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A b s t r a c t. Firstly, a contraction-free sequent system G4np for

Nelson’s paraconsistent 4-valued logic N4 is introduced by modify-

ing and extending a contraction-free system G4ip for intuitionistic

propositional logic. The structural rule elimination theorem for

G4np can be shown by combining Dyckhoff and Negri’s result

for G4ip and an existing embedding result for N4. Secondly, a

resolution system Rnp for N4 is introduced by modifying an in-

tuitionistic resolution system Rip, which is originally introduced

by Mints and modified by Troelstra and Schwichtenberg. The

equivalence between Rnp and G4np can be shown. Thirdly, a

typed λ-calculus for N4 is introduced based on Prawitz’s natural

deduction system for N4 via the Curry-Howard correspondence.

The strong normalization theorem of this calculus can be proved

by using Joachimski and Matthes’ proof method for intuitionistic

typed λ-calculi with premutative conversions.
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.1 Introduction

.1.1 Nelson’s paraconsistent logic

Nelson’s paraconsistent 4-valued logic N4 (or equivalently called N−) [1] is a

paraconsistent variant of Nelson’s constructive logic N with strong negation

[11], and is also known as a conservative extension of positive intuitionistic

logic. The logic N4 and its versions have been studied by a number of

researchers (see e.g. [5, 12, 13, 14, 24]). It is known that N4 and its

versions and extensions can appropriately deal with inconsistency-tolerant

reasoning [24], reasoning with negative information in logic programming

[14], paraconsistent logic programming with inexact predicates [23], and

non-monotonic reasoning with answer set programming [15]. For these

useful applications, an efficient and simple deduction system is desired as

a basis of automated reasoning and computation.

.1.2 Sequent systems

A simple cut-free sequent system (called here Gn4) for N4, which is a natu-

ral extension of the positive fragment of Gentzen’s system LJ for intuition-

istic logic, was introduced and studied by López-Escobar [8] and later by

Pearce [14] and Wansing [24]. This system is very intuitive and simple, but

it is not enough to formalize a basis of automated theorem proving, because

the bottom-up proof search procedure based on Gn4 is not very efficient.

The first and second aims of the present paper are to give a proof-theoretic

foundation for N4-based automated theorem proving in two more efficient

frameworks: a contraction-free sequent system and a resolution system.

It is known that there are many cut-free sequent systems for intuition-

istic propositional logic, such as LJ and its variants G1ip, G2ip, G3ip, G4ip

and G5ip. 1 In particular, the contraction-free system G4ip has the useful

feature that certain bottom-up proof search terminates without any loop-

detection, and hence G4ip is known as a convenient basis for automated

theorem proving. For this reason, some versions of G4ip have been intro-

duced and studied by many logicians (see [2, 21] for a historical overview

1The names G1ip, G2ip, G3ip, G4ip and G5ip are from [21].
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of G4ip). A direct simple proof of the structural rule elimination theorem

(i.e. the theorem for the admissibility of cut and contraction) for G4ip

was proved by Dyckhoff and Negri [3], and this result was extended by the

same authors to some systems with non-logical axioms for the theories of

apartness and order [4].

.1.3 Natural deduction systems

As mentioned in [7], there are various natural deduction systems for N4:

Prawitz’s system [16], Wansing’s typed λ-calculus [24], an extension of a

system for the logic FDE of first-degree entailment, which was mentioned

by Priest [17], an extension of Tamminga and Tanaka’s system for FDE

[20], a special case of Schroeder-Heister’s system with general elimination

rules [19], and some extensions of Negri and von Plato’s systems for (pos-

itive) intuitionistic logic [10]. Some weak normalization results for some

such systems were presented in [7]. The open problem of showing the

strong normalization theorem of a typed λ-calculus for N4 was suggested

by Wansing in Chapter 8 in [24].

The third aim of the present paper is to solve the problem of Wansing in

order to obtain a natural computational interpretation for N4. This prob-

lem is solved by using the simple proof method by Joachimski and Matthes

[6]. It is known that the strong normalization theorem for some typed λ-

calculi with disjunction types is somewhat complex to prove because of the

reduction rule of permutative conversions. Joachimski and Matthes settled

such a complexity problem by obtaining a considerably simple and short

proof of the strong normalization theorem for some typed λ-calculi with

permutative conversions.

.1.4 The contents of this paper

In Section 2, a contraction-free system G4np for (propositional) N4 is in-

troduced by extending the positive fragment of G4ip, and the structural

rule elimination theorem for G4np is shown by using an existing embed-

ding result for N4 studied by Vorob’ev [22], Gurevich [5] and Rautenberg

[18], and Dyckhoff and Negri’s result for G4ip [3]. The equivalence between
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G4np and Gn4 is also derived using the structural rule elimination theorem

for G4np. Since the result presented is also easily adapted to the multiple

succedent version like the system G4ip′ for intuitionistic logic [3], such a

result is omitted here. The present result may also be extended to some

systems with non-logical axioms like the systems discussed in [4].

In Section 3, a resolution system Rnp for N4 is introduced by modifying

an intuitionistic resolution system Rip for intuitionistic propositional logic,

and the equivalence between Rnp and an auxiliary system G5np is proved

by using Troelstra and Schwichtenberg’s method [21]. The system Rip was

introduced by Troelstra and Schwichtenberg, and as mentioned in [21], it

is regarded as a modification of Mints’ original system RIp [9]. The system

G5np presented here is regarded as a modified extension of Troelstra and

Schwichtenberg’s system G5ip for intuitionistic propositional logic.

In Section 4, a typed λ-calculus for N4 is introduced based on Prawitz’s

natural deduction system for N4 via the Curry-Howard correspondence,

and Joachimski and Matthes’ method of proving strong normalization is

simply adapted to this calculus.

.1.5 Preliminaries

Prior to the detailed discussion, the language and basic notations used in

this paper are introduced below. The usual propositional language with

the strong negation connective ∼ and without falsum and truth constants

is used in this paper. Greek lower-case letters α, β, γ, ... are used to denote

formulas. Greek capital letters Γ,∆, ... are used to represent finite (possibly

empty) multisets of formulas. A sequent is an expression of the form Γ ⇒ γ.

If a sequent S is provable in a system L, then such a fact is denoted as L ⊢ S.
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.2 Contraction-free system

.2.1 G4np

Definition 2.1. [G4np] Let p be an arbitrary propositional variable.

The initial sequents of G4np are of the form:

p,Γ ⇒ p ∼p,Γ ⇒ ∼p.

The inference rules of G4np are of the form:

α, β, Γ ⇒ γ

α ∧ β, Γ ⇒ γ
(∧left)

Γ ⇒ α Γ ⇒ β

Γ ⇒ α ∧ β
(∧right)

α, Γ ⇒ γ β, Γ ⇒ γ

α ∨ β, Γ ⇒ γ
(∨left)

Γ ⇒ α
Γ ⇒ α ∨ β

(∨right1)
Γ ⇒ β

Γ ⇒ α ∨ β
(∨right2)

p, β, Γ ⇒ γ

p, p→β, Γ ⇒ γ
(→left0)

∼p, β, Γ ⇒ γ

∼p,∼p→β, Γ ⇒ γ
(∼→left0)

α1→(α2→β), Γ ⇒ γ

(α1 ∧ α2)→β, Γ ⇒ γ
(∧→left)

α1→β, α2→β, Γ ⇒ γ

(α1 ∨ α2)→β, Γ ⇒ γ
(∨→left)

α1, α2→β, Γ ⇒ α2 β, Γ ⇒ γ

(α1→α2)→β, Γ ⇒ γ
(→→left)

∼α1→β,∼α2→β, Γ ⇒ γ

∼(α1 ∧ α2)→β, Γ ⇒ γ
(∼∧→left)

∼α1→(∼α2→β), Γ ⇒ γ

∼(α1 ∨ α2)→β, Γ ⇒ γ
(∼ ∨→left)

α1→(∼α2→β), Γ ⇒ γ

∼(α1→α2)→β, Γ ⇒ γ
(∼→→left)

α, Γ ⇒ β

Γ ⇒ α→β
(→right)

α, Γ ⇒ γ

∼∼α, Γ ⇒ γ
(∼left)

Γ ⇒ α
Γ ⇒ ∼∼α

(∼right)

∼α, Γ ⇒ γ ∼β, Γ ⇒ γ

∼(α ∧ β), Γ ⇒ γ
(∼ ∧ left)

Γ ⇒ ∼α
Γ ⇒ ∼(α ∧ β)

(∼ ∧ right1)
Γ ⇒ ∼β

Γ ⇒ ∼(α ∧ β)
(∼∧ right2)

∼α,∼β, Γ ⇒ γ

∼(α ∨ β), Γ ⇒ γ
(∼ ∨ left)

Γ ⇒ ∼α Γ ⇒ ∼β

Γ ⇒ ∼(α ∨ β)
(∼∨ right)

α,∼β, Γ ⇒ γ

∼(α→β), Γ ⇒ γ
(∼→left)

Γ ⇒ α Γ ⇒ ∼β

Γ ⇒ ∼(α→β)
(∼→right).

The ∼-free part of G4np is called here G4ip⊥, which is the ⊥-free fragment

of G4ip. 2

Roughly speaking, the rules (→left0), (∼→left0), (∧→left), (∨→left),

(→→left), (∼ ∧ →left), (∼ ∨ →left) and (∼→→left) can be regarded as

some divided versions of the rule:

α→β,Γ ⇒ α β,Γ ⇒ γ

α→β,Γ ⇒ γ
,

2The name G4ip is from [21]. For a historical overview of G4ip, see [2, 21].
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where α is divided into p,∼p, α1∧α2, α1∨α2, α1→α2, ∼(α1∧α2), ∼(α1∨α2)

and ∼(α1→α2). In the rule just displayed above, the principal formula

α→β appears twice, i.e. in one of the upper sequents and in the lower

sequent. Such occurences of α→β derive some inefficient proof search pro-

cedures with loops. Since G4np is loop-free, it is regarded as efficent.

.2.2 Admissibility of structural rules

Definition 2.2. [Structural rule] The following strucutral rules are

called cut, contraction and weakening, respectively:

Γ ⇒ α α,∆ ⇒ γ

Γ,∆ ⇒ γ
(cut)

α,α,Γ ⇒ γ

α,Γ ⇒ γ
(co)

Γ ⇒ γ

α,Γ ⇒ γ
(we).

In order to prove the structural rule elimination theorem for G4np, we

give an embedding f of G4np into G4ip⊥, which was studied in [5, 18, 22].

Definition 2.3. We fix a set Φ of propositional variables, used as a

component of the language using ∼, and define the set Φ′ := {p′ | p ∈ Φ}

of propositional variables. The language L∼ is defined by using Φ, →,∧,∨

and ∼. The language L is obtained from L∼ by adding Φ′ and by deleting

∼.

A mapping f from L∼ to L is defined as follows.

1. f(p) := p and f(∼p) := p′ ∈ Φ′ for any p ∈ Φ,

2. f(α ◦ β) := f(α) ◦ f(β) where ◦ ∈ {→,∧,∨},

3. f(∼∼α) := f(α),

4. f(∼(α→β)) := f(α) ∧ f(∼β),

5. f(∼(α ∧ β)) := f(∼α) ∨ f(∼β),

6. f(∼(α ∨ β)) := f(∼α) ∧ f(∼β).

An expression f(Γ) denotes the result of replacing every occurrence of

a formula α in Γ by an occurrence of f(α).

We can easily prove:

Lemma 2.4 (Key lemma). Let Γ be a multiset of formulas in L∼, γ

be a formula in L∼, R be the set {(cut), (co), (we)}, and f be the mapping

defined in Definition 2.3.
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(1) If G4np + R ⊢ Γ ⇒ γ, then G4ip⊥ + R ⊢ f(Γ) ⇒ f(γ).

(2) If G4ip⊥ ⊢ f(Γ) ⇒ f(γ), then G4np ⊢ Γ ⇒ γ.

Using Lemma 2.4, we can prove:

Theorem 2.5 (Structural rule elimination theorem for G4np). The

rules (cut), (co) and (we) are admissible in G4np.

Proof. Suppose G4np + {(cut), (co), (we)} ⊢ Γ ⇒ γ. Then, we have

G4ip⊥ + {(cut), (co), (we)} ⊢ f(Γ) ⇒ f(γ) by Lemma 2.4 (1), and hence

G4ip⊥ ⊢ f(Γ) ⇒ f(γ) by the structural rule elimination theorem for G4ip⊥,

which was directly proved by Dyckhoff and Negri [3]. 3 By Lemma 2.4 (2),

we obtain the required fact: G4np ⊢ Γ ⇒ γ. �

.2.3 Equivalence between systems

We have introduced a strucutral rule free system G4np, but we have not yet

shown that G4np is a system for N4. We then show the equivalence between

G4np and the cut-free system called here Gn4 which was introduced and

discussed in [8, 14, 24].

Definition 2.6. [Gn4 [8, 14, 24]] The sequent system Gn4 for N4 is

obtained from G4np by deleting the initial sequents and the rules (→left0),

(∼→left0), (∧→left), (∨→left), (→→left), (∼ ∧ →left), (∼ ∨ →left) and

(∼→→left), and by adding the initial sequents of the form α ⇒ α, the

rules (cut), (co), (we) and the rule of the form:

Γ ⇒ α β,Γ ⇒ γ

α→β,Γ ⇒ γ
(→left).

Then we can prove:

Theorem 2.7 (Equivalence between Gn4 and G4np). For any sequent

S, S is provable in G4np if and only if it is provable in Gn4.

Proof. (=⇒): We can straightforwardly prove that if a sequent S is

provable in G4np then it is provable in Gn4. This is proved by induction

3Strictly speaking, it is shown in [3] that (cut), (co) and (we) are admissible in G4ip.

By this fact and the conservativity w.r.t. ⊥, the same fact holds for G4ip⊥.
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on the proof P of S in G4np. We distinguish the cases according to the

last inference in P . We only illustrate the case that the last inference in P

is of the form:

α1, α2→β,Γ ⇒ α2 β,Γ ⇒ γ

(α1→α2)→β,Γ ⇒ γ
(→→left).

By the hypothesis of induction, both α1, α2→β,Γ ⇒ α2 and β,Γ ⇒ γ are
provable in Gn4. Then, we have the required proof:

α2 ⇒ α2

α1, α2 ⇒ α2
(we)

α2 ⇒ α1→α2

β ⇒ β

β, α2 ⇒ β
(we)

(α1→α2)→β, α2 ⇒ β

(α1→α2)→β ⇒ α2→β

α1, α2→β, Γ ⇒ α2

α2→β, Γ ⇒ α1→α2

(α1→α2)→β, Γ ⇒ α1→α2
(cut)

β, Γ ⇒ γ

β, (α1→α2)→β, Γ ⇒ γ
(we)

(α1→α2)→β, (α1→α2)→β, Γ ⇒ γ

(α1→α2)→β, Γ ⇒ γ
(co).

(⇐=): We prove that if a sequent S is provable in Gn4 then it is provable

in G4np. This is proved by induction on the proof P of S in Gn4. We

distinguish the cases according to the last inference of P . We show some

cases. The cases that the last inference of P is (cut), (co) or (we) can be

shown by Theorem 2.5. The case that the last inference of P is (→left) can

be proved using the fact that (→left) is admissible in G4np. This fact can

be shown in the same way as the proof of Theorem 2.5: we use the result

by Dyckhoff and Negri [3] 4 that (→left) is admissible in G4ip, and prove a

similar lemma as Lemma 2.4 with respect to (→left) using the embedding

f of Definition 2.3. �

.3 Resolution system

.3.1 Rnp

For the multiset with multiplicity one which is obtained from a multiset

Γ, we write (Γ), i.e. the multiset (Γ) contains the formulas of Γ with

multiplicity one. For example, if Γ is the multiset {α,α, β}, then (Γ) is the

multiset {α, β}.

4Lemma 4.1 in page 1503 in [3].
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Definition 3.1. [Intuitionistic clause] A formula is called a literal if it

is an atomic formula or a negated atomic formula. A sequent is called an

intuitionistic clause if it is one of the following forms:

(P→Q) ⇒ R, P ⇒ (Q ∨ R), P1, ..., Pn ⇒ Q

where P,Q,R,P1, ..., Pn represent literals, and n can be 0.

Definition 3.2. [Rnp] Let P,Q,R, S be literals and all the sequents of

Rnp be intuitionistic clauses.

The axioms of Rnp are of the form:

P,∆ ⇒ P.

The inference rules of Rnp are of the form:

Γ ⇒ P P,∆ ⇒ Q

(Γ,∆) ⇒ Q
(resol)

P ⇒ Q ∨ R Γ ⇒ P Q,∆ ⇒ S R,Σ ⇒ S

(Γ,∆,Σ) ⇒ S
(∨resol)

(P→Q) ⇒ R [P ],∆ ⇒ Q

∆ ⇒ R
(→resol)

where [P ] represents P or the empty multiset.

It is remarked that Rnp is a modification of the system Rip (for intu-

itionistic logic) introduced in [21]. In Rip, the formulas P,Q,R, S, which

are used as literals in Rnp, are atomic formulas. As mentioned in [21], Rip

was based on Mints’ framework in [9]. It is also remarked that the axioms

in Rip are of the forms P ⇒ P and ⊥ ⇒ P , but the axioms in Rnp are of

the form P,∆ ⇒ P .

.3.2 G5np

Definition 3.3. [G5np] The initial sequents of G5np are of the form:

α,Γ ⇒ α.

The inference rules of G5np are of the form:

Γ ⇒ α α, ∆ ⇒ γ

(Γ, ∆) ⇒ γ
(cut∗)
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α, Γ ⇒ γ

(α ∧ β, Γ) ⇒ γ
(∧left1∗)

β, Γ ⇒ γ

(α ∧ β, Γ) ⇒ γ
(∧left2∗)

α, β, Γ ⇒ γ

(α ∧ β, Γ) ⇒ γ
(∧left3∗)

Γ ⇒ α ∆ ⇒ β

(Γ, ∆) ⇒ α ∧ β
(∧right∗)

α, Γ ⇒ γ β, ∆ ⇒ γ

(α ∨ β, Γ, ∆) ⇒ γ
(∨left∗) Γ ⇒ α

Γ ⇒ α ∨ β
(∨right1∗)

Γ ⇒ β

Γ ⇒ α ∨ β
(∨right2∗)

Γ ⇒ α β, ∆ ⇒ γ

(α→β, Γ, ∆) ⇒ γ
(→left∗)

α, Γ ⇒ β

Γ ⇒ α→β
(→right1∗)

Γ ⇒ β

Γ ⇒ α→β
(→right2∗)

α, Γ ⇒ γ

(∼∼α, Γ) ⇒ γ
(∼left∗) Γ ⇒ α

Γ ⇒ ∼∼α
(∼right∗)

∼α, Γ ⇒ γ ∼β, ∆ ⇒ γ

(∼(α ∧ β), Γ, ∆) ⇒ γ
(∼ ∧ left∗)

Γ ⇒ ∼α
Γ ⇒ ∼(α ∧ β)

(∼ ∧ right1∗)
Γ ⇒ ∼β

Γ ⇒ ∼(α ∧ β)
(∼ ∧ right2∗)

∼α, Γ ⇒ γ

(∼(α ∨ β), Γ) ⇒ γ
(∼∨ left1∗)

∼β, Γ ⇒ γ

(∼(α ∨ β), Γ) ⇒ γ
(∼ ∨ left2∗)

∼α,∼β, Γ ⇒ γ

(∼(α ∨ β), Γ) ⇒ γ
(∼∨ left3∗)

Γ ⇒ ∼α ∆ ⇒ ∼β

(Γ, ∆) ⇒ ∼(α ∨ β)
(∼ ∨ right∗)

α, Γ ⇒ γ

(∼(α→β), Γ) ⇒ γ
(∼→left1∗)

∼β, Γ ⇒ γ

(∼(α→β), Γ) ⇒ γ
(∼→left2∗)

α,∼β, Γ ⇒ γ

(∼(α→β), Γ) ⇒ γ
(∼→left3∗)

Γ ⇒ α ∆ ⇒ ∼β

(Γ, ∆) ⇒ ∼(α→β)
(∼→right∗).

It is remarked that G5np is a modified extension of the system G5ip

which is introduced by Troelstra and Schwichtenberg [21] in order to give

the equivalence between Rip and G5ip. It is also remarked that the initial

sequents of G5np are different from G5ip: G5ip has the initial sequents of

the forms α ⇒ α and ⊥ ⇒ α, but G5np has the initial sequents of the form

α,Γ ⇒ α.

Proposition 3.4 (Equivalence between G5np and G4np). (1) If G5np

⊢ Γ ⇒ γ, then G4np ⊢ Γ ⇒ γ. (2) If G4np ⊢ Γ ⇒ γ, then G5np ⊢ Γ′ ⇒ γ

for some Γ′ ⊆ Γ.

.3.3 Equivalence between systems

An expression lα, called the label of a formula α, means a literal which

corresponds to a formula α. For a multiset Γ ≡ {γ1, ..., γn} of formulas,

lΓ means the multiset {lγ1
, ..., lγ

n
}. For any atomic formula p, lp and l∼p

are defined by p and ∼p, respectively. For any compound formula γ, the

interpretation of lγ is considered below.
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Definition 3.5. For any formulas α and β, we define

Cα∧β = { lα∧β ⇒ lα; lα∧β ⇒ lβ ; lα, lβ ⇒ lα∧β}

Cα∨β = { lα∨β ⇒ lα ∨ lβ ; lα ⇒ lα∨β ; lβ ⇒ lα∨β}

Cα→β = { lα→β, lα ⇒ lβ ; (lα→lβ) ⇒ lα→β}

C∼∼α = { l∼∼α ⇒ lα; lα ⇒ l∼∼α}

C∼(α∧β) = { l∼(α∧β) ⇒ l∼α ∨ l∼β ; l∼α ⇒ l∼(α∧β);

l∼β ⇒ l∼(α∧β)}

C∼(α∨β) = { l∼(α∨β) ⇒ l∼α; l∼(α∨β) ⇒ l∼β ;

l∼α, l∼β ⇒ l∼(α∨β)}

C∼(α→β) = { l∼(α→β) ⇒ lα; l∼(α→β) ⇒ l∼β ;

lα, l∼β ⇒ l∼(α→β)}

An expression Nsub(α) represents the set of all non-literal subformulas

and non-literal negated-subformulas of a formula α. Let γ be an arbitrary

non-literal formula. Then, we define

Cl(γ) =
⋃
{Cδ | δ ∈ Nsub(γ)}.

Let Γ be a set {γ1, ..., γn} (n ≥ 2) of non-literal formulas. Then, we define

Cl(Γ) = Cl(γ1) ∪ · · · ∪ Cl(γn).

It is remarked that Cl(γ) is a set of intuitionistic clauses. Suppose that

an expression α ↔ β means ⊢ α ⇒ β and ⊢ β ⇒ α. Assuming Cl(γ) is

intended to address the intrepretation of the label expression lγ as lp ↔ p,

l∼p ↔ ∼p, lα∧β ↔ (lα∧lβ), lα∨β ↔ (lα∨lβ), lα→β ↔ (lα→lβ), l∼∼α ↔

lα, l∼(α∧β) ↔ (l∼α ∨ l∼β), l∼(α∨β) ↔ (l∼α ∧ l∼β) and l∼(α→β) ↔

(lα ∧ l∼β). Such an interpretation is regarded as the label version of the

embedding [5, 18, 22] discussed in the previous section.

Lemma 3.6. If G5np + Cl(γ) ⊢ ⇒ lγ , then G5np ⊢ ⇒ γ.

Proof. Suppose G5np + Cl(γ) ⊢ ⇒ lγ . Let P be a proof of ⇒ lγ in

G5np + Cl(γ). If we substitute α for all the labels lα everywhere in P ,

then lγ becomes γ and all the sequents in Cl(γ) appearing in P become

G5np-provable sequents. Therefore G5np ⊢ ⇒ γ. �

Lemma 3.7. If G5np ⊢ Γ ⇒ γ, then Rnp + Cl(Γ, γ) ⊢ lΓ ⇒ lγ .
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Proof. By induction on a proof P of Γ ⇒ γ in G5np. We distinguish

the cases according to the last inference of P . We show some cases.

Case (∼∨left3∗): The last inference of P is of the form:

∼α,∼β,Σ ⇒ γ

(∼(α ∨ β),Σ) ⇒ γ
(∼ ∨ left3∗).

By the hypothesis of induction, we have

Rnp + Cl(∼α,∼β,Σ, γ) ⊢ l∼α, l∼β, lΣ ⇒ lγ.

We then obtain:

l∼(α∨β) ⇒ l∼β

l∼(α∨β) ⇒ l∼α l∼α, l∼β, lΣ ⇒ lγ

(l∼(α∨β), l∼β, lΣ) ⇒ lγ
(resol)

(l∼(α∨β), lΣ) ⇒ lγ
(resol).

Since ∼α,∼β ∈ Nsub(∼(α ∨ β)), we have Rnp + Cl(∼(α ∨ β),Σ, γ) ⊢

l∼(α∨β), lΣ ⇒ lγ .

Case (∼∨right∗): The last inference of P is of the form:

Σ ⇒ ∼α ∆ ⇒ ∼β

(Σ,∆) ⇒ ∼(α ∨ β)
(∼ ∨ right∗).

By the hypothesis of induction, we have Rnp + Cl(Σ,∼α) ⊢ lΣ ⇒ l∼α and

Rnp + Cl(∆,∼β) ⊢ l∆ ⇒ l∼β . We then obtain:

l∆ ⇒ l∼β

lΣ ⇒ l∼α l∼α, l∼β ⇒ l∼(α∨β)

(lΣ, l∼β) ⇒ l∼(α∨β)

(resol)

(lΣ, l∆) ⇒ l∼(α∨β)

(resol).

Case (∼∧left∗): The last inference of P is of the form:

∼α,Σ ⇒ γ ∼β,∆ ⇒ γ

(∼(α ∧ β),Σ,∆) ⇒ γ
(∼ ∧ left∗).

By the hypothesis of induction, we have Rnp + Cl(∼α,Σ, γ) ⊢ lΣ, l∼α ⇒ lγ
and Rnp + Cl(∼β,∆, γ) ⊢ l∆, l∼β ⇒ lγ . We then obtain:

l∼(α∧β)
⇒ l∼α ∨ l∼β l∼(α∧β)

⇒ l∼(α∧β)
lΣ, l∼α ⇒ lγ l∆, l∼β ⇒ lγ

(l∼(α∧β)
, lΣ, l∆) ⇒ lγ

(∨resol).
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Case (→right1∗): The last inference of P is of the form:

α,∆ ⇒ β

∆ ⇒ α→β
(→right1∗).

By the hypothesis of induction, we have Rnp + Cl(α,∆, β) ⊢ lα, l∆ ⇒ lβ .

We then obtain:

lα→lβ ⇒ lα→β lα, l∆ ⇒ lβ

l∆ ⇒ lα→β
(→resol).

Case (→left∗): The last inference of P is of the form:

Σ ⇒ α β,∆ ⇒ γ

(α→β,Σ,∆) ⇒ γ
(→left∗).

By the hypothesis of induction, we have Rnp + Cl(Σ, α) ⊢ lΣ ⇒ lα and

Rnp + Cl(β,∆, γ) ⊢ lβ, l∆ ⇒ lγ . We then obtain:

lΣ ⇒ lα

lα→β, lα ⇒ lβ lβ, l∆ ⇒ lγ

(lα→β, lα, l∆) ⇒ lγ
(resol)

(lα→β, lΣ, l∆) ⇒ lγ
(resol).

�

Lemma 3.8. For any intuitionistic clause Γ ⇒ P , if Rnp ⊢ Γ ⇒ P ,

then G5np ⊢ Γ ⇒ P .

Proof. By induction on a proof of Γ ⇒ P in Rnp. �

Theorem 3.9 (Equivalence between Rnp and G5np). G5np ⊢ ⇒ γ if

and only if Rnp + Cl(γ) ⊢ ⇒ lγ .

Proof. (=⇒): By Lemma 3.7.

(⇐=): Suppose Rnp + Cl(γ) ⊢ ⇒ lγ . By Lemma 3.8 with an obvious

generalization, we have G5np + Cl(γ) ⊢ ⇒ lγ . We thus obtain G5np ⊢

⇒ γ by Lemma 3.6. �
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.4 Type system

Prawitz’s natural deduction system for N4, which was presented in [16] 5, is

obtained from the usual natural deduction system for positive intuitionistic

logic by adding the following inference rules with respect to the strong

negation connective ∼:

α
∼∼α

∼∼α
α

α ∼β

∼(α→β)
∼(α→β)

α

∼(α→β)

∼β

∼α
∼(α ∧ β)

∼β

∼(α ∧ β)
∼(α ∧ β)

[∼α]
....
γ

[∼β]
....
γ

γ

∼α ∼β

∼(α ∨ β)
∼(α ∨ β)

∼α

∼(α ∨ β)

∼β

which correspond to the Hilbert-style axiom schemes ∼∼α ↔ α, ∼(α→β) ↔

α ∧ ∼β, ∼(α ∧ β) ↔ ∼α ∨ ∼β and ∼(α ∨ β) ↔ ∼α ∧ ∼β.

In this section, a new typed λ-calculus for N4 is introduced based on

Prawitz’s system via the Curry-Howard correspondence. The calculus pre-

sented is constructed using two new constructors neg and neg−1 in order

to interprete the natural deduction rules that correspond to ∼∼α ↔ α.

For the other rules in the natural deduction, we do not have to introduce

any new constructors, since ∼(α→β) and ∼(α ∨ β) are interpreted as the

conjunction of α (or ∼α) and ∼β, and also ∼(α ∧ β) is interpreted as the

disjunction of ∼α and ∼β. The resulting system is thus a natural extension

of the usual typed λ-calculus for positive intuitionistic logic, but has the

non-standard consequence of non-unique typedness of terms.

Definition 4.1. Let always i ∈ {0, 1}. Terms r, s, t, ... are inductively

defined using variables x, y, x0, x1, ... by the following grammar:

r ::= x | rr | λyr | inji r | r(x0.r, x1.r) | 〈r, r〉 | r proji | neg r | r neg−1.

The variables y, x0 and x1 get bound in λyr and r(x0.r, x1.r), respectively.

5Strictly speaking, Prawitz introduced a natural deduction system for Nelson’s con-

structive logic N with strong negation [11]. Since N4 is a sublogic of N, such a natural

deduction system can also be adapted for N4.
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An expression r~s with a possibly empty vector ~s is used for rs1 · · · sn ≡

(· · · (rs1) · · · sn). The substitution of a term s for a variable x is defined as

usual and denoted as rx[s] or r[s/x]. It is assumed that α-equal terms are

equal.

Definition 4.2. Types α, β, γ ... are inductively defined by the follow-

ing grammar from basic types b, c, d, ...:

α ::= b | α→α | α ∨ α | α ∧ α | ∼α.

Definition 4.3. For an assignment x : α of a type α to a variable x,

the following rules give the typable terms and their types:

r : α→β s : α

rs : β
(→E)

x : α r : β

λxr : α→β
(→I)

r : αi

inji r : α0 ∨ α1
(∨I)

r : α0 ∨ α1 s0 : β s1 : β

r(xα0
0 .s0, x

α1
1 .s1) : β

(∨E)

r : α0 s : α1

〈r, s〉 : α0 ∧ α1
(∧I)

r : α0 ∧ α1

r proji : αi
(∧E)

r : α
neg r : ∼∼α (∼I)

r : ∼∼α
r neg−1 : α

(∼E)

r : α s : ∼β

〈r, s〉 : ∼(α→β)
(∼→I)

r : ∼(α→β)

r proj0 : α
(∼→E1)

r : ∼(α→β)

r proj1 : ∼β
(∼→E2)

r : ∼αi

inji r : ∼(α0 ∧ α1)
(∼ ∧ I)

r : ∼(α0 ∧ α1) s0 : β s1 : β

r(x∼α0
0 .s0, x

∼α1
1 .s1) : β

(∼ ∧ E)

r : ∼α0 s : ∼α1

〈r, s〉 : ∼(α0 ∨ α1)
(∼ ∨ I)

r : ∼(α0 ∨ α1)

r proji : ∼αi
(∼ ∨ E).

The superscripts of variables in the rules (∨E) and (∼∧E) denote the type

assignments for those variables. An expression r : α is also denoted as rα.

It is remarked that the typing rules derive the non-standard conse-

quence of non-unique typedness of terms. For example, 〈rα, s∼β〉 has two

types ∼(α→β) and α∧∼β, a fact which corresponds to the axiom scheme

∼(α→β) ↔ α ∧ ∼β.

It is also remarked that neg and neg−1 are very similar to 〈, 〉 and proji,

respectively, and hence in the strong normalization proof presented, the

cases for neg and neg−1 can be treated in the same way as that for 〈, 〉 and

proji.

In the following discussion, we treat only on typable terms.
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Definition 4.4. Eliminations R,S, T , ... are defined by the following

grammar: 6

R ::= r | (x0.r, x1.r) | proji | neg−1.

An expression (x0.s0, x1.s1)x[t] is used for the capture-free substitution

(x0.s0[t/x], x1.s1[t/x]). A similar vector expression ~R is also adopted for

eliminations. A square bracket notion [...] is used for optional syntax ele-

ments.

Definition 4.5. The set TE of typed terms is inductively defined by

the following grammar:

TE ∋ r ::=

x | x~r[R] | λxr | inji r | 〈r, r〉 | neg r | (λxr)r ~R | x~r(x0.r, x1.r)R~R |

(injir)(x0.r, x1.r)~R | 〈r, r〉 proji ~R | (neg r) neg−1 ~R.

The set NF of typed terms in normal forms is inductively defined by the

following grammar:

NF ∋ r ::= x | x~r[(x0.r, x1.r)] | λxr | inji r | 〈r, r〉 | neg r.

An expression FV (S) denotes the set of all free variables in S.

Definition 4.6. The reduction relation ⊲ on TE is defined by

(→β): (λxr)s ⊲ rx[s],

(∨β): (inji r)(x0.s0, x1.s1) ⊲ si[r/xi],

(∧β): 〈r0, r1〉 proji ⊲ ri,

(∼β): (neg r) neg−1 ⊲ r,

(Perm): r(x0.s0, x1.s1)S ⊲ r(x0.s0S, x1.s1S) xi /∈ FV (S),

(Comp): if r ⊲ r′, then sr ⊲ sr′, rS ⊲ r′S, λxr ⊲ λxr′,

inji r ⊲ inji r′, s(x.r, y.t) ⊲ s(x.r′, y.t), s(y.t, x.r) ⊲ s(y.t, x.r′),

〈r, s〉 ⊲ 〈r′, s〉, 〈s, r〉 ⊲ 〈s, r′〉, neg r ⊲ neg r′.

Definition 4.7. An expression r ⇓ (r is strongly normalizable) means

that there is no infinite reduction sequence starting with r. The set WF is

defined by {r | r ⇓}.

6Using this notion, the permutative conversions can uniformly be presented as (Perm)

in the definition of reductions.
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Definition 4.8. The set SN is inductively defined by the following rules
where (x.r, y.t) ∈ SN denotes an abbreviation for r, t ∈ SN.

x ∈ SN
(V ar0)

~r[R] ∈ SN

x~r[R] ∈ SN
(V ar)

x~r(x0.s0S, x1.s1S)~R ∈ SN

x~r(x0.s0, x1.s1)S ~R ∈ SN
(Perm−1)

r ∈ SN
λxr ∈ SN

(λ)
r ∈ SN

inj
i

r ∈ SN
(Inj)

r0, r1 ∈ SN

〈r0, r1〉 ∈ SN
(Pair)

r ∈ SN
neg r ∈ SN

(Neg)

rx[s]~S ∈ SN s ∈ SN

(λxr)s~S ∈ SN
(β→)

r0
~S, r1

~S ∈ SN

〈r0, r1〉 proj
i

~S ∈ SN
(β∧)

si[r/xi]~S ∈ SN s1−i
~S ∈ SN r ∈ SN

(inj
i

r)(x0.s0, x1.s1)~S ∈ SN
(β∨)

r~S ∈ SN

(neg r) neg−1 ~S ∈ SN
(β∼).

The rule (Perm−1) has the proviso xi /∈ FV (S).

In the following, we give only a sketch of the strong normalization proof,

since the proof is almost the same as the one of [6].

Lemma 4.9. SN = WF.

Lemma 4.10. If r(x0.s0S, x1.s1S)~R ∈ SN, then r(x0.s0, x1.s1)S ~R ∈

SN.

Using Lemma 4.10, we can prove the following lemma.

Lemma 4.11. For any type α, for any r ∈ SN,

(1) if sα ∈ SN, then rs ∈ SN;

(2) if r : α where α ∈ {α0 ∨ α1, ∼(α0 ∧ α1)} and sδ0
0 , sδ1

1 ∈ SN

where 〈δ0, δ1〉 ∈ {〈α0, α1〉, 〈∼α0,∼α1〉}, then r(x0.s0, x1.s1) ∈

SN;

(3) if sα ∈ SN, then rx[s] ∈ SN.

Proof. By simultaneous induction on α, side induction on r ∈ SN. We

distinguish the cases according to r ∈ SN. We always first prove (1) (2) in

parallel, and later infer (3), possibly with the help of (2). �

It is remarked that by Definition 4.8, the following conditions hold:

(4) if α ∈ {β0 ∧ β1, ∼(β0→β1), ∼(β0 ∨ β1)} and rδ0 , sδ1 ∈

SN where 〈δ0, δ1〉 ∈ {〈β0, β1〉, 〈β0,∼β1〉, 〈∼β0,∼β1〉}, then

〈r, s〉α ∈ SN, and

(5) if rα ∈ SN, then (neg r) ∈ SN.
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Theorem 4.12 (Strong normalization). All typed terms are strongly

normalizable.

Proof. For any term r, we can show r ∈ SN by induction on the struc-

ture of r. In order to show this, Lemma 4.11 is used, e.g. the case r ≡ st

is shown by using Lemma 4.11 (1). By Lemma 4.9, we obtain r ∈ WF, i.e.

r ⇓. �
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