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Abstract 

 

Bridge Weigh-In-Motion (B-WIM) is a process by which the axle and gross 

vehicle weights of vehicles travelling at highway speeds can be determined 

from instrumented bridges. The traditional method of attaching strain 

transducers to the soffit of the bridge and placing axle detectors on the road 

surface has been replaced here by using additional transducers underneath the 

bridge for axle detection and Nothing-On-the-Road (NOR). This paper 

presents a wavelet based analysis of strain signals and shows the efficacy of 

using wavelets in pattern recognition of these signals. The transformed signals 

are used to identify axle passage and hence the vehicle velocity and the axle 

spacing. In addition to numerically generated strains, signals acquired from 

such a NOR instrumentation of a bridge in Slovenia have been analysed by the 

method of wavelet transformation to extract axle position information that was 

not readily detectable using existing methods. 

 

Keywords: bridge, weigh-in-motion, WIM, BWIM, NOR, wavelet, signal 

processing, axle spacing. 
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1. Introduction 

 

The main objective of Bridge Weigh-in-Motion (B-WIM) systems is to obtain 

heavy vehicle weight and classification data using portable technology. This is 

achieved by first identifying axle passages at two points and hence vehicle 

velocity and axle spacing. Conventional algorithms can then be used to determine 

axle and gross vehicle weights. The original algorithm of Moses [1] and variations 

thereon have been tried and tested in numerous applications [2-5]. In conventional 

B-WIM systems, two axle detectors on the pavement of each lane of interest 

provide the times of occurrence of each axle of the vehicle. Pneumatic tubes or 

tape switches are used for temporary installations but have poor durability and 

there are safety implications associated with personnel working near traffic. Low 

grade piezoceramic sensors are much more durable but are expensive and require 

considerably more installation time which generally requires lane closures.  

 

The concept of a Nothing-On-Road (NOR) B-WIM system, in which only 

transducers placed beneath the bridge are used to identify axles, is a recent one. A 

NOR system causes minimal disturbance to normal traffic flow and greatly 

increases the safety, durability and hence the cost-effectiveness of the installation. 

However, NOR is only possible if axle locations can be identified in the strain 

signal, a problem which is the primary focus of this paper.  

 

OBrien & Žnidarič [5] and OBrien et al. [6] demonstrated the effectiveness of 

NOR B-WIM using orthotropic bridge decks. Orthotropic bridge decks are made 

from stiffened steel and are generally of low stiffness exhibiting pronounced strain 
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responses to each axle passage. An optimisation algorithm was developed to 

identify the axle positions from the slope of the strain response. In field tests, the 

system demonstrated between Class D+(20) and C(15) accuracy [7,8], depending 

on the complexity of the algorithm used. These accuracy classes correspond to 

confidence interval widths of ±20% and ±15% respectively for errors in gross 

weight. The optimisation algorithm was based on the minimisation of the sum of 

squares of the differences between the strain responses in two successive spans. 

This is facilitated by near-identical strain responses in the two spans, which does 

not apply for two locations in a single span bridge. Further, the strain signature 

does not show the effect of individual axles as clearly in deeper concrete bridges 

where there is a greater load dispersion.       

 

In the present study, the strain signals obtained from a numerical model and 

measurements taken at the Ravbarkomanda bridge in Postojna, Slovenia, are 

analysed to reveal the latent features of the B-WIM system. The wavelet analytical 

technique is utilised to extract information from the signals that is often not 

apparent on visual inspection. The wavelet has emerged as a powerful 

mathematical tool in the last few decades with applications in different facets of 

engineering and applied sciences. The unique time-frequency localisation property 

of the wavelet functions gives it a significant advantage over alternative signal 

transformations. This paper uses the concept of continuous wavelet transformation 

to give an accurate identification of the axles of the moving vehicles in the time 

domain.  
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2. Wavelet theory  

 

A wavelet-based approach (continuous wavelet transform) is considered in the 

present study to analyse the NOR strain signals. These strain signals are non-

stationary in nature. In the past few decades, wavelet based analysis has proven its 

efficacy in solving problems which are of a non-stationary random nature. The 

wavelet transform is probably the most recent solution to overcome the 

shortcomings of the Fourier transform. The time information is lost in Fourier 

analysis and the size of the window cannot be changed in a windowed Fourier 

transform (WFT) or short term Fourier transform (STFT). In a wavelet analysis 

the use of a fully scalable modulated window solves the signal-cutting problem. 

There are two types of wavelet transform – continuous wavelet transform (CWT) 

and discrete wavelet transform (DWT). The window is shifted along the signal 

and for every position the spectrum is calculated. This process is repeated many 

times with a slightly shorter or longer window for every new cycle. In the end, the 

result is a collection of time-frequency representations of the signal or profile, all 

with different resolutions. 

 

Considerable research has been carried out to develop wavelet functions with 

specific characteristics to suit different purposes [9-14]. Wavelet analysis can be 

used to provide an enhanced time-frequency resolution desirable for several 

applications. It can be effectively used to generate random processes and fields 

[15,16], simulate earthquake ground motions [17], predict seismic response of 

storage tanks [18,19], solve partial differential equations [20], and identify 

damping in multi-degree-of-freedom systems based on time-scale decomposition 
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[21] and characterise the nonlinear systems [22]. A new representation scheme for 

random fields based upon the projection onto a biorthogonal wavelet basis was 

developed [23]. It was shown that biorthogonal processes achieved better 

decorrelation owing to the fact that fewer filter coefficients were needed to 

maintain the same support of basis functions when compared to the Daubechies 

family. 

 

In the present study, CWT has been used for signal processing. The CWT is 

defined by  

∫= dtttxsxW s )()(),( ,τψ ψτ                                              (1) 

which is a function of two variables, s and τ. representing the scale and the time 

factors respectively. These variables s and τ belong to the set of all integers. The 

inverse CWT is defined as  

∫∫= dsdtsxWtx s τψτ τψ )(),()( ,          (2) 

where f(t) denotes the signal as a function of time, ),( τψ sxW the wavelet 

coefficients of the signal for a particular scale and time and )(, ts τψ  the mother 

wavelet. The scale factor is the inverse of the frequency. Thus, the wavelets are 

generated from the single basic wavelet, i.e., mother wavelet, by scaling and 

translation parameters. The expression for the mother wavelet is given by 

 )(
1

)(,
s

t

s
ts

τ
ψψ τ

−
= ,        (3) 

in which, the term 2

1
−

s   is used for energy normalisation across different scales. 

Wavelets are obtained by altering the variables s and τ. These variables dilate and 
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translate the mother wavelet to generate various wavelet families. The scale 

parameter s indicates the width of the wavelet and the translational parameter τ 

denotes its position in either time or space. The lower is the scale, the more 

detailed (more localised) is the view. The wavelet moves along the signal with 

each scale, s and calculates the CWT coefficients at each step, the size of which is 

determined by the index, τ. 

 

The most important properties are the admissibility and regularity conditions. The 

admissibility criterion is: 

∞<∫
∞

∞−

ω
ω

ωψ
d

2
)(ˆ

.               (4) 

where )(ˆ , ωψ τs  is the Fourier transform (FT) of )(, ts τψ . The admissibility 

condition implies that the FT of )(tψ vanishes at zero frequency, i.e., 

0)(ˆ
0

2
=

=ω
ωψ ,                           (5) 

which means that wavelets must have a band-pass like spectrum. This is very 

important to develop an efficient wavelet transform. The regularity conditions 

imply that the wavelet functions should have some smoothness and concentration 

in both time and frequency domains. 

 

2.1  Application of wavelets to NOR problems 

 

The CWT cannot be practically computed as it contains an integral (Eq.1) in 

which the variables are continuous. It is therefore necessary to discretize the 

transform by sampling the time-frequency plane in such a way that, at lower 
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frequencies, the sampling rate can be decreased which will save a considerable 

amount of computation time (this is done by a dyadic sampling grid). A reverse 

biorthogonal wavelet basis function rbio2.4 was chosen for the analysis of NOR 

signals after performing a number of tests with various alternatives. This is a 

compactly supported biorthogonal spline wavelet for which symmetry and perfect 

reconstruction are possible. In such a wavelet function, two sets of low pass and 

high pass filters are used instead of one set as in the case of an orthogonal wavelet. 

One is used for decomposition or analysis and the other for reconstruction or 

synthesis; one is the dual of the other. The reconstruction and decomposition 

wavelet functions rbio2.4, with orders 2 and 4 for reconstruction and 

decomposition, are shown in figures 1(a) and 1(b) respectively. The second value 

of the two orders, 4 in the case of rbio2.4, denotes the number of vanishing 

moments for the associated wavelet function decomposition.  

 

3. Wavelet analysis of numerically simulated results  

 

A two-dimensional walking beam model has been used to numerically generate 

strain signals corresponding to a 2-axle tandem travelling at a speed of 75 km/h 

over a 15 m long simply supported beam – figure 2. This ‘vehicle’ was chosen 

because closely spaced axles such as those in tandems and tridems are the most 

difficult to distinguish from one another in strain signals. The vehicle is assumed 

to have a total weight of 122 kN with the mass located mid-way between the two 

axles. It has two degrees of freedom, vertical translation and rotation and the axle 

spacing is taken to be 1.5 m. Further details are given in Table 1. The second order 

equation of motion is solved at each time step to find the interaction force between 
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the axles and the bridge. This is used in the next time step to update the bridge 

deflection using the Runge-Kutta-Nystrom method [24].  

 

The strains are calculated at points 0.25L and 0.75L, where L is the 15 m length of 

the beam. Strains, sampled at over 6300 Hz, are shown in figure 3. This example 

was selected as it has a high amplitude of dynamic vibration which makes is 

difficult to identify the effect of each axle passing the sensor.  

 

The strain signals at 0.25L were analysed using the rbio2.4 wavelet. Contours of 

the wavelet coefficients are plotted in figure 4 for a range of scales and times. The 

axle positions are evident in the figure as two vertical black/grey lines at about 

0.18 and 0.25 seconds. While the signals are greater at high scales (30 and more), 

they are more pronounced at lower scales. A cross-section through figure 4 at a 

scale of 14 is given in figure 5. The point where each axle passes the sensor can be 

clearly identified from the two prominent peaks.  

 

The time difference between the arrival of the first axle at 0.25L and 0.75L was 

noted from the peaks and the velocity of the vehicle was calculated to be 74.85 

km/h, a deviation of 0.2% from the actual value of 75 km/h. From this velocity 

and the distance between the peaks corresponding to each axle, the axle spacing is 

calculated to be 1.5012 m, an error of 1.2 mm from the 1.5 m spacing used. The 

program used for the wavelet analysis of the numerically simulated strain signals 

was executed in Matlab. With 5000 data points in the time domain, the execution 

time required was approximately 270 seconds for each signal using a Pentium 4 

computer with a 1.4 GHz microprocessor speed and 256 MB RAM. 
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The wavelet is clearly highly effective at distinguishing the influence of the axle 

passing the sensor from the effects of vehicle and bridge vibration. However, a 

numerically generated signal such as this has very “sharp corners” in the static 

signal superimposed on the vibrational effects. The wavelet is clearly very 

effective at amplifying such slope discontinuities in the signal. Discontinuities of 

this type are not present in strains measured in typical concrete bridges due to 

dispersal of the wheel loads through the depth of the deck. 

 

4. Wavelet analysis of experimental results 

 

Experiments were conducted on the 6 m long Ravbarkomanda box culvert in 

Postojna, Slovenia in 2004 – see figure 6. The unidirectional traffic was travelling 

on the culvert in two lanes. The NOR strain signals were measured simultaneously 

at 16 sensors/channels placed at different points beneath the bridge while traffic 

flowed at highway speed overhead. Six strains sensors were placed at mid-span to 

determine axle weights and two, nos. 5 and 12, were placed in the slow lane under 

the wheel track and off-centre to detect the axles of the moving vehicle. The 

sampling frequency was 512 Hz. The chief objective of the analysis of these test 

results is to identify correctly all of the axles on a time scale and hence to 

determine the vehicle velocity and the axle spacing. To assess the accuracy of the 

NOR algorithm, trucks from the traffic were stopped and their axle spacings 

measured using a tape. 
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For the purpose of the wavelet-based analysis, only the signals recorded at the two 

off-centre sensors (channels 5 and 12) are considered in this paper. Twenty one 

vehicle runs are considered, as described in Table 2. The first five are chosen 

arbitrarily for calibration and the remaining sixteen for testing. Using the 

measured lengths between axles in the five calibration trucks, the peaks between 

the transformed signals are used to find the effective length between channels 5 

and 12; it is found to be 3.942 m. This is used for the remaining 16 trucks, to 

convert the time between transformed signal peaks into speeds and axle spacings. 

The calculated spacings and the differences between these and the manually 

measured spacings are presented in Table 3. Out of the 47 spacings used for 

testing, five have errors in calculated position in excess of 0.2 m. Given that tyre 

contact surface on a road is about 0.3 m, this is considered to be a good result for 

about 90% of the test vehicles.  

 

Figure 7(a) shows the original signal recorded at channel 5 in response to truck no. 

11. Clear peaks are evident for the first four axles but the fifth axle only manifests 

itself through slight changes in slope in the signal. This signal was transformed 

using the rbio2.4 wavelet performing CWT and wavelet coefficients were 

obtained at different scales. In contrast to the original signal of figure 7(a), there 

are pronounced peaks for all five axles for the transformed signal of figure 7(b). 

The wavelet coefficients are illustrated at scale 16. At this frequency, the five 

axles are the most prominent. It is a key feature of the wavelet approach that the 

transformation retains the original relationship with time, i.e., the peaks 

corresponding to the axles occur at the same times in figures 7(a) and (b).  The 

ripples in figure 7(b) only imply that those frequencies also exist in the signal and 
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they might have occurred due to sudden changes from one frequency component 

to another. The broad banded peak centered on 1.2 sec in figure 7(b) is probably 

due to some localized disturbance. However, these ripples or the broad banded 

peak do not form major spectral components of the signal as it is evident from 

their low amplitude. 

 

As it has the greatest error in axle spacing, vehicle no. 15 is considered in greater 

detail. The original and transformed signals at sensor 12 are illustrated in figure 8. 

The wavelet transformed signal corresponds to the scale 16. While the peak in the 

original signal corresponding to the fifth axle is indistinct, there are clear peaks for 

the first four axles. Hence, the axle spacing which gives the greatest error in Table 

3 – 2nd to 3rd – can be determined directly from the original signal. It is found that 

the location of the peaks in this original signal does not differ by more than two 

scans from those in the transformed signal. Hence, the peak that is the main source 

of error in axle spacing is present in the original signal. In general for all signals, 

the peaks in the transformed signal correspond exactly or to within one or two 

scans of the original signal. Thus, where there are significant inaccuracies in the 

results, they are not the result of the transformation. Possible explanations for the 

inaccuracies are measurement errors on site or errors in the original signal. 

Moreover, the axle locations in the original signal correspond to peaks in the 

transformed signal quite accurately. However in order to have the same number of 

peaks in the wavelet transformed signal as the number of axles, the scale has to be 

chosen properly after a number of trials so that the actual peaks corresponding to 

the axles become predominant over other small amplitude peaks.  
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The experimental results have also been analysed using the wavelets belonging to 

Daubechies (db) family. Figures 9, 10 and 11 show the temporal variation of the 

wavelet coefficients for scales 6, 16, 24 and 32 using db6, db10 and db20 

respectively. These wavelet coefficients have been calculated from the strain 

signal acquired at sensor 12 during the passage of vehicle 15 (shown in figure 

8(a)) over the bridge. Only results of lower values of scales are shown in figures 

9-11 because the higher values of scales would dilate the mother wavelet more, 

resulting in greater incapability in capturing the correct information like the axle 

detection of the vehicles passing at high speed. It may be observed that too many 

low amplitude peaks appear at scale 6 in all the figures and these peaks become 

broader and flatter as scale increases. No prominent peak can be found which may 

distinctly refer to the obvious presence of the axles and hence detect them. Figure 

12 depicts the wavelet coefficients derived from the same signal but using wavelet 

rbio2.4 for same scales as shown in figures 9-11. On comparing figures 9-12, it 

may be seen that 5 predominantly distinct peaks appear in figure 12 at scale 16 

compared to all other scales. Thus, it is evident that the plot of the wavelet 

coefficients using rbio2.4 at this scale very closely resembles the original strain 

signal thereby making the axle detections more reliable both in terms of time and 

number. The magnified view of the graph at scale 16 of figure 12 is already shown 

in figure 8(b) and discussed earlier. However, the choice of a particular scale for 

distinct and proper axle detection may vary and can only be ascertained after a 

careful investigation of the signal with all probable scales. 

    

5.  Conclusions 
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In this paper, an attempt has been made to analyse strain signals from the soffit of 

a bridge to detect the passage of vehicle axles overhead. Strain data series 

generated numerically and collected experimentally are processed using a reverse 

biorthogonal wavelet, rbio2.4. Signals obtained from numerical simulation of a 

walking beam model are processed using a wavelet based analysis. Even for a 

difficult signal with a high level of dynamics, there is very close agreement 

between calculated and assumed vehicle velocities and axle spacings. 

Experimental data from twenty one trucks with measured axle spacings is also 

processed. The wavelet approach (using rbio2.4) is highly effective at identifying 

the presence of an axle and in all cases, it transforms the signal into one in which 

axles can be clearly identified. Using the first five trucks for calibration, 

reasonably accurate axle spacings are found for 42 of 47 measurements. 

Significant errors remain in a few cases. It is reported that, for the latter examples, 

peaks are present in the wrong locations in the original data and are not a result of 

the wavelet transformation.  
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Table 1: Properties of vehicle and bridge models 

 

Vehicle properties  Bridge properties 

Distance between axles 1.5 m  Length of the bridge 15 m 

Mass at centre 12 440 kg  Mass per unit length 28 125 kg/m 

Moment of inertia 45 000 kg.m2  2nd moment of area of 
cross-section 

0.527 m4 

Spring stiffnesses (equal) 350 kN/m  Modulus of elasticity 35×109 N/m2 

Damping coefficients 
(equal) 

7 kNs/m 
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Table 2: Physical characteristics of the trucks on Ravbarkomanda bridge as measured 

by tape and static scales (vehicles shown shaded used for calibration) 

 

Vehicle 
No. 

GVW 
(kN) 

No. of 
axles 

Measured axle  spacing (m)   

1st to 2nd 2nd to 3rd 3rd to 4th 4th to 5th 

1 331 4 1.80 1.94 1.40   

2 153 5 3.60 5.90 1.33 1.33 

3 343 5 3.49 5.50 1.18 1.18 

4 366 5 3.71 5.87 1.32 1.32 

5 122 2 4.45       

6 312 5 3.81 5.50 1.32 1.31 

7 380 5 3.30 1.36 4.71 1.32 

8 316 5 3.72 5.81 1.31 1.31 

9 272 5 3.90 5.84 1.31 1.31 

10 114 2 4.60       

11 377 5 3.81 5.85 1.31 1.31 

12 95 3 5.08 7.51     

13 262 5 3.59 5.72 1.33 1.31 

14 377 5 3.52 5.79 1.31 1.31 

15 179 5 3.19 6.06 1.32 1.31 

16 163 2 4.31       

17 73 2 4.21       

18 391 5 3.70 5.64 1.31 1.31 

19 371 5 3.52 5.69 1.32 1.31 

20 120 2 4.16       

21 55 2 4.18       
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Table 3: Calculated axle spacings from wavelet analysis and errors (m) 

No. Calculated axle  spacing (m)   Error in calculated axle spacing (m)   

1st to 
2nd 

2nd to 
3rd 

3rd to 
4th 

4th to 
5th 

1st to 
2nd 

2nd to 
3rd 

3rd to 
4th 

4th to 
5th 

1 1.81 2.24 1.36   -0.01 -0.30 0.04   

2 3.52 5.86 1.32 1.36 0.08 0.04 0.01 -0.03 

3 3.54 5.45 1.21 1.19 -0.05 0.05 -0.03 -0.01 

4 3.69 5.82 1.38 1.38 0.02 0.05 -0.06 -0.06 

5 4.47       -0.02       

6 3.94 5.35 1.38 1.38 -0.13 0.15 -0.06 -0.07 

7 3.24 1.41 4.73 1.36 0.06 -0.05 -0.02 -0.04 

8 3.75 5.71 1.35 1.35 -0.03 0.10 -0.04 -0.04 

9 3.96 6.08 1.37 1.36 -0.06 -0.24 -0.06 -0.05 

10 4.73       -0.13    

11 3.96 5.77 1.48 1.40 -0.15 0.08 -0.17 -0.09 

12 4.99 7.43     0.09 0.08   

13 3.47 5.45 1.16 1.40 0.12 0.27 0.17 -0.09 

14 3.36 5.40 1.17 1.17 0.16 0.39 0.14 0.14 

15 3.12 5.43 1.49 1.09 0.07 0.63 -0.17 0.22 

16 3.79       0.52    

17 4.22       -0.01    

18 3.66 5.64 1.41 1.41 0.04 0.00 -0.10 -0.10 

19 3.58 5.55 1.26 1.26 -0.06 0.14 0.06 0.05 

20 4.07       0.09    

21 4.12       0.06    

 

 

 



  21

 

 

 

 

Figure 1a: Decomposition wavelet function, ψ(t) for mother wavelet rbio2.4 
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Figure 1b: Reconstruction wavelet function, ψ(t) for mother wavelet rbio2.4 

 

 

 

Figure 2: Vehicle model 
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(a)  Original strain signal, at 0.25L 
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(b) Original strain signal, at 0.75L 
 

 
 

Figure 3: Strain signals obtained from numerical model of beam (L = span = 15 m) 
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Figure 4: Contours of wavelet coefficients for range of scales (vertical axis) and times 

(horizontal axis) 
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Figure 5:  Wavelet coefficients at 0.25L for scale of 14 
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Figure 6: Ravbarkomanda bridge (photograph courtesy of ZAG Slovenia) 
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(a) Original strain signal 

Figure 7 
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(b) Strain signal after wavelet transformation 

 

Figure 7: Strain signal and wavelet transform, vehicle no. 11 
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(a) Original strain signal 
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(b) Strain signal after wavelet transformation 

 

Figure 8: Strain signal and wavelet transform, vehicle no. 15 
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Figure 9: Wavelet coefficients of signal shown in figure 8(a) using db6   
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 Figure 10: Wavelet coefficients of signal shown in figure 8(a) using db10 
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Figure 11: Wavelet coefficients of signal shown in figure 8(a) using db20 
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Figure 12: Wavelet coefficients of signal shown in figure 8(a) using rbio2.4 


