numpy.random.randn(400).astype(numpy.float32)

dest = numpy.zeros_like(a)
multiply_them(
        drv.Out(dest), drv.In(a), drv.In(b),
        block=(400,1,1))

print dest-a*b

Cod Python care simplifică operațiile de înmulțire a matricilor poate fi găsit în programul pycublas[17].

import numpy
from pycublas import CUBLASMatrix
A = CUBLASMatrix( numpy.mat([[1,2,3], [4,5,6]],numpy.float32) )
B = CUBLASMatrix( numpy.mat([[2,3], [4,5], [6,7]],numpy.float32) )
C = A*B
print C.np_mat()
  1. ^ „CUDA Toolkit 4.0 Overview” (PDF). Nvidia Corporation. 
  2. ^ First OpenCL demo on a GPU pe YouTube
  3. ^ DirectCompute Ocean Demo Running on NVIDIA CUDA-enabled GPU pe YouTube
  4. ^ „NVIDIA CUDA Software Development Kit (CUDA SDK) - Release Notes Version 2.0 for MAC OSX”. Arhivat din original la . Accesat în . 
  5. ^ Silberstein, Mark (). „Efficient computation of Sum-products on GPUs” (PDF). [nefuncțională]
  6. ^ „CUDA C Programming Guide 3.1” (PDF). CUDA Zone. Nvidia Corporation. 
  7. ^ CUDA and double precision floating point numbers
  8. ^ „CUDA-Enabled Products”. CUDA Zone. Nvidia Corporation. 
  9. ^ „CUDA-Enabled Products”. CUDA Zone. Nvidia Corporation. Accesat în . 
  10. ^ Eroare la citare: Etichetă <ref> invalidă; niciun text nu a fost furnizat pentru referințele numite CUDA_products
  11. ^ „CUDA Architecture Overview” (PDF). Nvidia Corporation. 
  12. ^ „A Quick Refresher on CUDA” (PDF). Nvidia Corporation. p. 6. 
  13. ^ Michael Wolfe, PGI Compiler Engineer. „Understanding the CUDA Data Parallel Threading Model”. The Portland Group. 
  14. ^ „NVIDIA GeForce 8800 GPU Architecture Overview”. NVIDIA Corporation. 
  15. ^ „An Overview of the Fermi Architecture” (PDF). Nvidia Corporation. p. 7. 
  16. ^ http://mathema.tician.de/software/pycuda PyCUDA
  17. ^ http://kered.org/blog/2009-04-13/easy-python-numpy-cuda-cublas/ Arhivat în , la Wayback Machine. pycublas