Document downloaded from:

http://hdl.handle.net/10251/65885
This paper must be cited as:

Cervera Ubeda, M.; Albert Albiol, M.; Torres Bosch, MV.; Pelechano Ferragud, V. (2015).
On the usefulness and ease of use of a model-driven Method Engineering approach.
Information Systems. 50:36-50. doi:10.1016/}.is.2015.01.006.

The final publication is available at

http://dx.doi.org/10.1016/}.is.2015.01.006

Copyright E|sevier

Additional Information

On the Usefulness and Ease of Use of a Model-Driven Method
Engineering Approach

Mario Cervera*, Manoli Albert, Victoria Torres, Vicente Pelechano

Centro de Investigacion en Métodos de Produccion de Software
Universitat Politecnica de Valéncia
Camino de Vera s/n, 46022 Valencia, Spain

Abstract

The Method Engineering (ME) discipline emerged as a response to the need for
methods and tools that are better adapted to context. Despite the potential benefits
of ME and the emergence of Computer-Aided Method Engineering technology, there
are hardly any reports on the practical application of ME available in the literature.
Some authors argue that this is because practitioners often fail to see the useful-
ness of ME due to its high complexity. With the aim of facilitating the application
of ME, we developed MOSKitt4ME, a lightweight approach that makes intensive
use of reusable assets and Model-Driven Engineering techniques. In previous work,
we illustrated how MOSKitt4dME supports three phases of the ME lifecycle: de-
sign, implementation, and execution. In this paper, we evaluate the complexity
of MOSKitt4dME. Specifically, we present a study that is based on the Technology
Acceptance Model (TAM) and the Think Aloud method. The TAM allowed us to
measure usefulness and ease of use in a subjective manner; the Think Aloud method
allowed us to analyze these measures objectively. Overall, the results were favor-
able. MOSKitt4ME was highly rated in perceived usefulness and ease of use; we
also obtained positive results with respect to the users’ actual performance and the
difficulty experienced.

Keywords:
Method Engineering, Model-Driven Engineering, Complexity, Think Aloud,
Technology Acceptance Model

*Corresponding author. Tel.: +34 96 387 70 00x73564.
E-mail addresses: mcervera@pros.upv.es (M. Cervera), malbert@pros.upv.es (M. Albert), vtor-
res@pros.upv.es (V. Torres), pele@pros.upv.es (V. Pelechano).

Preprint submitted to Information Systems January 14, 2015

1. Introduction

Software projects are diverse in nature. They differ, for example, in size, appli-
cation domain, or team expertise. Due to these differences, it is generally agreed
that software companies must define their methods in-house [1, 2, 3]; thus, these
methods can be adapted to the needs of specific projects. To define methods effi-
ciently and effectively, companies require systematic solutions that are built upon
sound methodical foundations. Providing these solutions is the main goal of the
Method Engineering (ME) discipline [4]. By adopting ME, companies gain flexibil-
ity in building project-specific methods [5, 6], and since these methods are defined
in-house, developers are motivated to use them due to the feeling of method owner-
ship [7].

Regardless of the potential benefits of ME and the emergence of Computer-
Aided Method Engineering (CAME) technology [8], ME has never been widely used
in industry [9, 10]. Kuhrmann et al. concluded in a recent mapping study [11]
that there are hardly any reports on the practical application of ME available in the
literature. Henderson-Sellers et al. argue in [2, 12] that practitioners often fail to see
the usefulness of ME mainly due to its complexity and cost in terms of time, money,
and people. The complexity of ME was also noted by Ter Hofstede et al. [13], who
identified several complexity issues related to the selection, storage, retrieval, and
assembly of method fragments.

With the aim of facilitating the use of ME, we developed MOSKitt4ME, a ME
approach that is fully implemented by a CAME environment [14]. MOSKitt4ME
differs from traditional ME in that it is lightweight: MOSKitt4ME is built upon
reusability principles and it is also model-driven, which enables a high level of au-
tomation. In our previous work [15, 16], we illustrated how MOSKitt4ME makes
intensive use of reusable assets and Model-Driven Engineering (MDE) to support
three phases of the ME lifecycle: the initial design of the method, its implementa-
tion, and the final method execution. In this paper, we present an evaluation study
that focuses on the complexity of MOSKitt4ME.

The study that is presented in this paper evaluates MOSKitt4ME by means of
the Technology Acceptance Model (TAM) [17] and the Think Aloud method [18].
The TAM allowed us to assess the subjective perception of users with respect to two
quality attributes: usefulness and ease of use. We evaluated perceived ease of use
because this attribute represents a subjective measure of complexity [19, 20]. We
evaluated perceived usefulness because this attribute is causally affected by perceived
ease of use [21], and, for this reason, the usefulness of ME is often negatively perceived
by practitioners (which represents a major obstacle for the success of ME and CAME
technology). To reinforce the subjective results that were obtained by means of the
TAM, we also evaluated usefulness and ease of use in an objective manner. To

this end, we analyzed the actual improvement in performance that MOSKitt4ME
users achieved during the study and also the difficulties that they experienced!.
Performance was assessed by measuring efficiency and effectiveness. Difficulty was
assessed by analyzing the users’ reasoning processes, which reveal the errors made
by the users, the doubts that they experienced, and the problem-solving strategies
that they followed, among other data. To analyze this data at the highest possible
level of detail, we applied the Think Aloud method.

In summary, the contribution of this paper is the thorough evaluation of a
model-driven ME approach (MOSKitt4ME) from both a subjective and an objective
perspective. The main goal of this evaluation is to illustrate that MOSKitt4ME
can be positively rated in terms of perceived usefulness and ease of use and that
MOSKitt4ME can also improve the users’ performance while posing little difficulty
of use. Our positive results contrast with traditional ME, whose usefulness is of-
ten negatively perceived by practitioners and whose complexity remains an unsolved
issue. As a collateral benefit of the study, we also illustrate how MOSKitt4ME re-
duces the complexity of ME by means of MDE techniques, which alleviate the users’
workload in three phases of the ME lifecycle: design, implementation, and execution.

The remainder of the paper is structured as follows. Section 2 discusses related
work and Section 3 summarizes our model-driven ME approach. Then, Section 4
provides an overview of the evaluation study. Each of the four phases that comprise
the study are detailed in Sections 5, 6, 7, and 8, respectively. Finally, Section 9
presents some conclusions and outlines future work.

2. Related Work

In 1996, Tolvanen et al. [22] noted that ME researchers had focused mostly on the
theoretical foundations of the discipline and highlighted the need for investigating
usability issues such as usefulness or complexity. A similar conclusion was reached
in 1997 by Ter Hofstede et al. [13], who stated that more empirical research was
needed to substantiate the claims associated with the potential benefits of ME.
Despite these demands for more empirical research, two decades later it is still hard
to find empirical studies that investigate methods and tools for ME [11].

One of the few empirical studies that have been conducted in the context of ME
is the work by Sousa et al. [23]. This work evaluates the graphical notation of a
language for method design: the ISO/IEC 24744 standard [24]. The main contri-
butions of this work are suggestions for improving the notation. Other studies are
those by Kelly et al. [25] and Kerzazi et al. [26]. The former evaluates an approach

! According to Davis [17], perceived usefulness and perceived ease of use are the people’s sub-
jective appraisal of performance and effort/difficulty, respectively.

3

for testing metaCASE environments; this approach is based on an error classification
that allows the performance of metamodelers to be measured. The latter evaluates
the usability of two method design tools: EPF Composer and DSL4SPM.

In a more theoretical context, we can find two ME approaches that take com-
plexity into consideration. In [9], Bajec et al. present the Process Configuration
Approach (PCA), which was conceived to be simple enough to be adopted by soft-
ware companies. The general idea of the PCA is that project-specific methods are
designed by selecting components from a base method. On the other hand, in [3]
Karlsson et al. propose the Method for Method Configuration (MMC). The MMC
is based on the notion of method component [27], which combines ME with activity
theory to make ME less cumbersome.

In addition to the above research efforts, which deal with usability issues, we can
also find empirical studies that concern other aspects of ME. For instance, Qumer et
al. [28] tested the applicability of a framework for assessing method agility, while in
[29] Karlsson describes the lessons learned in the evaluation of a wiki-based approach
for method tailoring. On the other hand, Seidita et al. [30] performed a study where
they tested their approach for the design of agent-oriented methods.

The analysis of all the aforementioned studies allowed us to identify two impor-
tant limitations. First, most of the empirical research that has been performed in
the ME field only investigates the method design phase of the ME lifecycle; thus,
the method implementation and execution phases are almost completely neglected.
Second, even though some authors take complexity into consideration [3, 9, 13],
none of them provide a detailed empirical analysis of the usefulness and ease of use
of a ME approach when it is put into practice by means of a supporting CAME
environment. In order to fill these gaps, our study makes a detailed analysis of the
usefulness and ease of use of a model-driven ME approach (MOSKitt4ME) when it
is put into practice during three phases of the ME lifecycle: design, implementation,
and execution.

3. Model-Driven Method Engineering: the MOSKitt4ME Approach

Following the definition of ME that was given by Brinkkemper in [4], we define
model-driven ME as a paradigm for ME where models play a key role in the design,
construction, and adaptation of methods, techniques, and tools for the development
of information systems.

The model-driven ME approach that is implemented in MOSKitt4ME makes
intensive use of MDE techniques (e.g., metamodeling, model transformations, and
models at runtime) to support the design, implementation, and execution of methods.
These three phases of the ME lifecycle are depicted in Figure 1 and are summarized
below. For further details, we refer the reader to our previous work [15, 16].

m%EEikit‘

1 3
/ Method Design Method Implementation Method Execution
Method Model
(instance of SPEM 2.0 metamodel) / CASE Environment \ Software Engineer
: N
*@ t i [Process Environment] m W
| [}
Method Transf i E 1
f 1 Transformation
Engineer e Method E Product Support ifollows
A Model at ! (P @ v i
1) 1
| stores Runtime ; T?‘O
""" i
1L

/ Method Instany

Figure 1: Overview of MOSKitt4dME

3.1. Method Design

The method design involves the creation of a method model by means of the
instantiation of the SPEM 2.0 metamodel [31]. The method model specifies (among
other elements) the tasks to be carried out, the people that participate in these tasks,
and the products to be developed to reach the final system. Method engineers must
link these elements with reusable assets that are stored in a repository. These assets
contain technical data; that is, software tools such as textual or graphical editors.
Thus, a software tool that is associated to a method element will support this element
during the method execution; for instance, a UML editor that is associated to a
product called “Class model” will support the creation of specific instances of this
product (i.e., specific UML class models). The repository of MOSKitt4dME is an
important advantage of our tool due to the assets that it already contains. Since the
only requirement is that these assets be implemented as Eclipse plug-ins, we could
incorporate tools developed by the Eclipse community. In addition to the starting
set of assets, method engineers can increase the population of the repository by
using the metatools that are integrated in MOSKitt4ME (e.g., the Eclipse Graphical
Modeling Framework [32], which enables the construction of graphical editors).

3.2. Method Implementation

In this phase, a CASE environment that supports the method is automatically
obtained by means of a model transformation. This CASE environment includes a
process environment as well as software support for the creation and manipulation
of the method products. The process environment (which is always included in the

CASE tool regardless of the method that has been specified) provides a graphical
user interface and a process engine that interpret the method model at runtime to
assist software engineers during the method execution. The software support for the
method products is obtained from the reusable assets that were linked to the method
elements during the design phase.

3.3. Method Ezxecution

The method execution involves the enactment of method instances (in specific
development projects) using the CASE environment that is obtained in the previous
phase. In this CASE environment, the method execution is assisted by the process
environment, which indicates the tasks that are executable and the tools to be used
in these tasks. When the tools do not require human participation, the process
environment automatically starts the tool execution; otherwise, it provides guidance
on the use of the tools. This functionality allows software engineers to follow the
method prescriptions more easily and it also partially automates the development
process. In addition to the process-related assistance, the process environment also
allows software engineers to keep track of the method products; to this end, it
provides a hierarchical view that classifies the products according to the categories
that are defined in the method model.

4. Overview of the Evaluation Study

Even though MOSKitt4ME proves (by construction) that model-driven ME can
be implemented, the benefits of model-driven ME must be demonstrated via rig-
orous evaluation methods. For this reason, we performed a study that evaluates
MOSKitt4ME with respect to two quality attributes: usefulness and ease of use.

4.1. Measures of Usefulness and Fase of Use

Figure 2 summarizes the measures of usefulness and ease of use that are em-
ployed in our study. As the figure shows, our study employs two types of measures:
subjective and objective. The use of two types of measures has two main advantages
[33]. First, since each type of measure may lead to different conclusions, obtaining
similar results reinforces the evaluation study. Second, the combination of two types
of measures provides a more complete picture of the phenomenon that is studied.

The subjective measures that are used in our study evaluate the users’ satisfaction
with MOSKitt4ME. Similarly to most usability studies (which use questionnaires to
quantify satisfaction [33]), we used two questionnaires; specifically, the questionnaires
defined by the TAM [17]. The TAM is the most widely applied model for evaluating
usefulness and ease of use in a subjective manner [34, 20]. This evaluation is done
through two measures: perceived usefulness and perceived ease of use.

Usefulness Ease of Use

Subjective measures Subjective measures

(satisfaction) Objective measures (satisfaction)

Objective measures

= Task completion time
(Efficiency)
= Perceived usefulness = Perceived ease of use | = Task difficulty
= Task completeness
(Effectiveness)

|measured 1 measured | measured 1 measured
1 using 1 using | using | using
v v v
Technology Acceptance Think Aloud Method Technology Acceptance Think Aloud Method
Model (TAM) Model (TAM)

Figure 2: Measures used in the evaluation study

On the other hand, the objective measures of our study evaluate the performance
of MOSKitt4dME users. Specifically, we measured task completion time (which is a
measure of efficiency) and task completeness (which is a measure of effectiveness).
These measures quantify the usefulness of MOSKitt4ME in the sense that our tool
can be considered useful if it improves performance. Additionally, to evaluate the
ease of use of MOSKitt4dME, we measured task difficulty. Unlike the other two
measures, this measure was tested qualitatively; specifically, it was tested in terms
of the challenges (or difficulties) faced by the users during the execution of the
tasks of the study. These challenges disclose the complexity of MOSKitt4ME, and,
consequently, they can be considered to be an objective appraisal of the ease of use
of the tool.

The objective measures of our study were tested through direct observation [35]
since this type of evaluation method provides the most in-depth understanding of
the phenomenon under study [36]. Of all the methods based on direct observation,
we selected the Think Aloud method [18] because it is the most systematic and
valid [35, 37]. This method gathers data while a real user-system interaction is
taking place, thus avoiding the problems of interviews and questionnaires. Note
that questions to the user may be biased due to the tendency of people to describe
their behavior in terms of formal methods that deviate from their real actions [18].

4.2. Ezxperimental Process

For the evaluation of MOSKitt4ME, we followed the guidelines for experimen-
tation in software engineering proposed by Wohlin et al. in [38]. Based on these
guidelines, we performed four sequential phases: (1) definition and planning, (2) ex-

ecution, (3) data analysis, and (4) results. First, we established the scope of the study
(by defining its goal) and its planning (i.e., how the study is conducted: subjects,
research questions, etc.). Second, we executed the study with the subjects in order
to collect the data to be analyzed. Third, we analyzed the collected data. Finally,
the responses to the research questions were elaborated using the results obtained
from data analysis. These four phases are detailed in the following sections.

5. Definition and Planning

This section details the first phase of the study. In this phase, we defined the
goal of the study as well as the research questions, subjects, objects, factors, tasks,
context, instrumentation, experimental setup, and validity evaluation.

5.1. Goal
The goal of the study is to evaluate two attributes of MOSKitt4ME: usefulness

and ease of use. Following the template for goal definition that is suggested in [38],
the goal of our study can be summarized as follows:

Analyze MOSKitt4ME

For the purpose of evaluation

With respect to usefulness and ease of use

From the point of view of the researcher

In the context of academia and industry

5.2. Research Questions

To achieve the goal of the study, we defined four questions that guided our re-
search. The first two research questions (RQ1 and RQ2) focus on the subjective
perception of users; specifically, RQ1 investigates perceived usefulness and RQ2 in-
vestigates perceived ease of use.

RQ1. What is the users’ perceived usefulness of MOSKitt4ME?
RQ2. What is the users’ perceived ease of use of MOSKitt4ME?

The next research questions (RQ3 and RQ4) focus on objective measures; specif-
ically, RQ3 investigates the actual improvement in performance that is provided by
MOSKitt4ME and RQ4 explores the actual difficulties faced by MOSKitt4ME users.

RQ3. To what extent does MOSKitt4ME enhance efficiency and effectiveness?
RQ4. To what extent can MOSKitt4ME be used free from difficulty?

T1 .
» Definition of the

Glossary of Terms I

T2
Business Logic
Design

Data Persistence Design

\
Database Model Database Script Database Script
Specification Generation Revision

Figure 3: The object of the study

Table 1: Method details

1d Inputs Outputs Roles Tools

T1 None Glossary model Designer Glossary editor
T2 None UML 2.0 model Designer UML 2.0 editor
T3 UML 2.0 model Database model Designer Database editor
T4 Database model DDL Script System DB2DDL
TS DDL Script DDL Secript Developer None

5.8. Subjects

Software developers are the population of interest for this study; in practical set-
tings, they are the performers of the methods and they often work as casual method
engineers. The study does not require expert developers, but subjects must have
basic knowledge in software development methods: design of method models, imple-
mentation of tools that support methods, and execution of methods in development
projects. Additionally, we require subjects to be familiar with Eclipse and MDE.

5.4. Object

The object that was selected for the study is a part of gvMétrica [39]: the method
that is used at the Valencian Regional Ministry of Infrastructure, Territory, and En-
vironment. The object selection was carried out with a twofold purpose in mind.
First, we aimed to find a simple, understandable, and realistic scenario that in-
cluded enough elements (e.g., tasks, roles, and products) for the complete use of
MOSKitt4ME. Thus, subjects could use all of the MOSKitt4ME functionality with-
out being affected by the excessive complexity of the selected object. Second, we
aimed to minimize the threat of maturation [38] (see Section 5.10.2).

Figure 3 shows the object of the study; Table 1 contains details about the method
tasks. The first task of the method is to build a glossary model, which defines the

terms involved in the system design. This model is built by a designer using a
glossary editor. In parallel, the designer defines the business logic of the system by
means of a UML 2.0 editor. Then, based on the UML 2.0 model, the designer defines
a model of the database schema using a database editor. The database model enables
the generation of the code that implements the schema in terms of a Data Definition
Language (DDL). This generation is performed by the DB2DDL transformation.
Finally, a developer revises the generated DDL script. The description of the method
(as handed out to the subjects) can be found in [14].

5.5. Factors and Treatments

Our study applies a paired comparison of one factor (ME approach) with two
treatments (None and MOSKitt4MFE) [38]. In this design, both treatments are ap-
plied by all of the subjects of the study. When the subjects apply None, they perform
the tasks of the study without using ME techniques; when they apply MOSKittj ME,
they perform the same tasks using MOSKitt4ME. Thus, subjects can contrast using
MOSKitt4ME with not using any ME approach. Also, we can compare the subjects’
performance using MOSKitt4dME with their performance without the tool.

5.6. Tasks

The study is divided into two parts — one for each treatment. Below, we describe
the tasks to be performed by the subjects in each of these parts. The task descriptions
(as handed out to the subjects) can be found in [14].

Treatment 1. ME approach = None.

e Task 1.1. Method Design/Implementation. We provide the subjects with
a printed document containing the method presented in Section 5.4. Since the
subjects do not have any method editor available, they do not perform the method
design; instead, they build a supporting CASE environment. To do this, we give
the subjects access to a repository that contains software tools (e.g., editors
and model transformations). The challenge lies in manually integrating into the
same Eclipse installation only the tools that are strictly necessary to support the
method. This can be accomplished by copying the tools into the dropins folder
of Eclipse and solving the dependency problems that appear. All of the tools
required to solve the dependency problems can be found in the repository.

e Task 1.2. Method Execution. The subjects use the CASE environment built
in Task 1.1 to run a development project. During the course of this project, the
subjects must follow the method, executing the tasks in the correct order. To do
this, the subjects can only use the printed document as assistance.

10

Treatment 2. ME approach = MOSKitt4ME.

e Task 2.1. Method Design/Implementation. We provide the subjects with
a printed document containing the method presented in Section 5.4. The sub-
jects must use this document to create a model of the method by means of
MOSKitt4ME. To enable the definition of the method technical data, we give the
subjects access to a repository that contains reusable software tools (e.g., editors
and model transformations). When the method model is finished, MOSKitt4ME
allows the subjects to automatically obtain the supporting CASE environment.

e Task 2.2. Method Execution. The subjects use the CASE environment
generated in Task 2.1 to run a project. During the course of this project, the
subjects must follow the method, performing the tasks in the correct order. This
is facilitated by the process environment that is integrated in the CASE tool.

5.7. Context

The evaluation study was executed in an academic context; specifically, in a

teaching laboratory of the Departamento de Sistemas Informadticos y Computacion
(DSIC) at the Universitat Politécnica de Valéncia (UPV).

5.8. Instrumentation

We used five instruments during the execution of the study:

Printed document. We provided subjects with a document containing the descrip-
tion of the method proposed in Section 5.4 and also the tasks of the study. After
each task description, the document requests the mental effort invested in the
task. Mental effort ranges from “very low” (0) to “very high” (6).

Characterization form. This form requests demographic data and quantifies the
subjects’ experience (see [14]). We took experience into consideration since it
influences perceived usefulness and perceived ease of use [20].

User acceptance form. This form quantifies perceived usefulness and perceived
ease of use (see [14]). We developed this form following the TAM [17], which
suggests using two scales of six 7-point Likert items, ranging from “strongly
disagree” (0) to “strongly agree” (6).

Interview questions. We elaborated a set of questions to gain further insight into
the subjective perception of MOSKitt4ME users (see [14]). These questions
were divided into two parts, which request, respectively, the subjects’ opinion
about their performance and specific functional aspects of MOSKitt4ME.

11

(A) Overview

Characterization Group +«| Think Aloud __)O
Form Definition ”1 sessions

(B) Think Aloud Sessions

O—> Training [» Tasks pf User /:g:renp])tance » Interview ——)O

Figure 4: Experimental setup

Physical devices and tools. Following the Think Aloud method [18], we used a
webcam to record the subjects’ physical behavior and uttered thoughts. We
also used HyperCam 3.5 to create screencasts that stored the subjects’ work.
The computer that we provided to the subjects was a HP Spectre XT Pro
Ultrabook 13-b000 with Windows 7 Professional, Intel Core i5 1.7GHz, and
4GB of RAM memory. In this computer, we installed Eclipse, MOSKitt4ME,
and the repositories required for Tasks 1.1 and 2.1.

5.9. Experimental Setup

The process that was followed in the study is shown in Figure 4 (A). First, we
gathered demographic data by means of the characterization form. Based on this
data, we assigned subjects to two groups of equal size and similar average experience.
Then, the study was executed as Think Aloud sessions that were individual; that
is, only the experimenter and one subject participated in each session. The groups
were used to determine for each subject the treatment to be applied first; thus, we
minimized the threat of maturation [38] (see Section 5.10.2).

The process that was followed in each of the Think Aloud sessions is shown in
Figure 4 (B). Each session began with a training phase. In this phase, the experi-
menter assisted the subject in performing the tasks using a small example method;
the experimenter also gave instructions on how to think aloud. After the training
phase, the subject performed the tasks using the method defined in Section 5.4. Dur-
ing the performance of the tasks, the subject was asked to verbalize their thoughts.
When the subject finished a task, he/she had to specify the mental effort invested.
Once all of the tasks were finished, the subject filled out the user acceptance form,
and, then, the experimenter conducted the interview.

5.10. Validity Evaluation

We considered four types of validity threats: conclusion validity, internal validity,
construct validity, and external validity [38].

12

5.10.1. Conclusion Validity

Our study was affected by three threats to conclusion validity. First, our study
was threatened by the reliability of the collected measures. Since we video-recorded
the Think Aloud sessions, the collection of objective measures was separated from
human judgement, and, hence, they can be considered to be reliable. We increased
the reliability of subjective measures by using scales previously validated in other
studies [17]. The second threat appears because the Think Aloud sessions took place
on different dates, and, thus, their implementation may have differed. To reduce this
threat, we replicated the same settings for all of the subjects. Finally, we reduced
the random heterogeneity of subjects by evaluating their experience beforehand.

5.10.2. Internal Validity

Our study was affected by three threats to internal validity. The first threat is
that different groups may behave differently (e.g., learning at different rates). We
minimized this threat by placing subjects in two groups of similar average experience.
The second threat is maturation, which implies that subjects may react differently as
time passes (e.g., due to tiredness). To minimize this threat, we designed our study
so that one group applied Treatment 1 first and the other group applied Treatment 2
first; additionally, we selected a test object that allowed subjects to finish the tasks
in less than two hours. Finally, social threats were avoided because the Think Aloud
sessions were individual and the subjects were not allowed to talk about the study.

5.10.3. Construct Validity

Our study was affected by two threats to construct validity. First, we reduced
hypothesis guessing by hiding the goal of the study and the mechanisms used to
collect data; thus, subjects could focus on the task at hand in the most spontaneous
way possible. Second, we minimized the effect of the experimenter expectancies by
reducing the interaction between the experimenter and the subjects to a minimum.

5.10.4. External Validity

Our study was affected by two threats to external validity. The first threat
involves the selection of subjects that are not representative of the population of in-
terest. We minimized this threat by selecting software developers from two industrial
software companies. The second threat involves having an inadequate experimental
setting. To minimize this threat, we utilized tools that are commonly used in indus-
trial environments (e.g., the Eclipse platform); additionally, the object of the study
is part of an industrial method: gvMétrica. Nonetheless, further experimentation
is needed to assess how far the results of our study can be generalized to industrial
settings and to other types of development methods.

13

Table 2: Subjects of the study

Id Gender Age Work Status Degree
S1 Female 41-55 Professional Engineer
S2 Female 26-40 Academic Master
S3 Male 26-40 Academic PhD
S4 Male 26-40 Professional Master
S5 Female 26-40 Academic Master
S6 Male 26-40 Professional Engineer
ST Male 26-40 Professional Engineer
S8 Female 18-25 Academic Engineer

Table 3: Distribution of the subjects

Group G1 Group G2
Subjects S1 S4 S6 ST S2 S3 S5 S8
Experience 4.33 2.67 217 3.25 3.67 3.67 3.42 1.75
Average 3.10 3.12

6. Execution

This section details the second phase of the experimental process. This phase
involves three steps: preparation, operation, and data validation [38].

6.1. Preparation

The preparation for the study involved the selection of the subjects according
to stratified random sampling [38]. Our population comprised two groups: one
academic and one industrial. The former was composed of master/phd students
and postdocs from the DSIC department; all of them had no relationship with
MOSKitt4ME but they worked in the area of software engineering. The latter com-
prised software engineers from two valencian companies. The result of the selection
is shown in Table 2. One of the subjects was a master student (S8), two were phd
students (S2 and S5), and one was a postdoc (S3); the rest were industrial software
engineers. We selected eight subjects since small samples are adequate in Think
Aloud studies due to the richness and large amount of data that is produced [35, 40].

With respect to the experience of the subjects, the characterization form revealed
that they had low experience in method modeling, medium in development projects
and CASE environments, and high in Eclipse and MDE. Based on the subjects’
experience (which was measured on a scale from 0 to 6), we evenly distributed them
in two groups: G1 and G2. Table 3 shows the resulting distribution.

14

Figure 5: One of the subjects during a Think Aloud session

The preparation phase also involved the elaboration of the required instruments
and the execution of a pre-test, where we simulated a Think Aloud session prior
to the actual study. The pre-test allowed us to ensure the feasibility of the general
setup and to improve the comprehensibility of the textual documents. The person
that was selected for the pre-test did not participate in the actual study.

6.2. Operation

We successfully conducted the eight Think Aloud sessions over a two-week pe-
riod in October 2013. The sessions lasted approximately 2.5 hours on average. To
replicate the same settings in all of the sessions, we provided subjects with the same
installations of Eclipse and MOSKitt4ME, and these tools were restored to their orig-
inal state after each session. Additionally, to ensure that the experimental setup was
strictly followed, the experimenter always stayed inside the laboratory. Nonetheless,
he only talked to break silences after a fixed interval of 30 seconds. If the subjects
needed help, they were allowed to consult the MOSKitt4ME user manual.

As an illustration of a Think Aloud session, Figure 5 shows a snapshot of a subject
using the CASE environment generated by MOSKitt4ME. As Figure 5 shows, the
camera was directed at the subject to give a clear view of the subject’s face and
hand movements. This facilitated the subsequent interpretation of the verbal data.

6.3. Data Validation

As the Think Aloud method suggests [18], only one subject participated in each
session, and, thus, we could ensure that the setup was strictly followed. We are also
confident that all of the subjects understood how to fill in the user acceptance form
and how to assess mental effort since we explained these tasks in great detail.

15

7. Data Analysis

In this section, we describe the data analysis phase. This section is divided into
two subsections. One deals with subjective data, which allowed us to answer RQ1
and RQ2; the other deals with objective data, which allowed us to answer RQ3
and RQ4. Note that this section describes how we carried out the analysis (e.g.,
the processes that we followed and the statistical techniques that we applied). The
results of the analysis are reported in Section 8.

7.1. Analysis of the Subjective Data

The subjective data corresponds to: (1) the quantitative feedback obtained by
means of the user acceptance form, (2) the qualitative feedback obtained during the
interviews, and (3) the mental effort that was reported by the subjects.

7.1.1. Quantitative Feedback

We analyzed the responses of the user acceptance form to obtain a quantita-
tive view of the subjects’ perceived usefulness and ease of use of MOSKitt4ME. To
obtain this view, we considered the numerical values of the responses: from 0 for
“Strongly disagree” to 6 for “Strongly agree”. Thus, we could calculate the mini-
mum, maximum, and average values for each Likert item of the form (and also the
total averages combining all of the items). Additionally, we calculated the frequen-
cies of the responses. The frequency of a response is the sum of occurrences of the
response divided by the total number of questions.

7.1.2. Qualitative Feedback

To reinforce the results obtained for perceived usefulness, we analyzed the qual-
itative feedback collected during the interviews. The first part of the interviews
allowed us to determine whether the subjects considered MOSKitt4ME to be useful;
that is, whether they believed that MOSKitt4ME improved their performance. The
second part allowed us to assess perceived usefulness with respect to specific aspects
of the MOSkitt4ME functionality.

7.1.3. Mental Effort

To reinforce the results that were obtained for perceived ease of use, we analyzed
the mental effort invested by the subjects. To this end, we performed two Wilcoxon
signed-rank tests [38] using IBM SPSS Statistics 2.0. The Wilcoxon test is an ap-
propriate technique for our study since we have paired samples; also, the Wilcoxon
test (in contrast to the paired t-test) does not require the data to be normally dis-
tributed, a requirement that was not met in our study. The normality tests that we
performed can be found in [14].

16

Protocol
Construction

Session + Protocol
Transcription Analysis
S ——

+| Coding Scheme
Definition

Figure 6: Data analysis process (adapted from [18])

Specifically, the Wilcoxon tests allowed us to verify if there was a significant
difference in mental effort between Treatment 1 and Treatment 2. This difference
should be in line with the results obtained for perceived ease of use; note that, e.g.,
a subject who invests little mental effort using MOSKitt4ME should consider the
tool as easy to use.

The first Wilcoxon test focused on the method design/implementation, while the
second test focused on the method execution. We considered the Wilcoxon tests to
be two-tailed and they were performed at a confidence level of 95% (o = 0.05). The
null hypothesis (Hy) was the same for both tests: the median of differences in mental
effort is equal to zero. Hy can be rejected if p < «, where p is the p-value obtained
from the Wilcoxon tests.

7.2. Analysis of the Objective Data

The objective data is obtained by analyzing the subjects’ behavior, which is
stored in video records and screencasts. The process that we followed to obtain the
objective data is outlined in Figure 6. First, we transcribed the Think Aloud ses-
sions; that is, we typed out video records and screencasts as verbatim as possible.
Then, we annotated the transcriptions using a coding scheme to obtain Think Aloud
protocols. The coding scheme, which was developed in parallel to the protocols,
contains codes that define different types of utterances and actions. Thus, the pro-
tocols are transcriptions whose utterances and actions are classified as, e.g., doubts
or errors. When the transcriptions were fully annotated, we analyzed the resulting
protocols. The four tasks of the process are detailed in the following subsections.

7.2.1. Session Transcription

Since it is hard to analyze audio records and screencasts, we transcribed them into
text, and, then, we divided this text into segments. The segments of a transcription
represent utterances (which are obtained from the video records) and actions (which
are obtained from the screencasts). We produced a total of 8 transcriptions, which
have 895 segments on average. Each of the segments of these transcriptions stores
three items: time, type, and text. Time indicates the exact moment of occurrence of

17

the segment within the Think Aloud session. Type determines whether the segment
is an utterance or an action. Finally, text represents the segment content. The
content of an utterance is the textual representation of the subject’s verbalization;
the content of an action is a short description of the action.

7.2.2. Coding Scheme Definition

Because it is unreliable to analyze the transcriptions “as is”, it is necessary to
make a coding scheme that enables the classification of their segments. To develop
the coding scheme, we analyzed the transcriptions, and, concurrently, we created
new codes for each segment that did not fall neatly into the existing coding scheme.
Then, we categorized the resulting codes. The result was 90 codes in 7 different
categories (see [14]). The categories of the coding scheme are the following:

Actions (A). General actions, such as deleting a file.
o Tusks (T). Actions that correspond to method tasks (e.g., revising the DDL script).

e Errors (E). Actions that do not adhere to any valid solution for the task at hand
(e.g., setting a name incorrectly).

e Comments (C). General utterances such as opinions or doubts.

e Strategies (S). Utterances or actions whereby subjects express or adopt a plan to
achieve a goal (e.g., postponing an analysis).

o FExpert Knowledge (EK). Utterances or actions whereby subjects: suggest they re-
quire further knowledge, show they have previous knowledge, or gain new knowl-
edge during the performance of a task (e.g,. the utterance “I do not need to check
this because I am familiar with the tool” reflects previous knowledge).

e Challenges (CH). Utterances or actions that suggest the presence of a challenge or
difficulty. Indicative of challenges can be utterances or actions from the E, C, S,
and EK categories (e.g., if a subject applies the “postponing an analysis” strategy,
the subject is probably facing difficulties that he/she decides to work out later).

7.2.8. Protocol Construction

The Think Aloud protocols are transcriptions that have been annotated with
codes from the coding scheme. To increase the objectivity of our coding process, we
selected two researchers that were external to the study and we trained them in the
use of the coding scheme. These researchers revised the protocols that we coded; all
of the discrepancies were discussed and fixed when agreements were reached.

Table 4 shows an excerpt of a protocol. Each row represents a different segment.
In this example, the subject starts by consulting the method description (A10).

18

Table 4: Excerpt of a Think Aloud protocol

Time Type Text Code
1:31:50 Action Looks at method description A10
1:31:50 Utterance And now, business logic design C6
1:31:53 Utterance It is a UML class diagram C3
1:31:54 Action Looks for UML 2.0 editor A29
1:31:57 Utterance UML model Cr
1:31:58 Action Selects the “UML Model” tool A30, E1, CH2
1:31:59 Utterance I assume that it is UML model S1, EK3

Then, the subject verbalizes the information retrieved (C6) and resolves that he
must create a UML class diagram (C3). For this reason, he looks for the UML 2.0
editor (A29). He finds a tool called “UML Model”, reads it (C7), and selects the tool
(A30). Since it is not the correct choice (E1), we consider selecting the correct tools
to be a challenge of the method execution (CH2). Finally, the subject verbalizes
that he assumes “UML Model” is the correct tool. He is adopting a “trial and error”
strategy (S1), which indicates that he requires further technical knowledge (EK3).

7.2.4. Protocol Analysis
Once the protocols were obtained, we analyzed them to measure task completion
time, task completeness, and task difficulty (see Section 4.1).

o Task Completion Time. We used the Time column to calculate the time spent
by subjects on the tasks of the study. We applied Wilcoxon tests to analyze the
differences between the tasks of Treatment 1 and Treatment 2. Thus, we could
determine whether MOSKitt4ME allowed subjects to solve the tasks more quickly.

o Tusk Completeness. To calculate task completeness, we used the Type, Text, and
Code columns of the protocols. As for the method design/implementation, we
analyzed the subjects’ actions and errors (i.e., the segments of type “Action” and
code categories “A” and “E”, respectively); this allowed us to determine whether
the subjects built a CASE environment that provided complete support to the
method. To determine the completeness of the method execution, we analyzed
the subjects’ errors and also the actions associated to method tasks (i.e., the
segments of type “Action” and code category “T”); thus, we could determine the
number of method tasks successfully performed by the subjects.

o Tusk Difficulty. To estimate the difficulty of the tasks of the study, we analyzed the
segments falling into the “CH” category of the coding scheme. These segments
allowed us to determine whether using MOSKitt4ME was a big effort for the
subjects or rather it posed little difficulty.

19

Table 5: Results for perceived usefulness

Item Min Max Avg
1 - Allows working more quickly 5 6 5.625
2 - Improves job performance 4 6 5.5
3 - Increases productivity 4 6 5.375
4 - Enhances effectiveness 4 6 5.375
5 - Makes work easier 5t 6 5.375
6 - Is useful for the job 4 6 5.25
Total Average 5.42

8. Results

In this section, we present the results of the study by answering the four research
questions that are formulated in Section 5.2.

8.1. RQ1. What is the users’ perceived usefulness of MOSKitt4 ME?

After the analysis of the responses of the user acceptance form, we obtained
the results that are shown in Table 5. The minimum (Min) and maximum (Maz)
columns indicate that all of the subjects somewhat agreed (4), agreed (5), or strongly
agreed (6) about each of the items of the usefulness scale. We obtained the best
result for the first item (average: 5.625); that is, the subjects expressed a strong
belief that tasks can be performed more quickly with MOSKitt4ME. The subjects
also positively rated the improvement in performance (average: 5.5). In general,
the subjects agreed that MOSKitt4ME was useful for solving the tasks of the study
(total average: 5.42).

To provide further insight into perceived usefulness, Figure 7 shows a histogram
that depicts the distribution of responses of the subjects. The horizontal axis
contains the seven possible responses; the vertical axis represents their frequency.
The histogram shows that the most common responses were “Strongly agree” and
“Agree”; on average, more than 4 subjects selected “Strongly agree” in each of the
Likert items, and nearly 3 subjects selected “Agree”.

These results were reinforced by the qualitative feedback that was obtained dur-
ing the interviews. All of the subjects expressed that MOSKitt4ME was useful since
it allowed them to perform the tasks more easily. Most subjects emphasized the
method execution; for instance, one subject stated: “FEzecuting the method with
MOSKitty ME, you click on the tasks and the tools are automatically opened. With-
out MOSKittj,ME, it is hard to find the right tools in the large set of tools that are
offered by Eclipse”. The usefulness of the CASE generation capabilities was also
emphasized by some subjects: “I would not invest the time needed to implement a

20

Perceived Usefulness

Frequency

| -
0_

T T T T T T 1

Strongly Agree Somewhat Neutral Somewhat Disagree Strongly
agree agree disagree disagree

Likert items

Figure 7: Frequencies of responses for perceived usefulness

Table 6: Results for perceived ease of use

Item Min Max Avg

1 - Easy to learn 3 6 4.5
2 - Controllable 1 5t 2.625
3 - Clear and understandable 4 6 4.75
4 - Flexible 4 6 4.625
5 - Easy to become skillful 3 6 4.75
6 - Easy to use 4 6 4.875
Total Average 4.35

CASE environment. Using MOSKittyME, I would consider the possibility”. Four
subjects also highlighted that MOSKitt4ME facilitates the method design by en-
abling the definition of methods as models at a high level of abstraction: “It is so
much more user-friendly and intuitive to edit the method using MOSKitt4ME, com-
pared to the textual descriptions that we use in our company.”. Finally, we also found
comments that, despite being more general, illustrate the subjects’ willingness to use
MOSKitt4dME: “I hate to do work that can be avoided. Knowing the functionality of
MOSKitty MFE is possible, I would not want to work differently from now on”.

8.2. RQ2. What is the users’ perceived ease of use of MOSKitt/ME?

The results for perceived ease of use are shown in Table 6. Compared with
perceived usefulness, the results were also positive, but we found more dispersion in

21

Perceived Ease of Use

2
1
0.] | N _

Strongly Agree Somewhat Neutral Somewhat Disagree Strongly
agree agree disagree disagree

Likert items

Frequency

1

Figure 8: Frequencies of responses for perceived ease of use

them. The minimum (Min) and maximum (Maz) columns indicate that all of the
subjects considered (4, 5, or 6) MOSKitt4ME to be clear, understandable, flexible,
and easy to use; but this did not occur for the other items. We obtained the worst
result for the “Controllable” item (average: 2.625). This means that it was not easy
for some subjects to get MOSKitt4ME to do what they wanted it to do. This result
was due to the low level of experience using MOSKitt4dME: we observed that most
subjects frequently consulted the user manual. In general, the subjects somewhat
agreed that MOSKitt4ME can be used with little difficulty (total average: 4.35).
To provide further insight into perceived ease of use, Figure 8 shows a histogram
that depicts the distribution of responses of the subjects. The most common were
“Agree” and “Somewhat agree”; on average, nearly 4 subjects selected “Agree” in
each of the Likert items, and more than 2 subjects selected “Somewhat agree”.
These results were reinforced by the mental effort that was expressed by the
subjects. The subjects’ mental effort is depicted as a box plot in Figure 9. The
horizontal axis contains the four tasks of the study, while the vertical axis represents
mental effort; thus, each box represents, for one specific task, the mental efforts
invested by the eight subjects of the study. The distribution of the data indicates
that the subjects expended less effort executing the method with MOSKitt4ME than
executing the method without the aid of our tool. The effort invested in the method
design/implementation was low but similar in both approaches. This similarity was
due to the low experience of the subjects in method modeling and the high experience
in Eclipse. Note that when the subjects were not using MOSKitt4ME, they had to
manually configure an Eclipse-based CASE environment, which was easy for some

22

Mental Effort

Mental Effort
w
o
(]

0,00 ; } : .

None MOSKitt4ME None MOSKitt4ME

Design/Implementation Execution

Figure 9: Mental effort (box plot)

subjects; in contrast, when they used MOSKitt4ME, the CASE tool was obtained
automatically but it required the construction of a method model.

To verify whether the differences in mental effort were statistically significant,
we performed two Wilcoxon signed-rank tests. In the first test, which focused on
the method design/implementation, we obtained p = 0.931. Since a = 0.05, then
p > «a and, therefore, we cannot reject Hy. Thus, there is no significant difference
in mental effort in the method design/implementation. In the second Wilcoxon test,
which focused on the method execution, we obtained p = 0.027. In this case, we can

reject Hy since p < a. Thus, subjects expended significantly less mental effort when
they executed the method with the aid of MOSKitt4ME.

8.8. RQ3. To what extent does MOSKitt{ME enhance efficiency and effectiveness?

To answer this question, we quantified the subjects’ efficiency and effectiveness,
and contrasted the results obtained in the two treatments of the study.

8.3.1. Efficiency

Figure 10 shows in a boxplot the subjects’ efficiency. The vertical axis represents
time; the horizontal axis contains the four tasks of the study. Thus, each box repre-
sents, for one specific task, the completion times of the eight subjects of the study.
Analyzing the data distribution, we observed that subjects were more efficient in the

23

Efficiency

40 -

30 +

20 J
10 - 1 | ‘

1
0 : } : ,
None MOSKitt4ME None MOSKitt4ME

Time (minutes)

Design/Implementation Execution

Figure 10: Efficiency (box plot)

method design/implementation without MOSKitt4ME than using our tool. The goal
of this task was to obtain a CASE environment; thus, MOSKitt4ME failed to reduce
the time needed to build this tool. The cause of this result was the high amount
of time that some subjects (mainly those with low experience in method modeling)
invested building the model of the method (which is mandatory in MOSKitt4ME
since the CASE environment is obtained automatically from this model).

Despite this negative result, it is important to consider that having the method
represented as a model brings important benefits that are not reaped in the manual
approach. Some of the benefits that were reported by the subjects are the following.
First, the model enables the generation of documentation of the method in different
formats, such as HTML or plain text. Second, the method becomes easier to maintain
and easier to navigate. Third, the method model facilitates the communication
between the people involved in a project. Fourth, the method model enables a high
level of automation thanks to the use of model transformations. Finally, the CASE
environment can execute the method model at runtime to assist software engineers
during the course of the projects.

The last benefit became apparent in our study. The subjects invested significantly
more time during the method execution without MOSKitt4dME than executing the
method with the assistance of our tool. This positive result is of particular relevance.

24

Note that, even though the development of the method model is costly in terms of
time, this time is only invested once. In contrast, time savings during method
execution occur any time a development project is performed. Thus, it seems fair to
conclude that MOSKitt4ME improves efficiency if it is applied in multiple projects.

To verify whether the differences in efficiency were significant, we performed two
Wilcoxon signed-rank tests. The first test analyzes the time invested during the
method design/implementation; the second test focuses on method execution. In
both cases, we obtained p = 0.012. Thus, the condition p < « was fulfilled, and,
therefore, the differences in efficiency were statistically significant.

8.3.2. Elffectiveness

After protocol analysis, we found that all of the subjects obtained the correct
outcome in the method design/implementation (effectiveness: 100%). This outcome
was obtained in both treatments; nonetheless, the manual approach (i.e., Treatment
1) caused severe problems when subjects tried to integrate tools into Eclipse. Since
this Eclipse only contained a minimum set of plug-ins, installing new tools “by hand”
raised problems of missing software dependencies. Solving these problems was con-
sidered by all of the subjects to be complex, tedious, and error-prone. None of these
problems occurred with MOSKitt4ME since our tool automates the construction of
the CASE environment.

In contrast to the method design/implementation, we found differences in effec-
tiveness in the method execution. All of the subjects executed the entire method
when they were assisted by MOSKitt4ME (effectiveness: 100%), while three sub-
jects abandoned the execution in the manual approach. These subjects failed to
perform T4 because they performed T3 incorrectly: they selected the wrong tool,
and, therefore, they created incorrectly the input product of T4.

In addition to selecting incorrect tools and creating incorrect products, we also
found other deviations from the method; for instance, one subject performed T2
and T3 in reverse order and omitted the execution of T5. None of these deviations
occurred when the subjects were assisted by MOSKitt4ME.

8.4. RQ4. To what extent can MOSKitt4ME be used free from difficulty?

By analyzing the protocols, we found that the subjects only experienced difficulty
regarding two aspects of MOSKitt4ME: SPEM 2.0 and the reusable assets.

8.4.1. Difficulty Using SPEM 2.0

Several subjects experienced difficulty understanding the SPEM 2.0 concepts.
Specifically, two subjects had problems defining the output products of the tasks: it
was not easy for these subjects to distinguish the different kinds of products that
are proposed by SPEM 2.0. Additionally, six subjects experienced doubt during the

25

definition of the process: they were uncertain whether or not to make explicit the
precedences between the tasks contained in “Data Persistence Design” and the tasks
outside this activity. Finally, three subjects had problems distinguishing method
content from method process. One of them spent three minutes trying to define an
activity within a content package. Another subject took two minutes to realize that
process tasks had to be defined by instantiation from content tasks. The third subject
did not realize that the products defined as method content could be instantiated
several times; he created the product “DDL Script” twice because it is the output
of two different tasks. This was the only error that was made by the subjects as a
result of all these minor difficulties.

8.4.2. Difficulty Defining Technical Data

Some subjects had difficulty associating method elements and reusable assets,
and, in general, understanding the notion of reusable asset. Specifically, one subject
stated that he did not understand why (unlike tasks, roles, and products) the method
tools had to be defined using a repository. Another subject spent one minute trying
to determine which reusable asset to associate to T5, even though this task must not
have any tool associated to it. Another doubt was whether T3 was automatic; note
that this task is not automatic because it is supported by a graphical editor. Some
subjects also had problems understanding the semantics of some types of reusable
assets. All of these doubts caused that three subjects made incorrect associations
between method elements and reusable assets; therefore, this is an important aspect
of MOSKitt4ME to be improved in the near future.

8.5. Discussion

The evaluation study of MOSKitt4ME provides valuable insight into the useful-
ness and ease of use of our model-driven ME approach. Below, we highlight the most
relevant aspects of the results that are presented herein.

e The subjective perception that was expressed by the subjects of the study indicates
their willingness to accept and use MOSKitt4dME. They perceived MOSKitt4ME
to be a useful tool that can improve performance without posing severe difficulties
for the users (see RQ1 and RQ?2).

e The assistance that is provided by MOSKitt4ME allowed subjects to perform the
method execution without deviations, and this led to a significant increase in
efficiency and effectiveness (see RQ3). This result suggests that MOSKitt4ME
facilitates the use of methods, and, thus, it reduces the distance that typically
exists between methods and the real actions performed by software engineers [41].
Nonetheless, this benefit is reaped at the expense of the time that is required to
build the method model, which may be high in cases of low modeling experience.

26

In order to reduce this time, we plan to enhance MOSKitt4dME in two ways.
First, we will increase the starting population of the repository so that it also
contains reusable method parts (e.g., tasks extracted from gvMétrica). This will
reduce time by enabling rapid method assembly. Second, we will increase the
level of automation of MOSKitt4ME by incorporating variability mechanisms that
automate the adaptation of methods and CASE environments.

e The method design is the only phase of the ME lifecycle where MOSKitt4ME users
experienced difficulty during the study (see RQ4). Most of these difficulties were
of low severity and were related to the use of SPEM 2.0 and the reusable assets;
therefore, these difficulties can be mitigated by enhancing MOSKitt4ME with
appropriate assistance for method construction. To do this, we plan to include a
wizard that will free users from having to be expert method engineers, allowing
them to create method models following a set of intuitive steps. We expect this
wizard to also reduce the time invested by the users in the method design phase.

In addition to all of the above findings, our study also had a collateral benefit.
Even though it was not the focus of the evaluation, our results suggest that MDE
plays a key role in the reduction of ME complexity that is achieved by MOSKitt4ME.
Four subjects strongly believed that (meta)modeling techniques reduce the complex-
ity of the method design phase by enabling the definition of methods as models at
a high level of abstraction (see RQ1). This result is in line with one of the most
recognized benefits of MDE: the reduction of the complexity of software development
by providing higher levels of abstraction that hide platform-specific details [42]. On
the other hand, the eight subjects of the study were strongly satisfied with the level
of automation of MOSKitt4ME (see RQ1 and RQ3). This level is achieved thanks
to model transformations, which reduce the complexity of the method implementa-
tion phase by automating the CASE environment construction. This is in line with
another benefit of MDE: the reduction of complexity by means of the automation of
labor-intensive and error-prone tasks [42]. Finally, all of the subjects experienced a
significant improvement in efficiency and effectiveness during the method execution
phase (see RQ3). This result is a strong indicator of the reduction of complexity that
is achieved by using the method model at runtime. Thus, the modeling effort made
at design time is not only useful for automating the CASE environment construction,
but it can also assist software engineers during the process of software development.

9. Conclusions and Future Work

This paper presents a study that evaluates the usefulness and ease of use of a
model-driven ME approach: MOSKitt4ME. Our motivation is to demonstrate that

27

MOSKitt4ME mitigates an important problem of traditional ME: its high complex-
ity. To achieve this goal, the study evaluates MOSKitt4ME using the TAM and the
Think Aloud method. While the TAM enables the evaluation of the subjective per-
ception of users, the Think Aloud method allows us to evaluate the tool objectively.

The results of the study are encouraging. All of the subjects either somewhat
agreed, agreed, or strongly agreed about each of the items of the usefulness scale (see
RQ1); we also obtained positive results for perceived ease of use, even though we
found more disparate opinions (see RQ2). These subjective results were reinforced by
an increase in efficiency and effectiveness (see RQ3) as well as by the little difficulty
that was experienced by the subjects of the study (see RQ4). We believe that these
results were obtained thanks to the use of MDE techniques (such as metamodeling,
model transformations, and models at runtime), which reduce the complexity of
three phases of the ME lifecycle: design, implementation, and execution.

In contrast to these positive findings, we also found several challenges that are
inherent to MOSKitt4dME usage (see RQ4). With the aim of providing better tool
support for model-driven ME, we will address these challenges in the near future. As
Section 8.5 describes, to reduce the time needed for method design, we will enhance
the repository of MOSKitt4ME, incorporate support for variability, and include a
wizard that enables guided model creation. Even though it is not related to the study,
another enhancement of MOSKitt4ME will be to make it into a more collaborative
environment; to this end, we will persist models in centralized online databases so
that users can work concurrently during the ME lifecycle.

References

[1] A. Cockburn, Selecting a project’s methodology, IEEE software 17 (4) (2000) 64-71.

[2] B. Henderson-Sellers, J. Ralyté, Situational method engineering: State-of-the-art re-
view, J. UCS. 16 (2010) 424-478.

[3] F. Karlsson, P. J. Agerfalk, Method configuration: adapting to situational charac-
teristics while creating reusable assets, Information and Software Technology 46 (9)
(2004) 619-633.

[4] S. Brinkkemper, Method engineering: Engineering of information systems develop-
ment methods and tools, Information and Software Technology 38 (4) (1996) 275-280.

[5] S. Brinkkemper, M. Saeki, F. Harmsen, Meta-modelling based assembly techniques
for situational method engineering, Information Systems 24 (3) (1999) 209-228.

[6] J. Ralyté, C. Rolland, An assembly process model for method engineering, in: K.
Dittrich, A. Geppert, M. Norrie (Eds.), Advanced Information Systems Engineering,
Vol. 2068 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2001,
pp. 267-283.

[7] B.Henderson-Sellers, M. Serour, Creating a dual-agility method: The value of method
engineering, Journal of Database Management 16 (4) (2005) 1-24.

28

8]

A. Niknafs, R. Ramsin, Computer-aided method engineering: an analysis of existing
environments, in: Advanced Information Systems Engineering, Springer, 2008, pp.
525-540.

M. Bajec, D. Vavpoti¢, M. Krisper, Practice-driven approach for creating project-
specific software development methods, Information and Software Technology 49 (4)
(2007) 345-365.

C. Rolland, Method engineering: towards methods as services, Software Process: Im-
provement and Practice 14 (3) (2009) 143-164.

M. Kuhrmann, D. Méndez Ferndndez, M. Tiessler, A mapping study on the feasibility
of method engineering, Journal of Software: Evolution and Process (2014) 1-22.

B. Henderson-Sellers, Method engineering for OO systems development, Communica-
tions of the ACM 46 (10) (2003) 73-78.

A. H. Ter Hofstede, T. Verhoef, On the feasibility of situational method engineering,
Information Systems 22 (6) (1997) 401-422.

MOSKIitt4ME, users.dsic.upv.es/~mcervera/moskitt4me/.

M. Cervera, M. Albert, V. Torres, V. Pelechano, The MOSKitt4ME approach: pro-
viding process support in a method engineering context, in: Conceptual Modeling,
Vol. 7532, Springer, 2012, pp. 228-241.

M. Cervera, M. Albert, V. Torres, V. Pelechano, A model-driven approach for the
design and implementation of software development methods, International Journal
of Information System Modeling and Design (IJISMD) 3 (4) (2012) 86-103.

F. D. Davis, Perceived usefulness, perceived ease of use, and user acceptance of infor-
mation technology, MIS quarterly 13 (3) (1989) 319-340.

M. W. van Someren, Y. F. Barnard, J. A. C. Sandberg, The Think Aloud Method:
A Practical Guide to Modelling Cognitive Processes, Academic Press Limited, 1994.
C. K. Riemenschneider, B. C. Hardgrave, F. D. Davis, Explaining software devel-
oper acceptance of methodologies: a comparison of five theoretical models, Software
Engineering, IEEE Transactions on 28 (12) (2002) 1135-1145.

V. Venkatesh, F. D. Davis, A model of the antecedents of perceived ease of use:
Development and test, Decision sciences 27 (3) (1996) 451-481.

F. D. Davis, User acceptance of information technology: system characteristics, user
perceptions and behavioral impacts, International Journal of Man-Machine Studies
38 (3) (1993) 475-487.

J.-P. Tolvanen, M. Rossi, H. Liu, Method engineering: current research directions and
implications for future research, in: Method Engineering, Springer, 1996, pp. 296-317.
K. Sousa, J. Vanderdonckt, B. Henderson-Sellers, C. Gonzalez-Perez, Evaluating a
graphical notation for modelling software development methodologies, Journal of Vi-
sual Languages & Computing 23 (4) (2012) 195-212.

ISO, Software Engineering: Metamodel for Development Methodologies. ISO/TEC
24744 (2007).

S. Kelly, M. Rossi, Evaluating method engineer performance: an error classification
and preliminary empirical study, Australasian Journal of Information Systems 6 (1)

29

[29]

[30]

o
=

%)
)

W
o

(1998).

N. Kerzazi, M. Lavallee, Inquiry on usability of two software process modeling sys-
tems using iso/iec 9241, in: 24th Canadian Conference on Electrical and Computer
Engineering (CCECE), 2011, pp. 000773-000776.

F. Karlsson, K. Wistrand, Combining method engineering with activity theory: theo-
retical grounding of the method component concept, European Journal of Information
Systems 15 (1) (2006) 82-90.

A. Qumer, B. Henderson-Sellers, An evaluation of the degree of agility in six ag-
ile methods and its applicability for method engineering, Information and Software
Technology 50 (4) (2008) 280-295.

F. Karlsson, A wiki-based approach to method tailoring, in: Proceedings of the 3rd
International Conference on the Pragmatic Web: Innovating the Interactive Society,
ACM, 2008, pp. 13-22.

V. Seidita, M. Cossentino, S. Gaglio, Adapting PASSI to support a goal oriented ap-
proach: a situational method engineering experiment, in: Proc. of the Fifth European
workshop on Multi-Agent Systems (EUMAS’07), 2007.

OMG, Software & Systems Process Engineering Metamodel (v2.0) (2007).

Graphical Modeling Project, http://www.eclipse.org/modeling/gmp/.

K. Hornbaek, Current practice in measuring usability: Challenges to usability studies
and research, International journal of human-computer studies 64 (2) (2006) 79-102.
Y. Lee, K. A. Kozar, K. R. Larsen, The technology acceptance model: past, present,
and future, Communications of the Association for Information Systems 12 (1) (2003)
50.

R. Benbunan-Fich, Using protocol analysis to evaluate the usability of a commercial
web site, Information & Management 39 (2) (2001) 151-163.

P. Runeson, M. Host, Guidelines for conducting and reporting case study research in
software engineering, Empirical software engineering 14 (2) (2009) 131-164.

R. D. Henderson, M. C. Smith, J. Podd, H. Varela-Alvarez, A comparison of the
four prominent user-based methods for evaluating the usability of computer software,
Ergonomics 38 (10) (1995) 2030-2044.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, A. Wesslén, Experi-
mentation in Software Engineering: An Introduction, Kluwer Academic Publishers,
Norwell, MA, USA, 2000.

gvMétrica, www.gvpontis.gva.es/cast/proyectos-integra,/.

S. Owen, P. Brereton, D. Budgen, Protocol analysis: a neglected practice, Communi-
cations of the ACM 49 (2) (2006) 117-122.

B. Fitzgerald, The use of systems development methodologies in practice: a field
study, Information Systems Journal 7 (3) (1997) 201-212.

P. Mohagheghi, W. Gilani, A. Stefanescu, M. A. Fernandez, An empirical study of
the state of the practice and acceptance of model-driven engineering in four industrial
cases, Empirical Software Engineering 18 (1) (2013) 89-116.

30

