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EQUIVALENTIAL LOGICS
(AFTER 25 YEARS OF INVESTIGATIONS)

A b s t r a c t. A short history of equivalential logics is sketched com-

mencing with the pioneering work of Prucnal and Wroński [1974].

The notion of equivalential logic is due to Tadeusz Prucnal and Andrzej

Wroński. The short note “An algebraic characterization of the notion of

structural completeness” appeared in 1974 in Bulletin of the Section of

Logic, Vol. 3, 30-33. The work dealt mainly with structural completeness,

the property of deductive systems which was systematically investigated in

Poland in the beginning of the 70ties. One may say that singling out the

class of equivalential logics was a side-effect of the Prucnal and Wroński’s

investigations of structural completeness. The term “equivalential logic”

is usually associated with the purely equivalential fragment of the classical

or intuitionistic propositional logics. In the Prucnal - Wroński’s paper the

notion of an equivalential logic is understood much broader. The fragments

mentioned above fall under this general notion of an equivalential logic.
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Logic is defined here in accordance with the Tarskian, purely conse-

quential paradigm of logic which is dominant in the Polish logical tradition

(see Tarski [1956]). Thus a logic (when restricted to sentential languages)

is viewed as a pair

(S,C),

where S is an arbitrary sentential language and C is a consequence opera-

tion on S. Often the condition of structurality is added (see  Loś and Suszko

[1958]):

eC(X) ⊆ C(eX),

for any substitution e in S. (Finitariness is not needed in our considera-

tions.) As is customary, we often identify logics with their corresponding

consequence operations.

The original definition due to Prucnal and Wroński states: a logic

(S,C) is equivalential if there exists a set E(x, y) of sentential formulas of

S in two variables x and y such that the following conditions hold:

(i) E(x, x) ⊆ C(Ø)

(ii) E(y, x) ⊆ C(E(x, y))

(iii) E(x, z) ⊆ C(E(x, y) ∪E(y, z))

(iv) For any natural n ≥ 0 and any n-ary connective F ,

E(F (x1, . . . , xn), F (y1, . . . , yn)) ⊆ C(E(x1, y1) ∪ . . . ∪E(xn, yn))

(v) y ∈ C(E(x, y) ∪ {x}).

Any set E(x, y) with the above properties is called an equivalence sys-

tem for the logic C. [In the above conditions E(α, β) stands for the set

of formulas that results from E(x, y) by the simultaneous substituting the

formulas α and β for the variables x and y, respectively.] The consecutive

conditions occurring in the above definition are referred to as to reflexivity,
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symmetry, transitivity, congruentiality and detachment (or the generalized

Modus Ponens) for E(x, y), respectively. E(x, y) may be empty. It is

easy to see that a logic C has the empty equivalence system if and only if

y ∈ C(x). The last condition means in turn that either C is inconsistent

(i.e., C(Ø) = S) or C is almost inconsistent (i.e., C(Ø) = Ø and C(X) = S

for any non-empty set X.)

If C is the consequence of classical or intuitionistic logic, then C is

equivalential because the one-element set E(x, y) containing the formula

x↔ y only is an equivalence system. The connective ↔ has the properties

(i) - (v).

The above understanding of equivalence departs from the logical tra-

dition, where equivalence is being understood as a binary connective with

certain explicitly defined properties. The generalization of the notion of

equivalence accomplished by Prucnal and Wroński turns out however to be

very accurate and it has far-reaching consequences.

Wójcicki [1988] has noticed that the conditions (i) - (v) are not inde-

pendent: (ii) and (iii) are consequences of the remaining conditions. Fur-

thermore, he has singled out the important class of finitely equivalential

logics. A logic C is finitely equivalential if it has a finite set E(x, y) satisfy-

ing (i) - (v). Shortly, a logic C is finitely equivalential iff it is equivalential

and has a finite equivalence system.

The very notion of an equivalential logic was not thoroughly exam-

ined by Prucnal and Wroński. No sooner than on the turn of the 70’s and

the 80’s systematic investigations of this notion have been initiated in the

then Section of Logic of the Polish Academy of Sciences. We mention here:

Czelakowski’s article [1981] “Equivalential logics”, where the title notion

was the subject of a detailed examination, a series of (published and un-

published) works of Czelakowski and Dziobiak (see e.g. Czelakowski [1985])

and, finally, Jacek Malinowski’s monograph “Equivalence in intensional log-

ics”, which has essentially broadened our knowledge of this notion.

Wójcicki’s book “Theory of logical calculi” (Wójcicki [1988]) is a com-

petent and complete source of information on the state of the theory to the
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late 80-ties. It contains almost all more important results obtained up to

1988.

Malinowski’s investigations were very helpful in establishing the exact

topography of the modal equivalential logics. It is interesting to know that

the logics (= consequence operations) determined by weak normal modal

systems, such as Kripke’s system K or Feys-von Wright’s system T, are

finitary, equivalential but not finitely equivalential. This means that they

possess only infinite equivalence systems. E.g. for the system K, we define

K
→

to be the consequence operation (in the modal language (S,∧,∨,¬, ) de-

termined by the system K in the following way: K is a set of logical axioms

of K
→ and the rule Modus Ponens for the material implication → is its

only primitive rule of inference. K is equivalential and the infinite set

{
n
(x↔ y) : n = 0, 1, 2, . . .}

forms an equivalence system for K
→. Malinowski has proved that K

→ is

not finitely equivalential.

In light of the investigations carried out by Malinowski, almost all more

important intensional deductive systems are known to be equivalential e.g.

temporal logics, dynamic logics, multi-modal logics, ortho-modular logics.

At the same time only some of them exhibit the property of being finitely

equivalential. This fact is in itself worth mentioning because it shows how

good intuition Prucnal and Wroński had when they defined equivalence as

a set of binary terms allowing infinite sets.

To continue the story, a few words must be said about the hierarchy of

deductive systems. Before discussing the hierarchy, we first formulate the

thesis we adhere to:

the class of equivalential logics is the most important class in the

hierarchy of deductive systems.
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The above thesis should be assessed in purely pragmatic terms - the

plausible arguments we present here merely show that all the known de-

ductive systems which in the literature are qualified as non-trivial ones are

necessarily equivalential.

In the middle of the 80-ties Blok and Pigozzi carried out a research

concerning the abstract treatment of the Tarski- Lindenbaum method. It

is a commonly known fact that if T is a theory (in a sentential or any

higher order language), then the relation ∼T between formulas defined by

the stipulation:

ϕ ∼T ψ iff T ` ϕ↔ ψ

(i.e., ϕ ↔ ψ is classically provable on the basis of T ) is an equivalence

relation on the set of formulas. Moreover, ∼T is a congruence on the

formula algebra, i.e., it is compatible with the operations determined by

the connectives of the language. The resulting quotient algebra is a Boolean

algebra and it is called the Lindenbaum-Tarski algebra of the theory T .

The above remarks (with a suitably modified conclusion) can be re-

peated without major changes for many other deductive systems, different

from classical logic. E.g. if the logic in the language (with →,∧,∨,¬) is

the intuitionistic system, the above procedure assigns a Heyting algebra to

each theory.

The question arises - what is the scope of the Lindenbaum—Tarski

method (LTM, for short)? As is well-known, LTM is the simplest and

most important tool linking logic with algebra: the Lindenbaum—Tarski

algebras of classical logic are Boolean algebras, the Lindenbaum—Tarski

algebras of intuitionistic logic are Heyting algebras. (The underlying sen-

tential languages of classical and intuitionistic logics are assumed to have

an arbitrary infinite stock of variables.) Two elements are inherent to

LTM: firstly, LTM assigns the congruence ∼T on the formula algebra to

each closed theory T of a given logic, and secondly, the congruence ∼T is

the largest among all congruences Φ that have the compatibility property

which means that for any formulas ϕ,ψ:
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(*) ϕ ≡ ψ ( mod Φ) and ϕ ∈ T imply ψ ∈ T .

This observation was the starting point in formulating the so-called ab-

stract treatment of the Lindenbaum-Tarski method. Blok and Pigozzi have

introduced the Leibniz operator to metalogic, usually denoted by Ω. By

definition, if T is a set of sentential formulas (we restrict ourselves to sen-

tential languages here), then

ΩT

is the largest congruence Φ on the formula algebra that is compatible with

T , i.e., ΩT is the greatest congruence Φ for which the implication (*) holds.

The function which assigns the congruence ΩT to each set T is called the

Leibniz operator and the congruence ΩT is called the Leibniz congruence of

the theory T .

Two remarks are appropriate here. Firstly - the very notion of the

Leibniz operator (but not its name) has been known for years. We find it

in Suszko’s and Wójcicki’s papers (see Wójcicki [1988]) and even in  Loś [

1949]. The congruence ΩT bears there the name “the largest strict congru-

ence of the matrix (S, T )”. However, the term “Leibniz congruence” has

recently become widespread in the literature. Secondly, the definition of

ΩT is independent of whatever deductive system admitted in the language

of T . The congruence ΩT depends entirely on the structural (i.e. gram-

matical) properties of the language. ΩT is therefore often referred to as

the synonymy relation relative to T . This is due to the fact that for any

sentential language S and any set T ⊆ S the following equivalence holds:

ϕ ≡ ψ ( mod ΩT ) iff, for every formula χ ∈ S and any variable x

occurring in χ, χ(x/ϕ) ∈ T iff χ(x/ψ) ∈ T .

[χ(x/ϕ) is the result of the uniform substituting every occurrence of x in

the formula χ by ϕ. ] In other words, ϕ ≡ ψ ( mod ΩT ) iff ϕ and ψ are

interchangeable relative to T in every context represented by χ.
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The process of relating the operator Ω to a given deductive system C

is effected by way of restricting the domain of the operator Ω to the family

Th(C) of closed theories of C and then investigating the run of Ω on Th(C).

It may happen that the operator Ω is

(a) monotonic on Th(C), i.e., T1 ⊆ T2 implies ΩT1 ⊆ ΩT2, for any

T1, T2 ∈ Th(C).

(b) injective on Th(C), i.e., T1 = T2 implies ΩT1 = T2, for any T1, T2 ∈

Th(C).

The specification of properties of Ω, similar to the above ones, give us a

hierarchy of deductive systems called the hierarchy of protoalgebraic logics.

We shall describe it briefly. In the above hierarchy, which is depicted in

the figure below, moving upwards one reaches smaller and smaller classes

of deductive systems. Protoalgebraic logics constitute the largest class of

the hierarchy (the bottom of the hierarchy) while Fregean protoalgebraic

systems form the smallest class (the top of the hierarchy).

The classes placed in the right-hand side of the figure are the most

important ones because almost all non-trivial systems studied in the liter-

ature belong to the classes exhibited there. The left-hand side comprises

certain special and rather weak deductive systems as e.g. quantum logics

determined by non- orthomodular ortholattices.

Here are the definitions of particular classes of the hierarchy. The

letter C represents here an arbitrary deductive system.

1. C is protoalgebraic if Ω is monotonic on Th(C),

2. C is equivalential (in the operator sense) if C is protoalgebraic and Ω

commutes with pre-images of substitutions, i.e., for any substitution

e in the language of C and any theory T ∈ Th(C),

e−1ΩT = Ωe−1T ,

where e−1ΩT := {〈α, β〉 ∈ S × S : eα ≡ eβ ( mod ΩT )},
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3. C is algebraizable if C is equivalential in the operator sense and Ω

is injective on Th(C),

4. C is regularly algebraizable if C is equivalential in the operator sense

and Ω glues together the theorems of any theory T . The last con-

dition is formally expressed by the formula

(i) x ≡ y ( mod ΩC(x, y)),

where x and y are arbitrary but fixed distinct variables.

5. C is a Fregean protoalgebraic logic if Ω satisfies the condition:

(ii) α ≡ β ( mod ΩT ) iff C(T, α) = C(T, β),

for any theory T ∈ Th(C) and any formulas α, β.
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Evidently (ii) yields the monotonicity of Ω (and hence protoalgebraic-

ity). It is also clear that (ii) entails (i). Therefore every Fregean protoal-

gebraic logic is regularly algebraizable.

In turn, every regularly algebraizable logic is algebraizable. Indeed, (i)

implies that

(iii) α ≡ β ( mod ΩT ) for any formulas α, β ∈ T ,

where T is any theory in Th(C). It is easy to see that (iii) implies the

injectivity of Ω on Th(C). Therefore, for any regularly algebraizable logic

C, the operator Ω is injective on Th(C). From this and the equivalentiality

of C, the algebraizability of C follows.

Let us add, for the sake of completeness, that a logic C is weakly alge-

braizable if C is protoalgebraic and Ω is injective on Th(C). A deductive

system C is regularly weakly algebraizable if it is protoalgebraic and it sat-

isfies (i). Since (i) implies the injectivity of Ω on Th(C), every regularly

weakly algebraizable logic is weakly algebraizable.

The definitions of the classes forming the above hierarchy are all uni-

formly formulated in terms of the properties of the Leibniz operator. Some

of the above definitions may seem to be not intuitive and formulated ad

hoc. We must however remember that the process of discovering the con-

secutive classes from the hierarchy continued for years. The initial, original

definitions of some of the above classes were not even formulated in terms

of Ω. The development of the theory has shown that all these definitions

are equivalent to the above “operator” ones. This fact has accounted for es-

tablishing the operator paradigm in the classification of deductive systems.

E.g. the above operator definition of an equivalential logic is equivalent, as

expected, to the original definition given by Prucnal and Wroński. For if C

is equivalential in the Prucnal-Wroński’s sense and E(x, y) is an equivalence

system for C, then the Leibniz congruence ΩT for any theory T ∈ Th(C)

has a simple characterization in terms of E(x, y):

(iv) α ≡ β ( mod ΩT ) iff E(α, β) ⊆ T ,

for any α, β ∈ S.
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It follows from (iv) that Ω is monotonic and commutes with pre-images

of substitutions on Th(C). To show the second property it suffices to notice

that the following conditions are equivalent:

α ≡ β ( mod e−1ΩT ),

eα ≡ eβ ( mod ΩT ),

E(eα, eβ) ⊆ T ,

eE(α, β) ⊆ T ,

E(α, β) ⊆ e−1T ,

α ≡ β ( mod Ωe−1T ),

for any substitution e and any α, β ∈ S. Consequently, C is equivalential

in the sense of the above operator definition. The proof of the reverse

implication is much harder - if C is equivalential in the sense of Ω then C

possesses an equivalence system E(x, y), i.e., C is equivalential in the sense

of Prucnal and Wroński.

Notes. 1. The classes from the above hierarchy are also characterized

in semantic terms via their model classes. With each deductive system C

the class Mod*(C) of reduced matrix models of C is uniquely associated.

Much of the theory of deductive systems is devoted to structural properties

of the class Mod*(C) for logics C varying over definite levels in the pro-

toalgebraic logics hierarchy. E.g. C is protoalgebraic iff the class Mod*(C)

is closed under the formation of subdirect products of logical matrices. C

is equivalential iff Mod*(C) is closed under the formation of submatrices

and direct products of matrices.

2. The finitely equivalential logics are also simply characterized in

terms of the Leibniz operator. Let C be a deductive system. We say that

Ω is continuous on Th(C) if

Ω
⋃

i∈I
Ti =

⋃
i∈I

ΩTi
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for any (upper) directed family Ti (i ∈ I) of closed theories of C such that

the theory
⋃

i∈I
Ti is closed. (The proviso that the union

⋃
i∈I

Ti be closed

for any directed system Ti(i ∈ I) of closed theories automatically holds if it

is additionally assumed that the logic C is finitary.) The following theorem

is due to Herrmann: C is finitely equivalential iff is continuous on Th(C).

The fundamentals of the theory of algebraizable logics were created

by Blok and Pigozzi [1989]. The class of algebraizable logics is the in-

tersection of the classes of equivalential logics and weakly algebraizable

logics. As we remarked earlier, their basic goal was to define adequately

the scope of the Lindenbaum—Tarski method in metalogic. In their ap-

proach, when relativized to finitary systems, the essence of LTM lies in the

equivalence between the process of deducibilty of individual formulas from

sets of formulas and the process of generating (relative) congruences in cer-

tain algebras associated with the given deductive system. This equivalence

can be given a strict, purely technical meaning (see also the forthcoming

Czelakowski’s monograph “Protoalgebraic Logics” for more information).

A (finitary) logic is algebraizable (in the sense of Blok and Pigozzi) when

the above equivalence holds for it. The algebras associated with a given

logic C algebraizable in Blok-Pigozzi’s sense form a quasivariety. Since this

quasivariety is uniquely determined by C, it is called the equivalent alge-

braic semantics for C. The notion of algebraizable logic admitted in this

paper is much broader than the one considered by Blok and Pigozzi. (E.g.

the finitariness of deductive systems is not assumed here.)

The origin of Fregean logics goes back to the reflection on the Fregean

principle in the logical sense and the critique of this principle contained

in Suszko’s writings. The main feature of non-Fregean logic is the distinc-

tion it makes between the meaning and the truth-value of a sentence. (In

the sequel we interchangeably use the terms “meaning”, “denotation” and

“semantic reference”.) In the logical systems defined by Suszko the dis-

tinction between the reference and truth-value is embodied in a new binary

connective called identity. This connective is denoted by ≡. Let S be any

sentential language which among its connectives has the identity and the
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equivalence connectives ≡ and ↔ (and possibly some other connectives)

and let C be any logic in S. The connectives ≡ and ↔ are assumed to have

their “usual” meanings in C, i.e., the conditions

α↔ β ∈ C(T ) iff C(T, α) = C(T, β)

and

α ≡ β ∈ C(T ) iff C(T, ϕ(x/α)) = C(T, ϕ(x/β))

hold for any theory T ⊆ S, any formulas α, β, ϕ and for any variable x. We

say, following Suszko, that the Fregean Principle holds for C (equivalently,

C satisfies the Fregean Principle) if the formula

(FP) (x ≡ y) ≡ (x↔ y)

is the thesis of C. The above formula states that the fact that two sentences

have identical meanings is identical with the fact that these two sentences

are equivalent. In other words, the above formula reduces the identity of

meanings of two sentences to the property of bearing the same truth-value

by them. (FP) is referred to as the Fregean Principle (in the logical sense).

It is not difficult to prove that the Fregean Principle holds for C iff, for any

theory T ∈ Th(C) and any two formulas α, β, the following equivalence

holds:

(v) α ≡ β ( mod ΩT ) iff C(T, α) = C(T, β).

This observation is the key to the general definition of a Fregean logic

formulated at point 5. This general definition entirely abstracts from the

grammatical structure of the language and from the supply of connectives

the language may possess. (S may not involve the connectives ≡ and

↔ at all.) We thus see that the general notion of a Fregean logic is a

conservative extension of the Fregean logic in the sense of Suszko. (The

latter is restricted to the languages which contain ≡ and ↔.)

Contemporary investigations concerning classification of deductive sys-

tems are mainly focused on subclasses of the class of equivalential logics.
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The most important intensional logics are equivalential; they are not even

algebraizable and therefore located not very high in the hierarchy of de-

ductive systems we have outlined here. We may say that the notion (and

the name) of an equivalential logic belongs to the arsenal of contemporary

logic. It is still an object of extensive research - in Poland, Germany, Rus-

sia, U.S.A or in Spain - and a source of deep results. The “career” it has

made is amazing - from a short note published in the Bulletin of the Section

of Logic many years ago, where it was mentioned first time, it reached the

columns of all more important logical journals.
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