Global bifurcation for a class of nonlinear ODEs (2022)
Source: São Paulo Journal of Mathematical Sciences. Unidade: IME
Subjects: ANÁLISE GLOBAL, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, GEOMETRIA RIEMANNIANA, TEORIA DA BIFURCAÇÃO
ABNT
BETTIOL, Renato G. e PICCIONE, Paolo. Global bifurcation for a class of nonlinear ODEs. São Paulo Journal of Mathematical Sciences, v. 16, n. 1, p. 486-507, 2022Tradução . . Disponível em: https://doi.org/10.1007/s40863-022-00290-3. Acesso em: 04 jan. 2025.APA
Bettiol, R. G., & Piccione, P. (2022). Global bifurcation for a class of nonlinear ODEs. São Paulo Journal of Mathematical Sciences, 16( 1), 486-507. doi:10.1007/s40863-022-00290-3NLM
Bettiol RG, Piccione P. Global bifurcation for a class of nonlinear ODEs [Internet]. São Paulo Journal of Mathematical Sciences. 2022 ; 16( 1): 486-507.[citado 2025 jan. 04 ] Available from: https://doi.org/10.1007/s40863-022-00290-3Vancouver
Bettiol RG, Piccione P. Global bifurcation for a class of nonlinear ODEs [Internet]. São Paulo Journal of Mathematical Sciences. 2022 ; 16( 1): 486-507.[citado 2025 jan. 04 ] Available from: https://doi.org/10.1007/s40863-022-00290-3