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The quark–gluon plasma which has been observed at RHIC is a strongly interacting system and has been
called sQGP. This is a system at high temperatures and almost zero baryon chemical potential. A similar
system with high chemical potential and almost zero temperature may exist in the core of compact stars.
Most likely it is also a strongly interacting system. The strong interactions may be partly due to non-
perturbative effects, which survive after the deconfinement transition and which can be related with the
non-vanishing gluon condensates in the sQGP. In this work, starting from the QCD Lagrangian we perform
a gluon field decomposition in low (“soft”) and high (“hard”) momentum components, we make a mean
field approximation for the hard gluons and take the matrix elements of the soft gluon fields in the
plasma. The latter are related to the condensates of dimension two and four. With these approximations
we derive an analytical expression for the equation of state, which is compared to the MIT bag model
one. The effect of the condensates is to soften the equation of state whereas the hard gluons significantly
increase the energy density and the pressure.

© 2011 Published by Elsevier B.V. Open access under the Elsevier OA license.
1. Introduction

One of the most interesting results of the RHIC program is the
discovery of an extremely hot and dense state of matter made of
quarks and gluons in a deconfined phase and which behaves like
an ideal fluid [1]. While the production of such a plasma of quarks
and gluons had been predicted, it was a surprise to find that this
system is strongly interacting and very different from the origi-
nally expected gas of almost non-interacting quarks and gluons,
described by perturbative QCD. This state has been called strongly
interacting quark–gluon plasma (sQGP) and there are many ap-
proaches to study its properties. The most fundamental approach
is provided by lattice QCD [2]. Since lattice QCD has still some lim-
itations, such as the difficulty in dealing with systems with large
baryon chemical potential, there are several models (see, for ex-
ample, [3–5]) which incorporate the essential features of the full
theory and which can be employed to study the sQGP. In some of
them [3,4] the sQGP is treated as a gas of quasi-particles, in which
the quarks and gluons have an effective mass. In some works,
such as in [3,6], the sQGP was treated with semi-classical meth-
ods. In [3] the color charges were assumed to be large and classical
obeying Wong equations of motion. In this approach the quantum
effects in the QGP are basically reduced to generate thermal-like
masses and cause the effective coupling to run to larger values at
smaller values of the temperature.
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The medium created in heavy ion collisions has high temper-
ature and zero baryon chemical potential. On the other corner of
the phase space, we find the QGP at zero temperature and high
baryon number. Presumably, this kind of system exists in the core
of dense stars. This cold QGP has a richer phase structure and at
high enough chemical potential we may have a color supercon-
ducting phase. Because of the limitations of lattice calculations in
this domain and also because of the lack of experimental infor-
mation, the cold QGP is less known than the hot QGP. Neverthe-
less it is quite possible that it shares some features with the hot
plasma, being also a strongly interacting and semi-classical sys-
tem.

In this work we shall study the non-perturbative effects in the
cold QGP generated by the residual dimension-two and dimension-
four condensates, using a mean field approximation.

In the vacuum, non-perturbative effects have been successfully
understood in terms of the QCD condensates, i.e., vacuum expec-
tation values of quark and gluon “soft” (low momentum) fields.
The best known are the dimension-three quark condensate and
the dimension-four gluon condensate [7]. These condensates can,
in principle, be computed in lattice QCD or with the help of mod-
els. In practice, since they are vacuum properties and therefore
universal, they can be extracted from phenomenological analyses
of hadron masses, as it is customary done in QCD sum rules [8].
The condensates are expected to vanish in the limit of very high
temperature or chemical potential. However, it has been suggested
that they may survive after the deconfinement transition both in
the high temperature [9,10] and in the high chemical potential
cases [11]. For our purposes the relevant gluon condensates are
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those of dimension four [7], 〈0|αs
π F 2|0〉 (= 〈F 2〉), and of dimension

two [12–15], 〈0|g2 A2|0〉 (= 〈g2 A2〉).
We shall derive an equation of state (EOS) for the cold QGP,

which may be useful for calculations of stellar structure. Our EOS
can be considered an improved version of the EOS of the MIT bag
model, which contains both the non-perturbative effects coming
from the residual gluon condensates and the perturbative effects
coming from the hard gluons, which are enhanced by the high
quark density. As it will be seen, the effect of the condensates is to
soften the EOS whereas the hard gluons significantly increase the
energy density and the pressure.

2. The equation of state

In this section we develop a mean field approximation for QCD,
extending previous works along the same line [16–20]. The La-
grangian density of QCD is given by:

LQCD = −1

4
F a
μν F aμν

+
N f∑

q=1

ψ̄
q
i

[
iγ μ

(
δi j∂μ − igT a

i j G
a
μ

) − δi jmq
]
ψ

q
j (1)

where

F aμν = ∂μGaν − ∂νGaμ + g f abc GbμGcν (2)

The summation on q runs over all quark flavors, mq is the mass of
the quark of flavor q, i and j are the color indices of the quarks,
T a are the SU(3) generators and f abc are the SU(3) antisymmet-
ric structure constants. For simplicity we will consider only light
quarks with the same mass m. Moreover, we will drop the sum-
mation and consider only one flavor. At the end of our calculation
the number of flavors will be recovered. Following [16,17], we shall
start writing the gluon field as:

Gaμ = Aaμ + αaμ (3)

where Aaμ and αaμ are the low (“soft”) and high (“hard”) mo-
mentum components of the gluon field respectively. The former
will be responsible for the long range and low momentum trans-
fer, non-perturbative processes whereas the latter will be relevant
in the short distance perturbative processes. The field decomposi-
tion made above requires the choice of an energy scale defining
the frontier between soft and hard. This energy scale, E , lies in the
range ΛQCD < E < 1 GeV. In principle, the dependence of the re-
sults on this choice can be studied with the renormalization group
techniques. Accurate results would also require the knowledge of
the scale dependence of the in-medium gluon condensates, which
in our case is poor. Therefore, in order to keep the simplicity of
our approach, we will not specify the separation scale and will
assume that Aaμ represents the soft modes which populate the
vacuum and αaμ represents the modes for which the running cou-
pling constant is small.

Inserting (3) into (2) we obtain:

F aμν = (
∂μ Aaν − ∂ν Aaμ + g f abc Abμ Acν)
+ (

∂μαaν − ∂ναaμ + g f abcαbμαcν)
+ g f abc Abμαcν + g f abcαbμ Acν (4)

2.1. The mean field approximation

In a cold quark–gluon plasma the density is much larger than
the ordinary nuclear matter density. These high densities imply
a very large number of sources of the gluon field. With intense
sources the bosonic fields tend to have large occupation numbers
at all energy levels, and therefore they can be treated as classical
fields. This is the famous approximation for bosonic fields used in
relativistic mean field models of nuclear matter [21]. It has been
applied to QCD in the past [18] and amounts to assume that the
“hard” gluon field, αa

μ , is simply a function of the coordinates [21]:

αa
μ = αa

0δμ0 (5)

In fact, for cold nuclear matter, it is further assumed that αa
μ is

constant in space and time [21]:

∂να
a
μ = 0 (6)

As a consequence of this approximation, the term g f abcαb
0α

c
0 will

vanish because of the color symmetry. We also assume that the
soft gluon field Aaμ is independent of position and time and thus:

∂ν Aaμ = 0 (7)

Substituting (5), (6) and (7) into (4) we have F aμν = f abc(g Abμ Acν

+ g Abμαc
0δ

ν0 + gαb
0δμ0 Acν). Inserting this into (1), the QCD La-

grangian simplifies to:

LQCD = − f abc f ade

4

[
g2

s Ab
μ Ac

ν Adμ Aeν

+ g2 Ab
μ Ac

ν Adμαe
0δ

0ν + g2 Ab
μ Ac

να
d
0δ0μ Aeν

+ g2 Ab
μαc

0δ0ν Adμ Aeν + g2αb
0δ0μ Ac

ν Adμ Aeν

+ g2 Ab
μαc

0δ0να
d
0δ0μ Aeν + g2 Ab

μαc
0δ0ν Adμαe

0δ
0ν

+ g2αb
0δ0μ Ac

ν Adμαe
0δ

0ν + g2αb
0δ0μ Ac

ν αd
0δ0μ Aeν]

+ ψ̄
q
i

{
iγ μ

[
δi j∂μ − iT a

i j

(
gs Aa

μ + ghα
a
0δ0μ

)] − δi jm
}
ψ

q
j

(8)

In the above expression the coupling is running. In the first line
g2 connects four soft fields and is therefore large. Accordingly we
call it g = gs . In the fourth line, the interaction between the field
Aa

μ and the quarks is dominated by low momenta, the coupling is
large and hence g = gs . In the same line the interaction between
αa

0 and the quarks is dominated by high momenta, the hard cou-
pling is small and we call it g = gh . At this point, in the second
and third lines the couplings could be soft or hard.

We shall now replace the soft gluon field Ab
μ and its powers by

the corresponding expectation values in the cold QGP. The product
of four fields in the first line of the above equation can be related
to the gluon condensate through the relations similar from [16,17]:〈
g2

s Aa
μ Ab

ν Acρ Adη
〉

= φ0
4

(32)(34)

[
gμν gρηδabδcd + gμ

ρ gν
ηδacδbd + gμ

η gν
ρδadδbc]

(9)

and

−1

4

〈
F aμν Faμν

〉 = −π2

g2
s

〈
αs

π
F aμν F a

μν

〉
= −bφ4

0 (10)

where the constant b is given by:

b ≡ 9

4(34)
(11)

In the second and fourth lines of (8) we have odd powers of Aaμ

which have vanishing expectation values:
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〈
Aaμ Abν Acρ 〉 = 0 (12)〈
Aaμ〉 = 0 (13)

In the third line of (8) we approximate the products of the type
g2 Aaμ Abν by the expectation value of two soft fields given by
[16,17]:

〈
g2

s Aaμ Abν
〉 = −δab gμν

32
μ2

0 (14)

Since the above matrix element involves only soft fields we have
g = gs . The 〈g2

s A2〉 condensate is associated with a dynamical
gluon mass [16,17] which is defined as:

m2
G ≡ 9

32
μ2

0 (15)

In spite of the recent progress in the field, still very little is
known about 〈A2〉 at finite (and high) density. In our approach, as
in [22], we have 〈g2

s A2〉 < 0 in (14) so mG
2 is positive.

Using expressions (9), (12), (13), (14) and (15) in (8) we arrive
at the following effective Lagrangian:

L = −bφ4
0 + m2

G

2
αa

0α
a
0

+ ψ̄
q
i

(
iδi jγ

μ∂μ + ghγ
0T a

i jα
a
0 − δi jm

)
ψ

q
j (16)

This Lagrangian describes a system with quarks, soft gluons and
hard gluons. The quarks couple only to the hard gluons. The hard
gluons couple to the quarks and to the soft gluons. The field α
propagates (on a background with the field A) with large momen-
tum but does not exchange hard momenta with the background.
The only effect of this interaction is to give an effective mass to
the hard gluon.

2.2. Pressure and energy density

From the Lagrangian (16) we can derive the equations of mo-
tion:

m2
Gαa

0 = −ghρ
a (17)(

iδi jγ
μ∂μ + ghγ

0T a
i jα

a
0 − m

)
ψ j = 0 (18)

where ρa is the temporal component of the color vector current
given by:

jaν = ψ̄iγ
ν T a

i jψ j (19)

From the Lagrangian we can obtain the energy–momentum tensor
and the energy density of the system through:

ε = 〈T00〉 (20)

In the present case the energy–momentum tensor is given simply
by:

T μ
ν = ∂L

∂(∂μψi)
(∂νψi) − gμ

ν L (21)

and consequently:

ε = ∂L
∂(∂0ψi)

(∂0ψi) − g00 L (22)

which, with the use of (16) gives:

ε = iψ̄iγ
0(∂0ψi) − g00

{
−bφ4

0 + m2
G

2
αa

0α
a
0

+ ψ̄
q
i

(
iδi jγ

μ∂μ + ghγ
0T a

i jα
a
0 − δi jm

)
ψ

q
j

}
(23)
Using (18) in the expression above we find

ε = bφ4
0 − m2

G

2
αa

0α
a
0 + iψ̄iγ

0(∂0ψi) (24)

Multiplying (18) by ψ̄i from the left we find:

iψ†
i (∂0ψi) = ψ

†
i

(−i �α · �∇ + γ 0m
)
ψi − ghρ

aαa
0 (25)

From the usual Dirac theory applied to the study of nuclear matter
we have [21]:

ψ
†
i

(−i �α · �∇ + γ 0m
)
ψi = 3

γQ

2π2

kF∫
0

dk k2
√

�k2 + m2 (26)

In the last two expressions we have:

�α =
(

0 �σ
�σ 0

)
, γ 0 =

(
1 0

0 −1

)

where �σ are the standard 2 × 2 Pauli matrices, the unit entries in
γ 0 are 2 × 2 unit matrices and γQ is the quark degeneracy factor
γQ = 2(spin) × 3(flavor). The sum over all the color states was al-
ready performed and resulted in the pre-factor 3 in the expression
above. kF is the Fermi momentum defined by the quark number
density ρ:

ρ = 〈N|ψ†
i ψi|N〉 = 3

V

∑
�k,λ

〈N|N〉 = 3

V

∑
�k,λ

= 3
γQ

(2π)3

∫
d3k = 3

γQ

2π2

kF∫
0

dk k2

which gives:

ρ = γQ

2π2
kF

3 (27)

In the above expression |N〉 denotes a state with N quarks. Insert-
ing (26) into (25) and then (25) into (24) we find:

ε = bφ4
0 − m2

G

2
αa

0α
a
0 − ghρ

aαa
0 + 3

γQ

2π2

kF∫
0

dk k2
√

�k2 + m2 (28)

Using (17) we can eliminate the field αa
0 in the above expression:

ε = bφ4
0 +

(
g2

h

2mG
2

)
ρaρa + 3

γQ

2π2

kF∫
0

dk k2
√

�k2 + m2 (29)

We can relate the color charge density ρa and the quark number
density ρ . To do this we shall use the notation of [23] and write
the quark spinor as ψi = ψci , where ci is a color vector. We have:

ρaρa = (
ψ̄iγ

0T a
i jψ j

)(
ψ̄kγ

0T a
klψl

)
= (

ψ
†
i T a

i jψ j
)(

ψ
†
k T a

klψl
)

= (
c†

i T a
i jc j

)
ψ†ψ

(
c†

k T a
klcl

)
ψ†ψ = 3ρ2 (30)

where we used the relations ψ†ψ = ρ and (c†
i T a

i jc j)(c†
k T a

klcl) = 3.
Performing the momentum integral we arrive at the final expres-
sion for the energy density:
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ε =
(

3g2
h

2m2
G

)
ρ2 + bφ4

0 + 3
γQ

2π2

{k3
F

√
k2

F + m2

4

}

+ 3m2

8

γQ

2π2

[
kF

√
k2

F + m2 − m2 ln

(kF +
√

k2
F + m2

m

)]
(31)

The pressure is given by

p = 1

3
〈Tii〉 (32)

Repeating the same steps mentioned before and using:

ψ
†
i (−i �α · �∇)ψi = 3

γQ

(2π)3

∫
d3k

{ �k2√�k2 + m2

}

= 3
γQ

2π2

kF∫
0

dk k2
{ �k2√�k2 + m2

}
(33)

we arrive at:

p = m2
G

2
αa

0α
a
0 − bφ4

0 + γQ

2π2

kF∫
0

dk k2
{ �k2√�k2 + m2

}
(34)

Performing the momentum integral, using (17) and the relation
for ρa and the quark number density ρ in (34) we obtain the final
expression for the pressure:

p =
(

3g2
h

2m2
G

)
ρ2 − bφ4

0 + γQ

2π2

{k3
F

√
k2

F + m2

4

}

− 3m2

8

γQ

2π2

[
kF

√
k2

F + m2 − m2 ln

(kF +
√

k2
F + m2

m

)]
(35)

The speed of sound cs is given by:

cs
2 = ∂ p

∂ε
(36)

In the expressions above, gh is small, since it comes always from
the coupling between the hard gluons and the quarks.

Both (31) and (35) have three terms. The first term, propor-
tional to ρ2, comes from the purely hard gluonic term appearing
in the Lagrangian and from the hard gluon term appearing in the
quark equation of motion. The second term, proportional to φ4

0 ,
comes exclusively from the soft gluon terms and it has opposite
signs in the energy and in the pressure. This is precisely the be-
havior of the bag constant term in the MIT bag model which has
the same origin. The third term comes from the quarks. In short,
we can say the both the energy density and the pressure are the
sum of three contributions: the hard gluons, the soft gluons and
the quarks.

3. Numerical results and discussion

We now compare our results (31), (35) and (36), with the cor-
responding results obtained with the MIT bag model for a gas of
quarks at zero temperature [21,24]:

ε0 =
(

9

4

)
π2/3ρ

4/3
B + B (37)

and
p0 = 1

3

(
9

4

)
π2/3ρ

4/3
B − B (38)

and

c0
2 = ∂ p

∂ε
= 1

3
(39)

We choose B = 110 MeV fm−3, which lies in the range (50 < B <

200 MeV fm−3) used in calculations of stellar structure [25–27]. For
the comparison we must rewrite (27), (31) and (35) as functions
of the baryon density, which is ρB = 1

3 ρ .
If we neglect the gluonic terms and choose the quark mass m

to be zero in (31) and (35) we can show that they coincide with
(37) and (38) with B = 0. In this limit, our model reduces to the
MIT bag model.

We next consider the MIT bag model with finite B and our
model with massless quarks and soft gluons but no hard gluons.
This comparison is meaningful because with these ingredients both
models describe the dynamics of free quarks under the influence of
a soft gluon background. In this case we can identify our gluonic
term with the gluonic component of the MIT bag model, repre-
sented by the bag constant. We then obtain an expression for the
bag constant in terms of the gluon condensate:

BQCD = bφ4
0 =

〈
1

4
F aμν F a

μν

〉
(40)

where in the last equality we have used (10) and (11). The above
relation has been found in previous works, such as, for example,
[9]. Fixing B and choosing a reasonable value of the coupling of
the soft gluons, gs , appearing in (10) we can infer the value of
the dimension-four condensate, 〈F 2〉, in the deconfined phase. For
BQCD = B = 110 MeV fm−3 and gs = 2.7 (which would correspond
to αs(soft) = g2

s /4π = 0.6) we find:

〈
F 2〉 = 〈

αs

π
F aμν F a

μν

〉
= g2

s

π2
BQCD = 0.0006 GeV4 (41)

In the lack of knowledge of the in-medium dimension-two con-
densate, we use the factorization hypothesis, which, in the notation
of Refs. [16] and [17], implies the choice μ2

0 = gsφ
2
0 . As a conse-

quence, (9), (10), (14) and (15) are related and we obtain:

〈
g2

s A2〉 = −
√

(4)(34)π2

9

〈
F 2

〉 = −0.3 GeV2 (42)

which corresponds to a dynamical mass of mG = 290 MeV. This
number is consistent with the values quoted in recent works [28–
30], which lie in the range 200 < mG < 600 MeV. Finally, the nu-
merical evaluation of (31), (35) and (36) requires the choice of gh ,
the coupling of the hard gluons, and of the quark mass, m. We
choose them to be gh = 0.35 (corresponding to αs(hard) = g2

h/4π =
0.01) and m = 0.02 GeV.

For Figs. 1–3 we use the values from (41) and (42). In Fig. 1 we
show the energy density, pressure and speed of sound obtained
with (31), (35) and (36) divided by the corresponding MIT values:
ε0, p0 and c0. We observe that, for this set of parameters, our EOS
is harder than the MIT one. This can also be seen in the plot of the
pressure as a function of the energy density, shown in Fig. 2. In the
same range of baryon densities, we have more energy, much more
pressure and consequently a larger speed of sound. This behavior
can be attributed to the first term of Eqs. (31) and (35), which
comes from the hard gluons. This term is exactly the same both in
(31) and (35) and in the limit of high densities becomes dominant
yielding p � ε and hence cs → 1. Physically, this term represents
the perturbative corrections to the MIT approach. Since the quark
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Fig. 1. Energy density, pressure and speed of sound, as functions of the baryon den-
sity, divided by the corresponding MIT values: ε0, p0 and c0. The values for the
condensates came from (41) and (42).

Fig. 2. Pressure as a function of the energy density.

density is extremely large, even in the weak coupling regime (typ-
ical of the hard gluons) the field αa

0 is intense. A similar situation
occurs in the color glass condensate (CGC). In that context, a pro-
ton (or nucleus) boosted to very high energies becomes the source
of intense gluon fields generated in the weak coupling regime. Also
in that case semi-classical methods were applied to study this glu-
onic system.

In Fig. 3 we plot the energy density (31) (upper panel) and the
pressure (35) (lower panel) as a function of the baryon density ρB .
Fig. 3. Individual contributions to the energy density and to the pressure: hard glu-
ons, quarks, soft gluons and the sum of the three components.

We take ρB always starting at 1.5 fm−3. We can observe that the
quarks and hard gluons give the dominant contributions both to
the energy and to the pressure. Looking at the pressure we see
that the hard gluons give a repulsive contribution whereas the soft
gluon contribution is attractive. It is interesting to see that our
curves follow closely those of Refs. [26] and [27], computed with
slightly different versions of the MIT bag model.

In Fig. 4 we show the EOS for different choices of the conden-
sates, which are now treated as independent from each other. In
the upper panel we fix 〈F 2〉 and vary 〈g2

s A2〉, starting from the
central value −0.3 GeV2 (corresponds to a mG = 290 MeV) and
increasing its magnitude up to the lattice result −2.56 GeV2 [31]
(or 〈g2

s A2〉 = −(1.6 GeV)2 which corresponds to mG = 848.5 MeV).
In the lower panel we perform the complementary study keeping
〈g2

s A2〉 and increasing the magnitude of 〈F 2〉. As it can be seen, in-
creasing the condensates reduces the pressure and, in the case of
〈g2

s A2〉, softens the equation of state. This behavior could be an-
ticipated from Eqs. (31), (35) and from equation of motion (17).
Indeed, keeping fixed the coupling and the quark density, when
we increase the gluon mass, the field becomes weaker. In a more
accurate treatment, with the inclusion of spatial inhomogeneities,
the equation of motion (17) would contain a Laplacian term and its
solution would show a Yukawa behavior, with the mass mG con-
trolling the screening of the field αa

0.
In Fig. 5 we show the energy per particle as a function of the

baryon density for different values of the gluon condensates. As
in the previous figure, in the upper panel we fix 〈F 2〉 and vary
〈g2

s A2〉. Increasing 〈g2
s A2〉 the energy per particle grows slower

with baryon density. The system becomes more compressible. In
the lower panel we keep 〈g2

s A2〉 fixed and increase the magnitude
of 〈F 2〉. Increasing 〈F 2〉 leads, as before, to a more compressible
system but the total energy is now larger. For the central values of
〈F 2〉 and 〈g2

s A2〉 we obtain values of ε/ρB which are compatible
with those found in Ref. [32] for equivalent baryon densities. As it
can be seen in all curves, the energy per particle is always much
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Fig. 4. EOS for different values of dimension-two and dimension-four gluon conden-
sates.

larger than the nucleon mass (939 MeV) and hence the system un-
der consideration can decay into nuclear matter.

Before concluding an important remark is in order. We started
the derivation of the QGP equation of state from the QCD La-
grangian (1), which is gauge invariant. We ended up obtaining the
energy density (31) and the pressure (35), which are physical ob-
servables and therefore should be also gauge invariant. However,
along the way we made some approximations and gauge invari-
ance is no longer manifest. It might even have been broken. We
have neglected the derivatives of the gluon fields in (6) and (7).
While from a physical point of view, this seems quite reasonable,
since we are addressing an infinite and uniform system, from a
more formal point of view, these approximations imply the loss
of gauge invariance. We are currently investigating the quantita-
tive effects of including the derivatives and the results will be re-
ported elsewhere. The dimension-two condensate 〈g2 A2〉 is gauge
dependent, being most often defined in the Landau gauge. How-
ever this gauge dependence does not seem to be so severe. In fact,
it has been conjectured [14] that this condensate is dominated by
a gauge-invariant dimension-two contribution which is local only
in the Landau gauge, being otherwise non-local.

To summarize, we have derived an equation of state for the
cold QGP, which may be useful for calculations of stellar struc-
ture. The derivation is simple and based on three assumptions: (i)
decomposition of the gluon field into soft and hard components;
(ii) replacement of the soft gluon fields by their expectation values
(“in-medium condensates”) and (iii) replacement of the hard gluon
fields by their mean-field (classical) values. Our EOS can be consid-
ered an improved version of the EOS of the MIT bag model, which
contains both the non-perturbative effects coming from the resid-
ual gluon condensates and the perturbative effects coming from
the hard gluons, which are enhanced by the high quark density.
It is reassuring to observe that our EOS has the correct limits,
Fig. 5. Energy per particle as a function of the baryon density for different values of
the gluon condensates.

where we recover the MIT bag model results. The parameters are
the usual ones in QCD calculations: couplings, masses and conden-
sates. The effect of the condensates is to soften the EOS whereas
the hard gluons significantly increase the energy density and the
pressure.
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